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Abstract
In the present study, a corpus of short German sentences col-
lected in a shadowing task was examined with respect to pitch
accent realization. The pitch accents were parameterized with
the PaIntE model, which describes the f0 contour of intonation
events concerning their height, slope, and temporal alignment.
Convergence was quantified as decrease in Euclidean distance,
and hence increase in similarity, between the PaIntE parame-
ter vectors. This was assessed for three stimulus types: natu-
ral speech, diphone based speech synthesis, or hidden Markov
model (HMM) based speech synthesis. The factors tested in the
analysis were experimental phase – was the sentence uttered be-
fore or while shadowing the model, accent type – a distinction
was made between prenuclear and nuclear pitch accents, and sex
of speaker & shadowed model. For the natural and HMM stim-
uli, Euclidean distance decreased in the shadowing task. This
convergence effect did not depend on the accent type. However,
prenuclear pitch accents showed generally lower values in Eu-
clidean distance than nuclear pitch accents. Whether the sex of
the speaker and the shadowed model matched did not explain
any variance in the data. For the diphone stimuli, no conver-
gence of pitch accents was observed.
Index Terms: phonetic convergence, pitch accent, PaIntE
model, speech synthesis, shadowing task

1. Phonetic convergence
Phonetic convergence describes the phenomenon that interlocu-
tors become phonetically more similar to each other during spo-
ken communication [1]. According to Pickering and Garrod [2],
a reason for such alignment between speakers is an internal au-
tomatic priming mechanism. Others propose that alignment is
externally, socially motivated [3]. It is difficult to model the
complex phenomenon in its totality, as it affects a great variety
of phonetic features, segmental as well as suprasegmental, and
it occurs to different degrees in different speakers.

One line of the literature on convergence is concerned with
prosodic alignment. Levitan and Hirschberg [4] found evidence
for entrainment – a collective term that includes convergence –
of features such as pitch, intensity, and speaking rate in sponta-
neous conversations. Michalsky and Schoormann [5] linked the
convergence of several pitch measures, found in spontaneous di-
alogues, to the perceived mutual attractiveness and likability of
the interlocutors. Schweitzer et al. [6] examined pitch accents
as parameterized by the PaIntE model (cf. Section 2) and found
that seeing one’s interlocutor led to divergence in pitch accent
realization, whereas convergence occurred when interlocutors
did not see each other. Perceived mutual likability merely en-

hanced the respective effect.
The three studies cited above all worked with corpora of

spontaneous dyadic conversations. Most frequently, and in the
present study as well, phonetic convergence is examined in
shadowing experiments, where speakers repeat utterances they
heard from a model speaker [7]–[9]. As opposed to other shad-
owing experiments, which use mainly mono- or bisyllabic utter-
ances, the corpus of the present study contains short sentences.

With the development of more sophisticated text-to-speech
synthesis techniques for spoken dialogue systems, there is a
growing interest to examine phonetic convergence in the context
of human-computer interaction [10]–[12]. Apart from natural
model speakers, the shadowing experiment of the present study
uses two types of synthetic voices to assess whether speakers
respond similarly to them.

2. PaIntE model
The PaIntE model [13], [14] parametrizes intonation events by
approximating their f0 contour with the sum of a rising and
a falling sigmoid as shown in Figure 1. Each parametrization
takes the syllable carrying the intonation event σ∗, as well as
one preceding and one following syllable σ as the basis for the
analysis. The length of each syllable is normalized to 1; the
three syllables thus fit into the range of −1 to 2.

The model function is characterized by six parameters: c1
and a1 represent the height and slope of the rising sigmoid,
respectively; c2 and a2 provide the same information for the
falling sigmoid. The parameters d and b describe the absolute
height and the relative syllable alignment of the event peak, re-
spectively.

If the f0 contour cannot be fitted with two sigmoids, only a
single sigmoid is applied (either rising or falling, see the dashed
lines in Figure 1), leaving one set of c and a parameters unspec-
ified. If a single sigmoid is not a good fit either, PaIntE only
provides the mean f0 value as the d parameter, leaving all other
parameters unspecified.

