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Description of changes 

We not only significantly extended the writing, discussion and presentation in this version of 

the paper, but, more importantly, undertook a considerable amount of additional research 

(hyperparameter optimization, data rebalancing, additional evaluation and comparison). We 

provide details of the changes by section: 

1. Introduction 

 The introduction section of the paper was significantly expanded. In particular, among 

other changes, the role and importance of the enterprise information systems for business 

process prediction problem were emphasized.  

 The discussion of our research contribution was considerably expanded and highlighted. 

2. Related Work 
 Additional recent studies were introduced and discussed in considerable depth. 

 The related work were categorized and details of individual papers were provided. 

 Current research gaps were identified and the addressed issues in the present paper were 

presented. 

3. Proposed Approach 
 The description of stacked autoencoder based deep learning approach was expanded, 

corrected, fine-tuned and presented in an easier-to-understand way. 

 The theoretical arguments for the expected superiority of our proposed model were 

supported with additional discussion and references to the literature. 
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 The elements of the unsupervised pretraining and supervised fine-tuning stages of the deep 

learning approach were described more elaborately and precisely. 

4. Evaluation 
 Additional classification measures such as micro-averaged F-measure, micro-averaged 

Matthews Correlation Coefficient (MCC) and area under ROC curve (AUC) are described, 

discussed, computed, and analyzed in order to discuss diverse aspects of evaluations. 

 One additional research question (total of 3) is addressed. This research question focuses 

on the correct classification of rare events or rare activities. Rare events present challenges 

for any classifier, but are often of great business relevance as they typically signal process 

exceptions, error compensations or other critical deviations from the typical process path. 

In particular, we show that our approach can be combined with a modern form of neural-

network based data rebalancing or augmentation to considerably improve its 

prediction/classification performance for rare, but important, events. Specifically: 

o Radial Basis Function Neural Networks were applied to generate semi-artificial 

examples of the minority class to balance the classes. 

o A comparison of our proposed approach with balanced and imbalanced data was 

conducted. ROC Curve Graphs were used to assess the performance of the 

classifiers. 

 The proposed model was additionally compared against conventional, generic (i.e. not 

process specific) classification approaches such as Random Forests, Naïve Bayes, Support 

Vector Machines and C4.5 algorithm. 

 We implemented a random search based hyperparameter optimization approach to identify 

the best hyperparameter configuration of the deep learning. A detailed overview was 

provided in a separate subsection. This has led to considerable improvements in the 

prediction quality of our approach, further strengthening our results and the contribution of 

this paper. 
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A Novel Business Process Prediction Model Using a Deep Learning Method  

Abstract 

The ability to proactively monitor business processes is one of the main differentiators for firms 

to remain competitive. Process execution logs generated by Process Aware Information 

Systems (PAIS) help to make various business process specific predictions. This enables a 

proactive situational awareness with respect to the execution of business processes. The goal 

of the approach proposed in this paper is to predict the next business process event from the 

completed activities of the running process instance, based on the execution log data from 

previously completed process instances. By predicting business process events, companies can 

initiate timely interventions to address undesired deviations from the desired workflow. We 

propose a multi-stage deep learning approach that formulates the next business process event 

prediction problem as a classification problem. Following a feature pre-processing stage with 

n-grams and feature hashing, we apply a deep learning model consisting of an unsupervised 

pre-training component with stacked autoencoders and a supervised fine-tuning component. 

Experiments conducted on a variety of business process log datasets show that the proposed 

multi-stage deep learning approach provides promising results. We also compared our results 

to existing deep recurrent neural networks and conventional classification approaches. 

Furthermore, we address the identification of the most suitable hyperparameter configuration 

for the proposed approach, and the handling of the imbalanced nature of business process event 

datasets. 

Keywords: Process prediction; Deep learning; Feature hashing; N-grams; Stacked 

autoencoders. 

1. Introduction 

Since firms adopt similar products and technologies, high-performance business processes are 

one of the last points of differentiation  (Davenport and Harris 2007). Operationalizing 

predictive analytics by embedding their insights to the enterprise processes can boost business 

value (LaValle et al. 2011). Various process aware enterprise information systems such as 

Workflow Management Systems (WMS), Enterprise Resource Planning (ERP), Customer 

Relationship Management (CRM), Supply Chain Management (SCM), Knowledge 

Management (KM), Product Management (PM), Incident Management (IM), Case Handling 

Systems, among others, can log the activities generated during process execution (van der Aalst 

et al. 2011). Such logs can act as a valuable source for predictive analytics, which improves 

decision making by providing insights into the process behavior. An effective design and 

implementation of such predictive approaches are important to ensure that business activities 

will run in a desired manner by avoiding predicted failures and deviations from the intended 

process behavior. Detecting process anomalies in real-time, analyzing the behavioral patterns 

of customers to make tailored offers, risk management by predicting compliance violations, 

effective resource allocation etc., are some of the use cases that can be addressed by process 

data driven predictive analytics (Evermann et al. 2017).  

Business process prediction deals with predicting a target variable of interest after extracting 

features from business process log data. Predicting continuous target values, such as remaining 

process execution time, requires the application of regression algorithms. On the other hand, 

since predicting the next process events in the running case, the outcome of a process instance, 

the violation of service level agreements, etc. are problems where the target values are discrete, 

they are regarded as classification problems.  

Blinded Manuscript

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



In this study, we focus on predicting the next business process event, considering the past 

events of the running process instance, based on execution log data from previously completed 

process instances. The ability to identify the next events in the running process instance, given 

the previously performed activities, is a vital issue in process analytics since such analytical 

information allows the analysts to intervene proactively to prevent undesired behavior. Inspired 

by recent successful applications of deep learning, we address this problem with a multi-stage 

deep learning approach. The main contribution of our research is threefold: 

1. This study applies, for the first time in the business process management domain, a 

deep learning approach consisting of an unsupervised pre-training stage with stacked 

autoencoders, and a supervised fine-tuning stage for the multi-class classification 

problem. 

2. This work improves on prior research by incorporating an extensive data pre-processing 

stage. We use an n-gram representation and feature hashing approach to build the 

numerical feature vectors from business process event log data. According to our 

knowledge, no prior studies have applied feature hashing in this domain. 

