

Domain Adaptive Relation Extraction for Big Text Data Analytics

Feiyu Xu

Outline

- Introduction to relation extraction and its applications
- Motivation of domain adaptation in big text data analytics
- Solutions
- Conclusion and future work

What is Relation Extraction

 Given an unstructured text, a relation extraction (RE) tool should be able to automatically recognize and extract relations among the relevant entities or concepts that are salient to the user's needs

Example in Opinion Mining

General application task 1:

☆ Information access for information finder

mapping unstructured textual queries of users to more structured formal query for search and answer engines

General application task 2:

☆ Information acquisition for information provider

extract structured information from big amount free texts to construct knowledge bases

Acquisition of Social Network of Pop Stars from Web

Social Network of "Madonna" (Depth = 1)

Social Network of "Madonna" (Depth = 3)

General application task 3: Big Data Analytics

- S
- Enabling the linking between structured and unstructured data
 - Large-scale information monitoring
 - Analytics: analyses of areas, markets, trends
 - Watch: Scanning for relevant new developments

Example: Network of Innovation Keyplayers

🚥 http://techwatchtool.**dfki.de**/thyssenkruppsteel/concept?queryId=33&queryName=hybrid+beam+welding&command=show

Outline

- Introduction to relation extraction and its applications
- Motivation of domain adaptation in big text data analytics
- Solutions
- Conclusion and future work

Text Analytics for Big Textual Data

- Three main features of big data
 - Volume: large-scale in volume
 - Variety: with respect to heterogeneous domains and formats
 - Velocity: because of its rapid and steady growing.
- Requirements of text analytics technologies for big data
 - efficient
 - robust
 - scalable
 - domain-adaptive

Domain Adaptation is Essential for Big Data!

 Among the three big data features, variety and velocity are even more challenging than the sheer size volume

Reasons:

New domains have been constantly emerging, rapidly growing in size.

Domains can differ in

- topics (e.g., medicine, chemistry or mechanics)
- genres (e.g., news, novels, blogs, scientific publications or patents)
- targets (e.g., different relations such as marriage, person-parent relation, disease-symptom relation)
- data internal properties (e.g., size or redundancy or connectivity).
- Systems, methods or strategies developed or trained for so-called general purpose or one specific domain can often not be directly taken over by other domains, because
 - each domain needs its own domain knowledge and
 - each application data has its own special properties.

Relevant Strategies for Domain Adaptation

- Minimally dependent on the labeled training data
 - Minimally or weakly supervised machine learning methods
- Strategies for
 - confidence estimation of automatically learned information and knowledge
 - filtering of irrelevant and wrong information
- Domain adaptation of generic systems for specific applications

Outline

- Introduction to relation extraction and its applications
- Motivation of domain adaptation in big text data analytics
- Solutions
- Conclusion and future work

Our solutions (1)

- minimally supervised and distantly supervised automatic learning of domain-specific grammar-based pattern rules for n-ary RE: DARE and Web-DARE Systems
 - Feiyu Xu, Hans Uszkoreit, Hong Li, "A Seed-driven Bottom-up Machine Learning Framework for Extracting Relations of Various Complexity (2007)". In ACL 2007.
 - Hans Uszkoreit, Feiyu Xu, Hong Li. "Analysis and Improvement of Minimally Supervised Machine Learning for Relation Extraction". In NLDB 2009.
 - Sebastian Krause, Hong Li, Hans Uszkoreit, Feiyu Xu, "Large-Scale Learning of Relation-Extraction Rules with Distant Supervision from the Web". In Proceedings of the 11th International Semantic Web Conference (ISWC 2012).

Our solutions (2)

- Various filtering and confidence estimation methods for highperformance and large-scale relation extraction
 - Sebastian Krause, Hong Li, Hans Uszkoreit, Feiyu Xu, "Large-Scale Learning of Relation-Extraction Rules with Distant Supervision from the Web". In Proceedings of the 11th International Semantic Web Conference (ISWC 2012)
 - Andrea Moro, Hong Li, Sebastian Krause, Feiyu Xu, Roberto Navigli, Hans Uszkoreit, "Semantic rule filtering for web-scale relation extraction". In Proceeding of International Semantic Web Conference (ISWC 2013).
 - Feiyu Xu, Hans Uszkoreit, Sebastian Krause, Hong Li. Boosting Relation Extraction with Limited Closed-World Knowledge. COLING 2009, Poster.

Our solutions (3)

- Automatic adaptation and improvement of generic parsing results for specific domains
 - Peter Adolphs, Feiyu Xu, Hans Uszkoreit, Hong Li, "Dependency Graphs as a Generic Interface between Parsers and Relation Extraction Rule Learning". In Proceedings of KI 2011, pp. 50-62, 2011.
 - Feiyu Xu, Hong Li, Yi Zhang, Hans Uszkoreit, Sebastian Krause, "Parse reranking for domain-adaptive relation extraction". Journal of Logic and Computation, doi: 10.1093/logcom/exs055, Oxford University Press, 2012.

Our solutions (4)

- Automatic generation of domain-specific linguistic knowledge resources
 - Hans Uszkoreit and Feiyu Xu, "From Strings to Things, SAR-Graphs: A New Type of Resource for Connecting Knowledge and Language". In Proceedings of 1st International Workshop on NLP and DBpedia volume 1064, Sydney, NSW, Australia, CEUR Workshop Proceedings, 10/2013
 - Open source: sargraph.dfki.de

Web-DARE Distant-supervised Web-scale RE

Web-DARE: Distant Supervision based RE

- Large number of RE rules are automatically learned by using Freebase as seed knowledge and Web as training corpus
- Goal:
 - covering most linguistic variants for expressing a relation
 - thus solving the notorious long-tail problem of real-world NL applications

Data Set

- rules learned for 39 relations
 - n-ary relations n>=2
- three domains: business, awards and people
- 2.8 million relation instances retrieved from Freebase as seed
- 20 million web documents as training corpus

- Seed example

<Mohamed ElBaradei/Person, Nobel/Prize, Peace/Area, 2005/Year>

- Sentence matched with the seed

Mohamed ElBaradei won the 2005 Nobel Prize for Peace on Friday ...