For extracting the PaIntE parameters, f0 is tracked using
get_ f0 from the Entropic Signal Processing System (ESPS)
[15]. The resulting raw contour is smoothed by the smooth_ f0
algorithm provided by the Edinburgh Speech Tools [16].

3. Corpus
The speech material was elicited in a shadowing experiment.
A total of 56 German native speakers (12 male and 44 female)
read short German sentences (declaratives and questions) from
a screen, shadowed the same sentences (i.e., repeated the sen-
tences after hearing them) from a male and a female voice, and
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Figure 1: Parametrization of an intonation event by the PaIntE
model. The f0 contour is approximated with the sum of a rising
and a falling sigmoid function. The approximation is character-
ized by six parameters: a1, a2, b, c1, c2, and d. Figure adapted
from Schweitzer et al. [6] and Möhler [14].

finally read the sentences from a screen again. These three
phases of the experiment are referred to as baseline, shadow-
ing, and post production.

The corpus was originally collected to examine phonetic
convergence at the segmental level. During the shadowing por-
tion of the experiment, selected segmental features were ma-
nipulated to create room for convergence, i.e., participants were
presented with the opposite of their preferred feature realiza-
tion. Furthermore, different voice types were employed in the
shadowing task. The participants heard either recordings of nat-
ural speakers, or one of two synthetic stimulus sets created us-
ing diphone and hidden Markov model (HMM) based synthesis,
respectively. A detailed description of the procedure and analy-
sis can be found in Gessinger et al. [17].

As it is likely that phonetic convergence occurs in the cor-
pus with respect to other features than those manipulated ex-
plicitly, the present study looks for such convergence at the
level of intonation. To that end, it focuses on the differences
between baseline (1950 utterances) and shadowing (3360 utter-
ances) production.

4. Selection of target syllables
To select the target syllables for the present study, the stim-
uli used in the shadowing task were manually annotated by a
trained phonetician with respect to prenuclear (P) and nuclear
(N) pitch accents. Nuclear pitch accents were further divided
into those that occurred non-finally (Nnf ) and those that coin-
cided with the last syllable (the ultima) of a declarative (Nud)
or a question (Nuq).

As f0 contours and segment durations from the natural
stimuli had been imposed onto the two types of synthetic stim-
uli during their generation, it was expected that the same pitch
accent locations would be found in all three stimulus sets. Ver-
ification of this assumption revealed that this was true for the
vast majority of the utterances. However, in a very few cases,
additional pitch accents occurred in the synthetic stimuli. This
is reflected in the numbers of identified pitch accents for each
stimulus set in Table 1.

5. Hypotheses and operationalization
We assume that speakers converge, i.e., become more similar, to
the stimuli they hear during the shadowing task, with respect to
pitch accent realization. Based on the results of [17], we believe

Table 1: Number of pitch accents identified in the three stimulus
sets: prenuclear (P), non-final nuclear (Nnf), nuclear on ultima
of declarative (Nud), nuclear on ultima of question (Nuq).

Stimuli P Nnf Nud Nuq Sum

Natural 129 60 12 18 219
Diphone 133 59 12 19 222
HMM 131 60 12 18 221

that this is the case for the group of speakers that shadowed
natural recordings, as well as for the two groups of speakers
that shadowed synthetic stimuli. The effect is expected to be
stronger for nuclear than for prenuclear pitch accents, as the
former are known to be perceptually more salient [18].

We do not expect the factor same-sex vs. mixed-sex pair-
ing to have an effect on the degree of convergence, as such an
effect was not observed in previous analyses of the same cor-
pus. However, as it is often claimed in the literature that same-
sex pairings show a higher degree of convergence [e.g., 19], the
factor is taken into consideration during the data analysis.