3. We also address the hyperparameter optimization of our deep learning approach and 

the complexities related to the imbalanced nature of the business process data with the 

aim of boosting the precision of the analytics results. 

We follow the “exaptation” (extend known solutions to new problems) type of Design Science 

Research (DSR) knowledge contribution by adopting successful solutions (stacked 

autoencoders based deep learning, feature hashing) to build innovative predictive analytics 

models for process data in enterprise information systems (Gregor and Hevner 2013). 

Integrating data analytics with the enterprise information systems is one of the crucial and 

emerging trends in the IS research domain (Sun et al. 2015). By incorporating the proposed 

method into enterprise information systems and decision making mechanisms, it is possible to 

provide both long-term strategic predictions in batch mode, and to monitor running process 

instances in real-time. In our approach, the enterprise information systems act as a producer of 

the inputs for predictive analytics models by providing the required log data, and also as 

consumers of the knowledge and insights derived from these models. 

The remainder of the paper is organized as follows: Section 2 introduces related work on 

business process prediction. Section 3 provides a broad description of the components of the 

proposed approach. It discusses the data pre-processing stages, n-gram encoding and feature 

hashing, and the structure of the deep learning model. Section 4 outlines the experiment 

settings, the structure of datasets and our empirical results. Section 5 concludes the paper with 

a discussion and summary. 

2. Related Work 

A growing body of the literature has recently examined the application of various machine 

learning approaches in business process management. We provide an overview of these 

approaches, categorizing them according to the type of the target variable (discrete vs. 

continuous) they attempt to predict, and discuss the problem types within these categories.   

The first category comprises approaches that deal with regression problems by attempting to 

predict the continuous outputs. Forecasting the remaining processing time of incomplete cases 

is the most frequently addressed problem in this category. van Dongen et al. (2008) applied 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



non-parametric regression approaches to compute the remaining cycle time on the data 

recorded in event logs. Polato et al. (2016) implemented both simple and support vector 

regression methods to forecast the remaining time of running process instances. Rogge-Solti 

and Weske (2013) proposed a stochastic Petri net with generally distributed transitions to 

predict remaining process execution time based on elapsed time since the last observed event. 

To overcome the shortcomings of conventional regression approaches in predicting remaining 

time to completion, van der Aalst et al. (2011) presented an annotated transition system that 

represents an abstraction of the process with time annotations. Folino et al. (2012) introduced 

a hybrid predictive clustering tree (PCT) and multiple performance annotated Finite State 

Machine (FSM) models for remaining time prediction. Senderovich et al. (2017) applied linear 

regression, random forests and XGBoost approaches for remaining time prediction after 

obtaining the features related from specific process instances and global process models.  

The second category deals with various classification problems, including business process 

outcome predictions, violation of service level agreements, nominal attribute prediction, next 

event prediction etc. (Kang et al. 2012 a,b,; Leontjeva et al. 2015; Metzger et al. 2015; Di 

Francescomarino et al. 2016). The following studies address the next process event prediction 

that we investigate in this paper. A multi-stage model, which starts by clustering event 

sequences using the k-mean algorithm combined with sequential alignment, builds individual 

Markov models of different orders on the obtained clusters (Le et al. 2014). Experiments were 

conducted on records of processes obtained from a telecommunication company. Another 

approach, by Le et al. (2017), uses sequential k-nearest neighbor classification and an extension 

of Markov models to predict the next process steps by considering temporal features. Using 

the same process log data as Le et al. (2014), they showed the superiority of this model over 

Markov and Hidden Markov Models (HMM). Unuvar et al. (2016) proposed a decision tree 

based model to predict the next activity in the running instance of business processes that 

contain parallel execution paths. Five different models for representing the path attribute of the 

execution trace were presented and experiments were conducted on the simulated data. 

Combining the two approaches yields a hybrid model, which learns a decision tree at each 

individual node of the process model, based on the execution traces to compute the transition 

probabilities, and creates a Markov chain model (Lakshmanan et al. 2015). A simulated dataset 

was used to verify the prediction accuracy. Somewhat similar to a Markov model, a 

probabilistic finite automaton (PFA) based on Bayesian regularization by Breuker et al. (2016) 

uses the Expectation Maximization (EM) approach to estimate the relevant process parameters. 

The evaluation process was carried out using both a simulated dataset and real-life datasets (the 

publicly available BPI Challenge 2012 and BPI Challenge 2013 data). Márquez-Chamorro et 

al. (2017) proposed an evolutionary rule based approach to predict the events of interest after 

encoding the features using a window technique. The proposed model was evaluated using the 

BPI Challenge 2013 and health services datasets.  

More recent work is moving away from explicit models to deep learning approaches. In the 

first approach to apply deep-learning, Evermann et al. (2017) applied recurrent neural networks 

(RNN) with Long Short-Term Memory (LSTM) after transforming the input features using 

word embeddings. The accuracy improvement potentials by adding the available case and event 

specific explanatory variables have been investigated as well. BPI Challenge 2012 and 2013 

datasets were used to validate the prediction results. Also applying the LSTM approach but 

only considering the occurrence sequence of the activities and their timestamps, Tax et al. 
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(2017) transformed the input activities to feature vectors using one-hot encoding. Both studies 

examined the prediction of process activity duration using the same approach, additionally, the 

latter study also conducted experiments on another publicly available helpdesk dataset from an 

Italian software company (Tax et al. 2017). Our own earlier, initial study is also based on a 

deep learning approach (author citation, 2017). However, this paper significantly expands on 

the earlier paper by improving the hyperparameter optimization, assessing and improving 

prediction performance on imbalanced datasets (which are typically problematic for 

classifiers), and additional evaluation and comparison. 

One of the main differences between the recent studies by Evermann et al. (2017) and Tax et 

al. (2017) and our approach lies in the transformation of the sequential process data to the 

neural network input features (for the predetermined prefix size) that are used to train the 

models. The majority of existing approaches use the simple index encoding method to build 

the feature vector from sequence data, but this does not consider the interdependencies among 

the sequential event data (Leontjeva et al. 2015; Márquez-Chamorro et al. 2017; Senderovich 

et al. 2017). To tackle this problem, we use an n-gram based encoding schema. Depending on 

the size of the event space, the n-gram based approach can lead to a very high dimensional 

feature space. Therefore, we apply a feature hashing technique to obtain a reasonable data size.  

