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Abstract. Previous occupational safety concepts in human-machine interaction 

scenarios are based on the principle of spatial separation, reduction of collision 

force or distance monitoring between humans and robots. Collaborative robot 

systems and semi-automated machines are working closely with people in more 

and more areas, both spatially and functionally. Therefor a new approach for 

occupational safety in close human-machine collaboration scenarios is present-

ed. It relies on a real-time EEG measurement of human workers with brain 

computer interfaces and a subsequent adjustment of the robot system based on 

the detected cognitive states. 

Keywords: Occupational safety, human machine interaction, brain computer 

interfaces 

1 Introduction 

According to a study by the International Federation of Robotics, the number of 

industrial robots sold in 2016 was 16% higher than in the previous year. Annual sales 

growth of 10% on average is expected until 2020 [1]. In addition to the possible in-

creases in efficiency and productivity made possible by the growing number of robots 

in working environments across countries, the protection and safety of the employees 

involved must always come first. Accidents at work not only have serious conse-

quences for those affected but are also a cost factor that should not be neglected for 

the companies involved and the economy in general. The main causes of accidents at 

work are human behavior errors based on carelessness, stress or hecticness [2]. Espe-

cially in close cooperation with industrial robots, this is triggered by complex motion 

sequences, unpredictable changes in position and speed or unexpected starting of the 

robots [3]. Current safety strategies to avoid work accidents in human machine inter-

actions are based on a strict spatial separation between the robot and the work area of 
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the human operator. However, collaborative work scenarios that are characterized by 

a very close human-machine interaction are increasingly coming into focus. Collabo-

rative robot systems and semi-automated machines will work closely with people in 

more and more areas, both spatially and functionally. Particularly in these situations, 

special attention must be paid to the protection and safety of people. Classical safety 

strategies can no longer be applied for these collaborative work scenarios. The close 

physical cooperation between man and machine requires adapted and reliable occupa-

tional safety concepts. 

Another aspect is the problem of under- or overstraining at the workplace. Accord-

ing to stress reports of recent studies, already in 2012 about 18 percent of employees 

felt that they were either professionally or quantitatively underchallenged at their 

work. About 23 percent of those questioned suffered from work overload [4]. Howev-

er, mental health problems can arise from permanent under- or overchallenging. In 

order to master the unavoidable change in work requirements in a socially acceptable 

manner, new methods are therefore necessary to optimally design the working condi-

tions for the individual person.  

In this paper we present a new approach to increase occupational safety in collabo-

rative working scenarios, including the potential to optimize the individual working 

conditions in a rapidly changing environment. It is based on cognitive measurements 

of human workers which are analyzed and used to optimize the co-working situations 

with robots with the aim to avoid work accidents. Following a design science meth-

odology [5], we first demonstrate the relevance of such an approach followed by a 

conceptual solution which acts as the artifact and a subsequent discussion and evalua-

tion. 

2 Related Work 

Especially in the field of human-robot interaction, the aspect of occupational safety 

and security is of great importance. Current approaches for collaborative robot sys-

tems are mainly focused on aspects of force and power limitation as well as speed and 

distance monitoring [3], [6]. On the one hand, there are approaches to minimize the 

collision force in a potential human-robot contact. On the other hand, technologies 

were developed to detect persons entering the safety area of the robot to initiate ap-

propriate safety measures of the robot [7,8]. The analysis and use of cognitive states 

to control and influence physical objects (such as robots) is an approach that has been 

less considered so far. Most of the current research relates to medical applications 

[9,10,11]. Especially in the industrial sector, i.e. in production or manufacturing, other 

requirements arise which have not yet been addressed to this extent. The electroen-

cephalogram ("EEG") is a representation of electrical brain activity measured at the 

head surface and detected by means of metal electrodes and a conductive medium 

[12]. The EEG has so far mainly been used for the detection of neurological diseases 

in medicine, for the investigation of brain functions in research as well as in the con-

text of therapy and rehabilitation. Further applications can be found in the field of 

brain-computer interfaces, i.e., the use of EEG signals to decipher mental states (fa-
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tigue, stress, etc.) and the improvement of human-machine interaction based on them 