Dependency Parse Result

Bottom Up Rule Learning

Bottom Up Rule Learning

Bottom Up Rule Learning

Web-DARE Architecture

Some Statistics of Web-DARE Rules

Relation	* Senter	sees used	Sond rule	# Rules will
award nomination	13,966	13,149	23,987	7,800
award honor	50,550	49,001	106,550	40,578
hall of fame induction	31,244	28,278	44,920	17,450
organization relationship	46,331	42,824	60,379	28,903
acquisition	63,967	60,903	96,747	50,544
organization merger	2,996	1,521	3,243	1,758
company name change	9,433	9,132	15,619	6,910
spin off	5,247	5,094	8,319	4,798
marriage	342,895	335,313	557,478	176,949
sibling relationship	167,611	160,893	255,788	69,596
romantic relationship	155,335	152,878	229,393	74,895
person parent	192,610	186,834	390,878	119,238
average of 39 relations	66,545	66,509	109,435	41,620

Problems of Large-Scale Approach

- Very low precision
 - a lot of noisy rules
 - many rules are learned from more than one relation

Euler Diagram for Four People-Relations

Various Filtering Strategies for High-Performance Web-Scale RE

Frequency-Driven Rule Filters

• Merged Filter:

$$valid_m^{\mathcal{R}}(r) = valid_{freq}^{\mathcal{R}}(r) \wedge valid_{inter}^{\mathcal{R}}(r)$$

1) absolute frequency filtering: a threshold to exclude rules with low occurrency

Rule Frequency Driven Filters

• Merged Filter:

$$valid_{m}^{\mathcal{R}}(r) = valid_{freq}^{\mathcal{R}}(r) \wedge valid_{inter}^{\mathcal{R}}(r)$$

- 1) absolute frequency filtering: a threshold to exclude rules with low occurrency
- **2)** inter-relation filter (Overlap Filter FO Filter):
 - based on mutual exclusiveness of relations with similar entitytype signatures.
 - a rule is only valid for a relation, if its relative frequency is higher than any other relations with similar entity type signatures.

$$\begin{aligned} valid_{inter}^{\mathcal{R}}(r) &= \\ \begin{cases} true & \text{if } \forall \mathcal{R}' \in \mathbb{R} \setminus \{\mathcal{R}\} : rf_{r,\mathcal{R}} > rf_{r,\mathcal{R}'} \\ false & \text{otherwise} \end{cases} \end{aligned}$$

Weakness of Filtering with Frequency

- Undetected low-quality patterns:
 - high frequency in target relation, low frequency in coupled relations

Weakness of Filtering with Rule Frequency

Undetected low-quality patterns:

- high frequency in target relation, low frequency in coupled relations

✔?

Weakness of Filtering with Rule Frequency

- Undetected low-quality patterns:
 - high frequency in target relation, low frequency in coupled relations

X?

- Erroneously-deleted good patterns:
 - infrequent patterns

Lexical Semantics can help!

marriage

marriage#n#1

marriage

hase#n#1

choose#v#1

buy#v#3

mod

acquisition

transaction#chase#n#2uv back#v#1

truver#n#1

acquisition#n#1

subj

buying#n#1

pay#v#♥ bargain#n#

Candidate RE Patterns

person-death

die # v # 2

death#n#1

change_state#

fail

gain#v#8

High-quality RE Patterns

obj

lex-mod

Automatic learning of relation-specific lexical semantic network

Automatic learning of relation-specific lexical semantic network

The Relation-Specific Semantic Graph

An excerpt of the semantic graph for the relation marriage

Extrinsic Eval. – Web-DARE

Parse-Reranking for Domain-adaptive RE

Error Types of Extracted Wrong Instances

Content	Modality	Named Entity Recognition (NER)	Parsing	NER & Parsing	DARE Rules
11.8%	17.6%	5.9%	38.2%	11.8%	14.7%

Egyptian scientist Ahmed Zewail won the 1999 Nobel Prize for chemistry

Egyptian scientist Ahmed Zewail won the 1999 Nobel Prize for chemistry

Reranking Architecture

Baseline: before Re-ranking

- Best reading: high precision, low recall, low F-measure
- **500 readings**: lower precision, higher recall, higher F-measure

After Re-Ranking:

- Re-ranked top readings match more sentence mentions containing RE instances
- Improvements of Recall and F-Measure

Conclusion

- The performance of large-scale RE for each application is dependent on the performance of domain-adaptation methods
- Three original contributions (among others):
 - Extension of relation extraction to n-ary relations
 - Semantic filtering with large lexical knowledge bases
 - Parser improvement for the specific RE task by reranking
- For our work we received a Google Focused Research Award

Google Focused Research Awards

Planned Future Work

 Immediate next step of big text data analytics is to integrate the existing NLP and IE components into big data analytics platforms

- Entity linking and RE will play an essential role for semantic interoperability between structured and unstructured data
- Extension and Application of our IE technologies to the new Smart Data projects
 - Smart Data Web: Industry 4.0
 - Smart Data for Mobility: Mobility