Another important feature of our study, and one which significantly improves on our approach 

in (author citation, 2017), is the application of an algorithmic deep learning hyperparameter 

optimization technique, which has not been used in previous deep learning approaches for 

business process event prediction. Since the optimal hyperparameter configuration 

significantly affects the classification results, testing models with only a few hyperparameter 

combination variations (manual search) is likely to lead to suboptimal results. Finally, almost 

no study except (Márquez-Chamorro et al. 2017) addresses the classification problem for an 

imbalanced dataset. Identification of rare events might have important business implications. 

We address this problem by synthesizing new instances for the minority class using neural 

networks and thereby balancing the training data set. 

3. Proposed Approach 

We formulate the prediction of the next business process events as a classification problem. 

Figure 1 shows an overview of the proposed approach. We apply deep learning algorithms on 

a feature matrix extracted from various process characteristics such as control flow, data flow, 

resource, and organizational perspectives, after a thorough data pre-processing stage. The 

proposed approach starts with the reconstruction of business process events (control flow) 

obtained from event log data with a sliding window technique and encoded in letters into the 

n-gram feature representation (Figure 1). Next, a feature hashing algorithm maps the extracted 

n-grams to hash keys. The hashed feature matrix is then extended by adding the relevant data 

and resource features. Once the merged feature matrix is available, the proposed deep learning 

method is applied to predict the next business process events. It consist of two components, an 

unsupervised layerwise pre-training component that aims to produce higher level feature 

representations, and a supervised fine-tuning of the whole network for the multiclass 

classification that adds an output layer on top of the stack. 

3.1. Terminology 

An event log consists of process traces. Each trace represents the execution of one business 

process instance, also known as case. A trace is sequence of events. Events contain attributes 
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that describe their characteristics (XES Standard 2016). Typical attributes are the name of the 

executing activity, the timestamp of the event, the lifecycle transition (e.g. “start” or 

“complete”) and organizational resources or roles. Events are ordered by the timestamp of their 

occurrence. Other attributes may contain case specific information. The next event prediction 

problem is understood here as predicting the executing activity and lifecycle transition of the 

next event in the running trace considering the sequence of past events for a predefined prefix 

length from that particular trace. 

Figure 1 The stages of the proposed approach 

3.2. Data Pre-processing 

Prior studies rely heavily on assessing the performance of the proposed approaches but, with a 

few exceptions, pay little attention to data pre-processing. However data preparation 

comprising various stages such as data cleaning, encoding, dimensionality reduction, feature 

extraction etc., significantly influences the predictive ability of classifiers. 

3.2.1. N-gram encoding 

The initial step of our approach is the sequence encoding, which is the conversion of character 

strings (business process events; specifically the executing activity for each event) into 

numerical input features. Leontjeva et al. (2015) provided a comparative analysis of various 

sequence encoding schemas for business process outcome prediction. Choosing an appropriate 

sequence encoding method is a crucial issue since it significantly influences the accuracy of 

the machine learning approaches. Process event sequence data contains intrinsic relationships 

and interdependencies among the individual events. We choose n-gram encoding as a suitable 

approach for modelling such dependencies due to its ability to consider the relationships 

between neighboring elements by building all contiguous subsequences (Caragea et al. 2012). 

We use the combination of n-grams of different sizes which allows us to extract both local and 

global features from the business process event sequences. 

Definition 1: Given a sequence of the events E = (e1, e2,…, eN+(n-1)) over the event universe 

φ, where the N and n are positive integers, an n-gram of the event sequence E is any n-long 

subsequence of the consecutive events. There are N such n-grams in E. The total number 

of possible unique n-grams for the event universe is (|φ|)n where the |φ| is the total number 

of unique events in the business process log data. 
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Assume that we have the following sequence of business process events, 

E={A,F,G,C,L,B,A,D,A,M}. The bigram (2-gram) features are all combinations such as {AF, 

FG, GC …, AM}; the trigram (3-gram) features are {AFG, FGC, GCL, …., DAM} etc. We 

consider the combination of n-grams of pre-defined sizes. The size of our input feature space 

e.g. in the case of 5-grams (including unigrams (1-grams), bigrams (2-grams), trigrams (3-

grams), quadgrams (4-grams)) and an alphabet size of 15 unique events would be: 

Ntotal_features = 15+152+153+154+155 =813,615 

Due to its completeness (the alphabet is a-priori known, in our case comprising the set of unique 

executing activities of the process events), domain independence, efficiency (one pass 

processing) and simplicity, the n-grams approach has been applied to various problems ranging 

from protein classification to information retrieval (Tomović et al. 2006). Predictions relying 

on n-gram event data require no additional preprocessing stages such as sequence alignment. 

Moreover, the letter n-grams method is also very effective due to its ability to not only encode 

the letters but also order them automatically. However, as it can be easily inferred from the 

above example, the major drawback of the n-gram representation is that the size of generated 

input feature set for classification problems tends to be extremely large: The number of features 

increases exponentially with the n-gram length that is used. Using all the generated features 

would overload the prediction system by leading to extremely high computational costs and 

the sparsity of the input would lead to reduced accuracy. To address this challenge we have 

adopted a dimensionality reduction technique, feature hashing, to reduce the size of n-gram 

feature vectors. 

3.2.2. Feature Hashing 

Feature hashing is an effective dimensionality reduction method that scales up a classification 

algorithms by mapping the high dimensional input space into a low dimensional space 

(Weinberger et al. 2009). Feature hashing has already found successful applications in natural 

language processing (NLP), such as news categorization, spam filtering, sentiment analysis in 

social networks and different areas of bioinformatics (Forman and Kirshenbaum 2008; 

Ganchev and Dredze 2008; Caragea et al. 2012; Da Silva et al. 2014). The main idea of feature 

hashing is to use the hash functions to map n-grams of events to feature vectors which can be 

passed to the classification approach to train the model. The formal definition is as follows: 

Definition 2: Given a set of hashable features N, which are the n-grams obtained from the 

business process event sequences, h is the first hash function, h:N  {1,……, m} and ξ is 

the second hash function, ξ:N  {±1}. The combined feature hashing function Φ
(ℎ,𝜉)

maps 

the high dimensional input vector of size d into a low-dimensional feature vector m where 

m < d. The i-th element of the Φ
(ℎ,𝜉)

(x) is given as: Φ𝑖
(ℎ,𝜉)

(𝑥) = ∑ 𝜉(𝑗)𝑥𝑗𝑗:ℎ(𝑗)=𝑖  where 

j=0,…, d and i=0,…., m.  