Lastly, we include the two models per stimulus type as a
factor in the analysis. The models differ with respect to their
sex – speakers always shadowed a male and a female model
– but of course exhibit a variety of other characteristics which
could affect the degree of convergence to them. They might,
for example, differ in the degree of attractiveness and likabil-
ity, qualities which evidently have an effect on convergence be-
tween speakers [5], [6].

Similarity between a speaker and the shadowed model is
assessed by calculating the Euclidean distance between the 6-
dimensional PaIntE parameter vectors of the same syllable. The
Euclidean distance is expected to decrease from baseline to
shadowing production as an indication of increasing similarity,
and hence, convergence.

6. Parameter handling
Parameters were extracted for every syllable of an utterance, tar-
get or non-target. Syllables for which PaIntE returned only the
mean f0 value as the d parameter, leaving all other parameters
unspecified, were excluded from the analysis. This concerned
about 6 % of the data.

From the remaining syllables, those cases were excluded
for which one of the six (two sigmoids fitted) or four (one sig-
moid fitted) parameter values fell in the 1st or 99th percentile
for that parameter within the same speaker. About 10 % of the
data were removed in this step. This procedure has proven to
be good practice to remove potential measurement errors while
keeping plausible yet atypical values in the data [6]. Such atyp-
ical values are expected to occur when a speaker converges to
an interlocutor.

To subsequently calculate Euclidean distance between 6-
dimensional PaIntE parameter vectors, the c (height) and a
(slope) parameters were set to 0 wherever they were unspeci-
fied. Remember that this is the case when only a single sigmoid
was fitted.

The values of the six parameters were standardized to
speaker specific z-scores to eliminate differences linked to the
speaker sex and give every parameter the same weight in the
distance analysis.

Speaker syllables were matched with the corresponding
stimulus syllables. During the shadowing condition, every sen-
tence was shadowed once from a male and once from a female



Table 2: Number of target syllable observations per stimulus
type, condition, and accent type.

Stimuli Condition P Nnf Nud Nuq Sum

Natural Baseline 1578 484 222 164 2448
Shadowing 1545 503 208 166 2422

Diphone Baseline 1240 430 140 142 1952
Shadowing 1220 438 137 141 1936

HMM Baseline 1246 452 122 80 1900
Shadowing 1205 426 121 92 1844

voice. To create a comparable data set for the baseline condi-
tion, every individual baseline production was matched twice:
once with the male and once with the female voice.

Lastly, the Euclidean distance between the 6-dimensional
PaIntE parameter vectors ~s of a speaker and ~m of the shad-
owed model was calculated for each syllable as shown in Equa-
tion (1).

d(~s,~m) =

√√√√ 6

∑
i=1

(si−mi)2 (1)

The target syllables as defined in Section 4 were selected
for the final data set. It contains 12502 observations that are
distributed over the stimulus types, conditions, and accent types
as given in Table 2.

7. Analysis and results
For the statistical analysis of the PaIntE data, linear mixed-
effects models (LMMs) with Euclidean distance (eucDist) as
the dependent variable were fitted for each stimulus type sepa-
rately.1 The model selection was carried out bottom-up, starting
with a model which only included the random factor intercepts
speaker and sentence. Then, theoretically relevant fixed factors
were added to the model. Their influence on the model fit was
assessed by means of the Akaike information criterion (AIC),
which estimates the relative quality of a statistical model for a
given data set by taking into account the likelihood function and
the number of estimated parameters [22]. Similar to the method
in Schweitzer et al. [23], the factor was kept in the model if the
AIC value decreased by at least two points as compared to the
model without the factor in question. After the individual fac-
tors, theoretically relevant interactions and eventually random
slopes were tested and included or discarded in the same way.
The models that were chosen to fit the data sets best are given
in Equation (2), for the natural stimuli, in Equation (3), for the
diphone stimuli, and in Equation (4), for the HMM stimuli.

eucDist ∼ condition∗accentType+model+ (2)
(1+accentType | speaker)+

(1+accentType | sentence)

eucDist ∼ accentType+ (3)
(1+accentType | speaker)+

(1+accentType | sentence)

eucDist ∼ condition+accentType+model+ (4)
(1+ condition | speaker)+

(1+accentType+model | sentence)

1Models were fitted with the lme4 package (v1.1-13) [20] in R
(v3.4.0) [21].