Applying feature hashing not only reduces the training computational costs due to the reduced 

feature dimensionality but also conserves memory. However, dimensionality reduction via 

feature hashing can lead to information loss due to hash collisions, i.e. the mapping of many n-

grams to the same hash keys. Larger hash tables, implying larger bit sizes of the hash function, 

can prevent this problem (Weinberger et al. 2009). Bit size determines the numbers of the bits 

when creating the hash table. The optimal bit size depends on the size of the n-gram vocabulary. 

A descriptive analysis of the n-grams obtained from the process sequences shows that they 
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follow Zipf’s law (Evermann et al. 2017). This implies that a small proportion of the input 

features occur with higher frequencies. Hence, the collisions possibly take place for infrequent 

variables that will incur low information loss (Caragea et al. 2012). The phenomenon can also 

be observed in protein sequence classification problems (Caragea et al. 2012). As a reasonable 

trade-off between dimensionality reduction and information loss, we use the 32 bit 

murmurHash function (Langford et al. 2007) as hash function h,. The binary hash function ξ  

is included to ensure that the hash kernel is unbiased (Weinberger et al. 2009). 

3.3. Deep Learning Model 

Artificial neural networks (ANN) offer a number of advantages over alternative machine 

learning approaches for supervised learning tasks, including less need for formal statistical 

modelling, the capability to detect complex non-linear relationships between predictors and 

outcomes, the ability to model the interrelationships among the predictor variables, and the 

availability of a range of training algorithms (Tu 1996). The superior performance of ANN has 

already been documented in various comparative empirical studies and competitions (Caruana 

and Niculescu-Mizil 2006; Caruana et al. 2008; Schmidhuber 2015).  

The traditional approach to train ANNs, particularly deep neural networks with multiple hidden 

layers, directly optimizes the loss function through stochastic gradient descent, beginning from 

randomly initialized weights. However, this results in extremely long training durations and 

reduces the prediction performance (Vincent et al. 2010).  Breakthrough studies beginning in 

the mid-2000s offered deep learning architectures for training neural networks more effectively 

(Hinton et al. 2006; Vincent et al. 2008). Deep belief network (DBN), (stacked) autoencoders, 

denoised (stacked) autoencoders are prominent approaches among deep learning methods. The 

training process of these deep learning architectures shares commonalities and consists of two 

stages: (i) unsupervised greedy, layerwise pre-training and (ii) supervised fine-tuning. The 

main idea of the unsupervised pre-training is to address the need for learning complicated 

functions that represent high level abstractions by obtaining the network weights through a 

self-supervised learning that learns the non-linear transformation of the original input. The 

weights obtained from this stage are then used for training the whole network. The supervised 

fine-tuning component maps the output data to the pre-trained deep neural network and tries to 

minimize classification errors with gradient based optimization by adjusting the previously 

learned weights.  

An extensive experimental study showed that the neural networks with unsupervised pre-

training component provide better classification results than networks without a pre-training 

stage because the unsupervised pre-training yields a good initial marginal distribution, captures 

intrinsic dependencies between variables, outperforms the classical regularization techniques, 

and acts as a variance reduction technique (Erhan et al. 2010). In this study, we apply stacked 

autoencoders to extract high level feature representation layerwise in an unsupervised manner. 

After pre-training with stacked autoencoders, we perform the fine-tuning and relevant 

classifications using a logistic regression layer after adding an output layer to the obtained stack 

(see the Figure 2). 

3.3.1. Unsupervised Pre-training with Stacked Autoencoders 

Autoencoders are the non-linear generalization of the Principal Component Analysis (PCA) 

that can model non-linear interdependencies among the features of the given dataset (Hinton 
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and Salakhutdinov 2006). An autoencoder consists of three layers, namely input, hidden and 

output layers. The hidden layer is referred to as encoding layer while the output layer acts as a 

decoding layer. 

Encoder: The encoder takes the high-dimensional input vector x ∈ [0, 1]d and maps it to the 

hidden layer using a non-linear activation function 𝑓𝜃. Due to its tendency to increase sparsity 

and reduced tendency of vanishing gradients (Izadyyazdanabadi et al. 2017; Shi and Chu 2017), 

we adopted the Rectified Linear Unit (ReLu) as an activation function for encoding:  

ℎ = 𝑓𝜃(𝑥) =  ReLU(𝑊𝑥 + 𝑏)                                       (1) 

θ = {W, b} is the parameter set of the encoder where W is a d′×d weight matrix and b is the 

bias. h ∈ [0, 1]d  is the output of the hidden layer representation. 

Decoder: The decoder then maps the hidden layer representation back to the reconstructed 

vector z ∈ [0, 1]d  through the mapping function gϴ’. 

𝑧 = 𝑔𝜃′(ℎ) =  𝑔𝜃′(𝑊′ℎ′ + 𝑏′)                                       (2) 

The main goal of the training is the optimization of parameter sets θ = {W, b} in the encoder 

and θ’={W’,b’} in the decoder phase respectively, to minimize the reconstruction loss. We used 

squared error as the reconstruction loss function L: 

𝐿(𝑥, 𝑧) = ‖𝑥 − 𝑧‖2 = ‖𝑥 − 𝑔(𝑊′(𝑓(𝑊𝑥 + 𝑏) + 𝑏′)‖2            (3) 

This optimization problem was solved using the mini batch stochastic gradient descent method. 

Stacked autoencoders are a greedy layer-wise approach which conducts multi-phase feature 

extraction by using the features extracted by one autoencoder, represented by its hidden layer, 

as input of another, following autoencoder (left side of Figure 2) The stacked autoencoders are 

trained independently to obtain the initial weights for the next stage, supervised fine-tuning. 

3.3.2. Supervised Fine-Tuning 

After unsupervised reconstruction based learning of the network weights, logistic regression is 

applied to fine-tune the weights after mapping the output to class labels (right side of Figure 

2). To perform such a training, the decoding parts of the stacked autoencoders are removed and 

the logistic regression layer is added on top of the trained encoding layers. Since we deal with 

a multi-class classification problem, the added layer uses Softmax (multinomial logistic 

regression) units to estimate the probabilities of the classes: 

𝑃(𝑦 = 𝑗|𝑥) =  
𝑒

𝜃𝑗

∑ 𝑒𝜃𝑖𝑘
𝑖=1

                                       (4) 

The probability of the target class y being class j, given the input x, is calculated from the input 

vector x and a set of weighting vectors 𝑤𝑗, where 𝜃𝑗 = 𝑤𝑗
𝑇𝑥 denotes the inner product of 𝑤𝑗 

and x. 

The combined network is trained by using the usual multi-layer perceptrons to minimize the 

prediction error. We use stochastic gradient descent (SGD) to minimize the cost function 

because it is a memory efficient and fast approach. A lock-free methodology was adopted to 

parallelize the SGD where the multiple cores contribute to gradient updates (LeCun et al. 2012; 

Goodfellow et al. 2013). 
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4. Evaluation  

To gauge the effectiveness of the proposed deep learning, we conducted a range of experiments 

with different datasets, experimental settings and evaluation purposes. In particular, we 

investigated the following research questions: 

 RQ1: Does the proposed multi-stage deep learning approach provide superior results 

in terms of different evaluation measures compared to existing classification 

approaches?  

 RQ2: Does the proposed multi-stage deep learning approach outperform the 

benchmark LSTM based deep learning approaches by Evermann et al. (2017) and Tax 

et al. (2017) and probabilistic finite automaton (PFA) based on Bayesian regularization 

by  Breuker et al. (2016) for next event prediction? 

Business processes often contain rare activities that are not on the typical execution path. 

Typically, these activities signal process exceptions, process escalation or compensatory tasks. 

This leads to imbalanced event logs, where some set of events is highly prevalent and another 

set of events is only sparsely represented. Such imbalanced event logs present a challenge for 

training many classifiers. However, while rare, these activities are typically highly relevant in 

a business context, precisely because they signal exceptional process states or execution paths. 

This in turn implies that it is important for classifiers to correctly classify or predict such 

important but rare events. Hence, we are interested also in the following research question: 

 RQ3: Can process prediction with a multi-stage deep learning approach benefit from 

the application of Radial Basis Function (RBF) neural networks for data balancing that 

is assumed to help to improve the prediction of rare business process events? 

Figure 2 Stacked autoencoders based deep learning. Unsupervised pre-training on the left, supervised fine-

tuning on the right. 
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Our experiments were performed using an Intel Core i7-5500U 2.0 GHz processor with 16 GB 

RAM. For initial data preprocessing we used the data manipulation package dplyr, available in 

the RStudio software, which is an integrated development environment for R (Wickham and 

Francois 2015). The self-developed Java-based application was used to build the n-grams from 

the business process event data. The feature hashing approach was carried out using the 

Microsoft Azure Machine Learning platform which implements the Vowpal Wabbit library 

(Langford et al. 2007; Barga et al. 2015). Both the pre-trained stacked autoencoders and the 

supervised deep learning part were created on the H20 open source deep learning platform 

(Candel et al. 2016). The experimentations for traditional classification techniques were 

performed using the Weka tool (Hall et al. 2009).  

4.1. Datasets 

The experiments were conducted using real-life datasets, the BPI Challenge 2012  (van Dongen 

2012), BPI Challenge 2013 (W. Steeman 2013), and Helpdesk (Verenich 2016) data. Table 1 

provides an overview of the number of unique event types and total number of events in the 

datasets. The number of unique event types also indicates the number of output classes in our 

multi-class classification problem. 

Table 1 Characteristics of dataset 

Datasets # of unique event types  # of events 

BPI_2012_W_Completed 6 72.413 

BPI_2012_A 10 60.849 

BPI_2012_O 7 31.244 

BPI_2013_Incidents 13 65.533 

BPI_2013_Problems 7 9.011 

Helpdesk 9 13.711 

 

The BPI Challenge 2012 dataset comprises event log data from 262.000 events for 13.087 

cases obtained from a Dutch financial institute. The activities related to a loan application 

process are categorized into three sub-processes: processes related to the application (A), the 

work items belonging to applications (W) and the state of offer (O). Events for the A and O 

sub-processes contain only the completion lifecycle transition, while the W process includes 

the scheduled, started and completed lifecycle transitions. Since all approaches presented in 

Evermann et al. (2017), Breuker et al. (2016), Tax et al. (2017) used only the completion events, 

we filter out  the events with the lifecycle transitions started and scheduled from this sub-

process. In summary, similar to the previous papers, we evaluate our approach on three datasets 

from BPI Challenge 2012: BPI_2012_A, BPI_2012_O and BPI_2012_W_Completed. 

The BPI Challenge 2013 dataset contains log data obtained from an incident and problem 

management system of Volvo IT in Belgium. This dataset has three subsets: The incident 

management dataset encompasses 7554 cases with 65534 events of 11 unique event types. The 

open problems dataset contains 819 cases with 2351 events of 5 unique event types and the 

closed problems dataset comprises 1487 cases with 6660 events of 7 unique event types. We 

also merged both open and closed problems dataset to create a final dataset identical to that in 

other studies. After combining both problem datasets we obtained 9011 process events. 
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The helpdesk dataset comprises event data from a ticketing management system designed for 

the help desk of an Italian software company. The event log contains 3804 cases with 13710 

events. 

The BPI Challenge datasets not only provide the timestamp of the event occurrence and process 

trace IDs, but also describe various additional resource and case specific information. This 

information was also considered in modelling.  The BPI Challenge 2012 data provides both 

organizational information such as the identification number of the resources initiating events, 

and case specific information such as the amount of the requested loan. The BPI Challenge 

2013 datasets contain information about the priority of the problems and incidents, originating 

functional divisions and organizational lines, related products, process owners’ countries and 

names. Only the helpdesk dataset provides neither case nor resource specific information, 

therefore we use only the hashed n-gram features. As mentioned above, after generating the 

feature vectors from the sequence of the activities through n-grams and feature hashing 

approaches, we append any additional information provided by the log to the feature vector. 