Table 3: Parameter estimates, standard errors (SE), and t-
values for the LMMs given in Equations (2) to (4). The last
column holds the p-values p(χ2) calculated by likelihood ratio
comparison of full model vs. null model.

Estimate SE t-value p(χ2)

Natural
(Intercept) 2.53 0.07 37.38
cond.base 0.08 0.02 4.94 4 ×10−6

acc.prenuc −0.11 0.07 −1.74 0.04
mod.mod1 0.04 0.02 2.72 0.006
cond.1:acc.1 −0.03 0.02 −1.88 0.06

Diphone
(Intercept) 2.73 0.09 31.56
acc.prenuc −0.11 0.07 −1.71 0.09

HMM
(Intercept) 2.67 0.07 39.65
cond.base 0.06 0.02 2.30 0.03
acc.prenuc −0.14 0.07 −2.12 0.04
mod.mod1 0.07 0.06 1.19 0.2

The factor condition has two levels, baseline and shadowing;
accentType has two levels as well, prenuclear and nuclear. The
latter combines Nnf, Nud, and Nuq, since group sizes for each
subgroup were too small for individual analysis. The factor
model has the two levels model1 and model2.

The factor same-sex vs. mixed-sex pairing did not account
for variance in any of the data sets.

Table 3 shows the parameter estimates, and their respec-
tive standard errors and t-values. p-values (p(χ2)) were calcu-
lated by likelihood ratio comparison of the full model and the
respective null model. The null model is constructed by remov-
ing only the factor in question from the fixed effects structure,
while keeping the random effects structure unchanged. The sig-
nificance level is at α = 0.05.

All model factors were sum coded and hence compare the
first level of each factor to the grand mean. Remember that all
three factors have two levels. The total effect size is therefore
two times the estimate given in the table.

For the natural stimuli, the factor condition had an ef-
fect of size 0.16 on Euclidean distance; accentType (0.22) and
model (0.08) influenced Euclidean distance as well. The in-
teraction between condition and accentType was not significant
(p > 0.05). For the diphone stimuli, none of the examined fac-
tors significantly influenced the dependent variable. For the
HMM stimuli, condition (0.12) and accentType (0.28) had an
effect on Euclidean distance. The effect of model was not sig-
nificant (p > 0.1).

The direction of the effect needs to be interpreted while
taking the reference level of each factor into account. This
shows that, for the natural and the HMM stimuli, Euclidean
distance is lower for prenuclear pitch accents than for nuclear
pitch accents, and it decreases from baseline to shadowing
condition. For the natural stimuli, Euclidean distance was also
slightly higher when shadowing model1 (female) than when
shadowing model2 (male).

Figure 2 shows a comparison of the mean Euclidean dis-
tance between the baseline and shadowing condition for each
stimulus type. Results are given for the accent types prenu-
clear and nuclear, as well as for the three subgroups Nnf, Nud,
and Nuq separately. Remember that for the nuclear pitch accent



Figure 2: Comparison of mean
Euclidean distance (eucDist)
for the three stimulus types
Natural, Diphone, and HMM,
between the conditions Base-
line and Shadowing. Results
are given for the accent types
prenuclear (P) and nuclear
(N), as well as for the three
subgroups, non-final nuclear
(Nnf), nuclear on ultima of
declarative (Nud), and nuclear
on ultima of question (Nuq).
A decrease in Euclidean dis-
tance indicates an increase in
similarity and therefore con-
vergence. The error bars illus-
trate the 95 % confidence inter-
val, i.e., 2×SEM (standard er-
ror of the means).
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subgroups, especially for Nud and Nuq, group sizes are fairly
small when distributed over the three stimulus types.