4.2. Evaluation Metrics 

To evaluate the effectiveness of our deep learning approach and to compare it to alternative 

classification algorithms, we computed different classification quality metrics such as average 

accuracy, averaged precision, average recall, average F-measure, and Matthews Correlation 

Coefficient (MCC) and the area under the ROC curve (AOC) (Table 2) which were adapted to 

a multi-class classification problem.                       

Table 2 Evaluation metrics for multi-class classification. l is the number of classes, 𝑠𝑖 is the true size of class i 

(the number of events of class i) and 𝑛 = ∑ 𝑠𝑖
𝑙
𝑖=1  is the total size of the dataset. 

Metrics Formula 

Accuracy 
1

𝑛
∑ 𝑠𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖 + 𝑡𝑓𝑖 + 𝑓𝑝𝑖

𝑙

𝑖=1
 

Precision 
1

𝑛
∑ 𝑠𝑖

𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑝𝑖

𝑙

𝑖=1
 

Recall 
1

𝑛
∑ 𝑠𝑖

𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖

𝑙

𝑖=1
 

F-Measure 
1

𝑛
∑ 𝑠𝑖

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑖

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑖

𝑙

𝑖=1
 

MCC 
1

𝑛
∑ 𝑠𝑖

𝑡𝑝𝑖 × 𝑡𝑛𝑖 − 𝑓𝑝𝑖 × 𝑓𝑛𝑖

√(𝑡𝑝𝑖 + 𝑓𝑝𝑖)(𝑡𝑝𝑖 + 𝑓𝑛𝑖)(𝑡𝑛𝑖 + 𝑓𝑝𝑖)(𝑡𝑛𝑖 + 𝑓𝑛𝑖)

𝑙

𝑖=1
 

AUC 
1

𝑛
∑ 𝑠𝑖 ∫ 𝑡𝑝𝑟𝑖  𝑑(𝑓𝑝𝑟𝑖)

1

0

𝑙

𝑖=1
 

 

In these formulas, tpi (true positives for class i) is the number of events of class i that have been 

classified or predicted as being of class i. fpi (false positives) is the number of events not of 

class i that have been classified (predicted) as being of class i. tni (true negative) is the number 

of events not of class i that have been classified (predicted) as not of class i and finally fni (false 

negatives) is the number of events of class i that have been classified (predicted) as not of class 

i. tpri is the true positive rate and fpri the false positive rate for class i. Accuracy is defined as 

the proportion of correctly predicted instances of all instances. Precision determines how many 

activities were correctly classified for a particular class, given all prediction of that class. Recall 
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is the true positive rate for a particular class. The F-Measure is the harmonic weighted mean of 

the precision and recall. MCC is referred as the correlation between the actual target values 

and predicted classifications. AUC is the area under the ROC (receiver operating characteristic) 

curve. We computed these measures for each individual class and obtained the overall value 

by summing up their scores, weighted by the true class size. 

80% of each dataset was used to train the algorithms and 20% were used for testing purposes. 

The test results were used to compare the approaches. We used the training data for both 

unsupervised pre-training and supervised fine tuning of our deep learning model. 10-fold cross 

validation was used for training the proposed model. For 10-fold cross-validation, the dataset 

is partitioned into the 10 disjoint subsets. Both training and testing are carried out 10 times. 

During each iteration, one partitioned subset is used for testing purposes whereas the others 

serve as input for training the classifier. This procedure is important for identification of best 

hyperparameter configurations (Vincent et al. 2010). The values of relevant measures are 

calculated from the test results and reported in Section 4.4 below.  

4.3. Hyperparameter Optimization 

Sophisticated deep neural networks may have more than fifty hyperparameter (Bergstra et al. 

2011). Efficient parameter tuning significantly influences the learning process and prediction 

outcomes. The main idea behind hyperparameter optimization is the identification of the best 

model parameter configuration from the given hyperparameter space for obtaining accurate 

models at a reasonable computational cost. In the traditional approach, manual search, experts 

define some hyperparameter values for different parameters based on their experience and 

intuitions (such as number of hidden layers, number of neurons, the learning rate etc.) and try 

to find the best model in terms of different combination of hyperparameter values by 

conducting multiple training sessions. However, due to the time consuming nature of this 

approach, only a few combinations of hyperparameter values can be tested (Bergstra et al. 

2011). Furthermore, due to the shortcomings of human reasoning in multi-dimensional spaces, 

it is challenging to achieve globally optimal outcomes (Witt and Seifert 2017).  

The brute force approach, grid search, also referred to as exhaustive search, trains the model 

for every possible combination of hyperparameter values by following a particular stopping 

criterion. According to Bergstra and Bengio (2012), grid search identifies better 

hyperparameter configuration than manual search in the same computational time. A vast 

majority of the studies from the deep learning domain applies the combined manual and grid 

search where experts define the set of values for the chosen variables manually and the grid 

search attempts to find the best configuration by assembling the possible value combinations 

(Larochelle et al. 2007). Such an exhaustive search may suffer from the curse of the 

dimensionality since the variety of combinations increases exponentially with the number of 

the hyperparameter (Bergstra et al. 2011). To tackle this problem, Bergstra and Bengio (2012) 

proposed a new hyperparameter optimization approach known as random search. The main 

idea is to pick combinations of hyperparameter values randomly and to train the models in the 

given constraint (number of models or time). Empirical results show that random search 

outperforms the brute-force grid search in finding the optimal hyperparameter configuration 

(Bergstra and Bengio 2012). 
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Therefore, we adopt the random search hyperparameter optimization approach. We defined the 

parameter ranges for number of hidden layers [3:10], number of neurons in the hidden layers 

[10:500], sparse data handling [True, False], initial weight distribution [uniform, normal] for 

the pre-training component, number of training epochs [10:1000], adaptive learning rate 

(adaptive learning rate time decay factor=0.99 and adaptive learning rate smoothing factor = 

1e-8), (initial) learning rate [0.0001:1], annealing rate [10:106] when adaptive learning is 

disabled, etc. for both pre-training component and the whole network. We stopped the search 

when 200 models for a given dataset are trained. The log-loss was used as the early stopping 

metric for training. The stopping tolerance was defined as 0.001 and the training process is 

stopped if relative improvement is below this defined threshold. As an example, Table 3 shows 

the hyperparameter configuration of our proposed deep learning approach that obtained the 

best classification accuracy for predicting the next business process event in the BPI_2012_A 

dataset. We performed the random hyperparameter search for all experiments reported in the 

present paper. 

Table 3 Optimal hyperparameter values for BPI Challenge 2012_A dataset 

 

 

 

 

 

 

 

 

 

 

4.4. Results 

The following subsections provide a detailed discussion of empirical results and address the 

different research questions.  

4.4.1. Comparative Analysis (RQ  1 and RQ 2) 

We first compared our approach to conventional (i.e. generic or not-process aware) 

classification algorithms including support vector machines (SVM), random forests, naïve 

Bayes, k-nearest-neighbours (kNN) and C4.5 decision trees, which are considered to be some 

of the most powerful and most widely-used data mining algorithms (Wu et al. 2008). Table 4 

presents the obtained results (test results). 

The evaluation results in terms of different performance measures show that, with a few 

exceptions, our proposed deep learning approach outperforms conventional, generic 

classification techniques. In general, the SVM technique shows a better performance than other 

methods over all three datasets by getting the closest results to our approach. For the BPI 2013 

dataset, all techniques except naïve Bayes perform similarly. However, the performance gaps 

Parameters (pre-training) Values Parameters (whole Network) Values 

Number of Neurons (hidden 

layers) 
425:400:390:300 Number of layers 6 (4 hidden) 

Initial Weight Distribution   
Normal 

distribution 
Epochs 100 

Sparse True Adaptive Learning True 

Learn Rate 0.005 
Adaptive learning rate smoothing 

factor 
1e-8 

Momentum 0.9 
Adaptive learning rate time decay 

factor 
0.99 

Annealing Rate 104 

Activation ReLu 

Activation (classification) Softmax 

Batch size 20 

classifier L2-penalty 0 

Loss Function Cross-

entropy 
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between our deep learning approach and the alternative methods are quite large for the BPI 

2012 and helpdesk datasets. 

Table 4 Results obtained from conventional classification approaches and the proposed deep learning approach (higher 

numbers are better) 

 Accuracy Precision Recall F-Score MCC AUC 

                                   BPI 2012_A 

SVM 0.817 0.856       0.822     0.817       0.748     0.895 

RF 0.720 0.714 0.721 0.712 0.566 0.888 

Naïve Bayes 0.612 0.633       0.612     0.555       0.485     0.772 

C4.5 0.708 0.744 0.709 0.705 0.674 0.931 

Deep Learning 0.824 0.852 0.824 0.817 0.751 0.923 

                                   BPI2013_Incidents 

SVM 0.652 0.599 0.653 0.622 0.350 0.730 

RF 0.615 0.626 0.616 0.524 0.508 0.895 

Naïve Bayes 0.576 0.618 0.577 0.590 0.519 0.879 

C4.5 0.659 0.558 0.659 0.582 0.564 0.900 

Deep Learning 0.663 0.648 0.664 0.647 0.583 0.862 

                                  Helpdesk 

SVM 0.715 0.605 0.716 0.652 0.389 0.725 

RF 0.601 0.619 0.601 0.606 0.278 0.688 

Naïve Bayes 0.631 0.634 0.631 0.622 0.323 0.733 

C4.5 0.613 0.534 0.614 0.569 0.214 0.602 

Deep Learning 0.782 0.632 0.781 0.711 0.412 0.762 

 

In summary, to answer RQ1, we can observe that our proposed deep learning approach is 

superior to conventional, generic classification methods. 

In order to examine RQ2, we compared our results against three recent benchmark approaches 

for next event prediction. The results for all three BPI 2012 datasets suggest that the proposed 

model outperforms all three approaches (see Table 5). A bigger difference can be observed for 

the BPI_2012_W_Completed dataset where our approach achieves an accuracy of 0.831 

compared to 0.719 and 0.760  in Breuker et al. (2016) and Tax et al. (2017) respectively. The 

performance gap compared to Breuker et al. (2016) is greatest for recall (sensitivity). The 

comparison of our results with Evermann et al. (2017) in terms of precision also shows the 

superior performance of our proposed approach (0.811 vs. 0.658). Only two other studies used 

the BPI_2012_A and BPI_2012_O datasets to evaluate their models. Our approach 

outperforms both of those models in terms of all evaluation measures. The approach by 

Evermann et al. (2017) performs better for the latter two and achieves results close to ours. 

The results for the BPI_2013_Incident dataset are mixed. The approach in Breuker et al. (2016) 

shows higher predictive performance than ours in terms of accuracy (0.714 vs. 0.663). 

However, our approach performs significantly better in terms of recall (0.664 vs. 0.377). 

Precision results obtained in Evermann et al. (2017) are also better than for our approach. 

However, the experiments conducted on the BPI_2013_Problems dataset suggest that our 

proposed approach delivers superior results compared to all alternatives.  

Finally, only Tax et al. (2017) carried out experiments on the helpdesk data. A closer look to 

the results shows again the superiority of our proposed model. Our approach performs better 

than LSTM approach in terms of accuracy (0.782 vs. 0.712).  
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We also note that, since we use random hyperparameter optimization approach instead of 

manual search as in our previous study (author citation, 2017), the results presented here are a 

significant improvements over own earlier work (author citation, 2017).  

In summary, to answer RQ2, we conclude that our proposed approach outperforms existing 

deep-learning process prediction approaches for most datasets and on most quality metrics. 

Table 5 Comparison against benchmark approaches (higher numbers are better) 

 

4.4.2. Imbalanced Classification (RQ 3) 

In unbalanced datasets some classes are significantly underrepresented compared to others. 

This reduces the effectiveness of the machine learning techniques, especially for detecting the 

minority class examples (Wang and Yao 2012). To overcome this, various approaches at the 

data level (randomly or informatively under/over sampling), algorithm level, cost sensitive 

learning and boosting methods have been proposed (Sun et al. 2009). Due to their 

straightforward nature, the resampling approaches are used frequently, but they are unable to 

increase the information that is required to train the models. Furthermore, undersampling may 

result in the information loss. To address this issue, the SMOTE (Synthetic Minority Over-

sampling Technique) method was proposed. It generates new, non-replicated samples by 

interpolating neighboring minority class examples, but it also suffers from synthesizing the 

noisy examples (Huang et al. 2016). Cost sensitive learning techniques are effective approaches 

to tackle the imbalanced classification problem but require cost information from domain 

experts. Huang et al. (2016) suggests that applying neural networks to synthesize the samples 

for minority class is a superior alternative. 