The findings from the statistical analysis can be retraced in
the graph and complemented with additional information about
the nuclear pitch accent subgroups. For the natural and HMM
stimuli, there is a clear drop in Euclidean distance from base-
line to shadowing condition which is more pronounced in the
natural stimuli. The effect appears to be stronger for the nu-
clear than for the prenuclear pitch accents. However, this was
not confirmed by the statistical analysis. Although all nuclear
accents combined show higher values in Euclidean distance for
the natural and HMM stimuli, the Nuq accents fall below the
level of the prenuclear accents in the natural condition.

The diphone condition clearly lacks the predicted increase
in similarity. For the Nud accents, Euclidean distance even
increases considerably. Overall, mean Euclidean distance is
higher for the synthetic stimuli than for the natural ones.

8. Discussion
The results of the present study show that participants of a
shadowing experiment converge to natural model speakers with
respect to pitch accent realization as parameterized with the
PaIntE model. A similar, yet slightly less pronounced effect
was found for HMM based synthetic stimuli. Diphone based
synthetic stimuli did not evoke such an effect in the participants.
For nuclear accents on the ultima of a declarative, participants
even diverged from the diphone stimuli. However, with regard
to the low number of data points for the Nud subgroup, this re-
sult should be interpreted with caution.

Previous analysis of the same corpus at the segmental level
showed that diphone stimuli are indeed capable of triggering
convergence [17]. They were, for example, as successful as the
natural and HMM stimuli in evoking convergence with respect
to segmental pronunciation in the case of the phonemic allo-
phone pair [Iç] vs. [Ik]. Therefore, the question arises whether
diphone synthesis differs in a way from HMM based synthesis,
which is particularly influential on the perception of intonation.

Remember that the f0 contours and segment durations from
the natural stimuli were imposed onto the two types of synthetic
stimuli during their generation. The diphone stimuli were cre-

ated with MBROLA [24]. The HMM based synthesis used HTS
(v2.3) [25] with voices built from the BITS unit selection corpus
[26]. Both techniques realize f0 and segment duration accord-
ing to the provided parameters. Deviations are minor in both
cases. Therefore, deviation with respect to f0 contour and seg-
ment duration does not seem to be a possible explanation for the
difference in response.

One of the long-standing points of criticism toward diphone
synthesis is the large number of concatenation points, which is
detrimental to the perceived naturalness [27]. Although the di-
phone stimuli produced for the present study do not seem to be
of inferior quality to the HMM stimuli, these underlying spec-
tral discontinuities could play a role in their perception and pre-
vent convergence.

Where convergence did occur, visual inspection of the data
suggests a stronger effect for the nuclear pitch accents than for
the prenuclear ones, as hypothesized. However, the statistical
analysis did not support this observation. Remember that the
analysis only distinguished between P and N pitch accents. As
the nuclear pitch accent subgroups Nnf, Nud, and Nuq seem
to behave rather differently, it would be informative to include
them as separate factor levels. To that end, more data would
have to be collected.

The significantly higher Euclidean distance for nuclear than
for prenuclear pitch accents could be interpreted as an indica-
tion of overall greater variability in the realization of the former.
Especially the Nud accents show the highest values in Euclidean
distance for all stimulus types.

Whether the sex of the speaker and the shadowed model
matched did not explain any variance in the given data. This
goes against theories which suggest that same-sex pairings ex-
hibit higher degrees of convergence than mixed-sex pairings and
contributes to resolve the lack of shadowing studies which con-
trol for effects of the factor same-sex vs. mixed-sex pairing on
convergence as recently diagnosed by Pardo et al. [9].

The results presented in this paper motivate further inves-
tigation of pitch accent convergence. Specifically, with respect
to the PaIntE parametrization, a next step will be to give the pa-
rameters different weights, which reflect their importance in the
perception of pitch accents.
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