 Accuracy Precision Recall 

BPI 2012_W 

Breuker et al. (2016) 0.719 - 0.578 

Evermann et al. (2017) - 0.658 - 

Tax et al. (2017) 0.760 - - 

Proposed Approach 0.831 0.811 0.832 

BPI2012_A 

Breuker et al. (2016) 0.801 - 0.723 

Evermann et al. (2017)  0.832 - 

Proposed Approach 0.824 0.852 0.824 

BPI2012_O 

Breuker et al. (2016) 0.811 - 0.647 

Evermann et al. (2017) - 0.836  

Proposed Approach 0.821 0.847 0.822 

BPI2013_Incidents 

Breuker et al. (2016) 0.714 - 0.377 

Evermann et al. (2017) - 0.735  

Proposed Approach 0.663 0.648 0.664 

BPI2013_Problems 

Breuker et al. (2016) 0.690 - 0.521 

Evermann et al. (2017) - 0.628  

Proposed Approach 0.662 0.641 0.662 

Helpdesk 

Tax et al. (2017) 0.712 - - 

Proposed Approach 0.782 0.632 0.781 
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In our study, we generate semi-artificial data of the minority class using Radial Basis Function 

(RBF) neural networks (Robnik-Šikonja 2014). The principle of this approach is to extract 

Gaussian kernels from the RBF trained with dynamic decay adjustment, and to generate data 

from each kernel in the required proportions. The details and pseudo-code of the RBF based 

data generator can be found in (Robnik-Šikonja 2014). This approach was chosen due to its 

advantages over alternative data generation techniques. Although other data generators 

consider the relationship between input and target variables, they do not consider dependencies 

among input variables. Such dependencies are preserved in the RBF based model we have 

adopted. The RBF approach assumes only the form of the data distribution (Gaussian) but uses 

extracted distribution parameters to generate data.  

The process owners of the “BPI Challenge 2013 Incidents” dataset claim that some employees 

try to find workarounds which stop the clock from ticking in order to manipulate the total 

resolution time of an incident. Giving an incident a status of “Wait user” is one of these ways. 

Although the employees were explicitly requested to avoid using the status of the “Wait user” 

except for emergency cases, the guideline is sporadically broken. A proactive identification of 

this misuse thus has a high business relevance. However, the number of occurrences of this 

minority class is very low compared to the occurrences of events of other classes. To handle 

this imbalanced classification problem, we formulate the problem as a binary classification 

problem where the majority class is the set of all other events and the minority class is the 

“Wait user” event.  We then apply our proposed deep learning approach after balancing the 

classes with the RBF approach. We compare the results against the direct application of our 

approach to the imbalanced data (without rebalancing). Accuracy is not an appropriate 

evaluation metric for comparing the classification results in the presence of imbalanced 

datasets. Even when the classifier detects all majority examples correctly and fails to predict 

the examples from the minority class, the accuracy will still be high due to prevalence of 

majority class examples (Han et al. 2005). This would lead to misinterpretation of the model 

performance. To compare the performance of the models we used the area under the ROC 

curve (AUC), which is one of the most appropriate measure of the performance for imbalanced 

data (Bradley 1997). Figure 3 shows ROC curves for the imbalanced data and for the RBF 

rebalanced data. 

 

 

 

 

 

 

  

 

Figure 3 ROC Curves for application to (a) imbalanced and (b) balanced datasets. ROC curves plot the true 

positive rate (tpr) against the false positive rate (fpr). 
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The results suggest that balancing the dataset through RBF based data generation affects the 

effectiveness of the proposed deep learning approach positively by increasing the AUC metric 

from 0.855 to 0.932.   

In summary, to answer RQ3, we conclude that RBF based data rebalancing works well in 

conjunction with our proposed multi-level deep learning prediction approach to improve the 

prediction of rare, but important, events in a business process. 

5. Conclusion 

This paper investigated the effectiveness of a stacked autoencoders based deep learning 

approach for predicting future process events in the running process instance. It is the first 

application of this approach in the business process prediction domain. To evaluate the 

predictive performance of our model, we compared it against three recent benchmark 

approaches, two of which used deep LSTM recurrent neural networks, and conventional 

classification algorithms. Prior to applying our deep learning model, we used n-gram encoding 

and feature hashing to build the numerical feature vectors from the categorical process event 

data by using the sliding window technique. The overall objective was to examine the 

feasibility and impact of applying the proposed approach to process prediction. The 

experimental results suggest that the proposed model can achieve good results in terms of 

different classification evaluation measures and outperforms the state-of-the-art approaches in 

the majority of experiments for predicting the next process events. We have also investigated 

and discussed the impact of adjusting the hyperparameter of both data pre-processing 

techniques and deep neural networks on the prediction results and applied hyperparameter 

optimization to find the optimal configuration. Finally, we addressed the imbalanced 

classification problem by employing neural-network based resampling methods.   

The successful application of our proposed approach to next event prediction opens up some 

interesting and important avenues for future research. Our proposed approach, which deals with 

the next event prediction problem, can also be applied to predicting business process outcomes, 

such as compliance with service-level agreements, process success or failure or the value of 

discrete case attributes. Even if there is no crucial need for algorithmic changes, the business 

process outcome prediction problem requires an intensive feature processing work. Using 

denoised stacked autoencoders may improve the pre-training results over the ones used here, 

and is also a subject of future research. Finally, applying the proposed multi-stage deep learning 

approach for various regression problems, such as time to next event or remaining time to 

completion, is another interesting future research direction.  
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Figure 2 Stacked autoencoders based deep learning. Unsupervised pre-training on the left, supervised fine-tuning on the right.

Figure 2



AUC = 0.855

a. Results for imbalanced dataset b. Results for balanced dataset

AUC = 0.932

Figure 3 ROC Curves for application to (a) imbalanced and (b) balanced datasets. ROC curves plot the true positive rate (tpr) against the false positive rate (fpr).
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