[13,14,15]. The mental states can be analyzed in the EEG using the P300 or changes 

in the frequency bands. At a high workload, changes in the alpha and theta frequency 

bands are observed, e.g. increases in theta activity in the frontal brain area and reduc-

tion of alpha activity in the parietal area [16,17,18,19,20,21,22]. However, individual 

studies report increases in alpha activity [23, 24], which can be attributed to a general 

large variance of individual differences [25]. With onset of fatigue, however, activity 

in both frequency bands is increased [26,27,28,29,30,31]. In the case of the P300, a 

reduction in amplitude can be observed both with a high workload and with onset of 

fatigue [32], [14]. Errors in robot behavior or faulty human-robot interaction can be 

measured in the EEG as error-related potentials and detected in real time using ma-

chine learning methods [33,34,35]. The error-related potential can also be used as 

implicit feedback from humans (e.g. encouraging learning) in robot learning ap-

proaches [36]. 

Based on recent research a next step in the direction of implementing functional 

solutions within realistic industrial applications is needed to prove that cognitive work 

protection using physiological data is applicable and a strong contribution to worker’s 

safety. 

3 Technical Developments and Feasibility of the Approach 

Our approach for occupational safety in close human-machine collaboration sce-

narios is feasible due to technical developments of the used core components that 

have come up over the last few years. This applies in particular to the fields of EEG 

data analysis methods, digital platform technologies and robotic control, as well 

as smart devices (e. g. in terms of wearables). 

By means of the introduction of machine learning methods [37] and advanced sig-

nal processing techniques (e. g. [38]) EEG analysis is now possible in almost real 

time and more importantly cognitive states and intentions of humans can be detected 

or inferred in single trial [39]. This development is the basis for applying brain com-

puter interfaces (BCIs) in real world settings, such as done by embedded Brain Read-

ing (eBR) [39]. Further, the improvements in EEG recording and analysis techniques 

that allow EEG analysis and analysis of other physiological data recorded under non-

static conditions such as walking and running [40] or cycling [41, 42] did also enabled 

the integration of psychophysiological data into the control of robots such as exoskel-

etons [15]. Thus, due to the combination of both developments it is no longer required 

that persons wearing EEG recording equipment are not allowed to move at all while 

recording the data in often shielded lab environments [43]. Instead, free movements in 

cooperation with robotic systems in real world settings is now possible [36].  

On the other hand, the development of embedded processing hardware and ad-

vanced embedded software solutions [44] does even enable the implementation of 

small recording as well as analysis techniques that already incorporate advanced real-

time EEG processing [45] and even classifier training or adaptation on embedded 

devices [55].  
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Despite improvements in hardware and data analysis techniques the integration of 

physiological data into the control of robots or its usage for the improvement of hu-

man-machine interfaces required new concepts for deep integration and failure free 

usage of highly uncertain data such as EEG data. New concepts were developed that 

allow to infer on the context of interaction to make use of low level information from 

EEG data to infer on high level intentions of a user or to automatically detect markers 

in the EEG based on the current activity of the supported person that can be used to 

infer on the cognitive or mental state of the user [46]. The latter one is even possible 

without using a secondary task to measure workload [14].  

Finally, advances in EEG sensor systems regarding usability and costs lead to a 

widespread use of EEG data in gaming and entertainment (e. g. [56,57,58]). Similar to 

the development of mobile cell phones this development is a major driver for solu-

tions in the field of low cost and easy to use EEG sensor systems that are of need for 

our proposed application. 

Digital platforms are new marketplaces by which the exchange of goods, services 

and other added value can be organized and realized using digital technologies. They 

enable interactions and transactions between interested participants and objects (e.g. 

machines, networks, institutions, etc.) [47], [48]. In this context "digital technologies" 

such as standardized interfaces, user and role administration, service catalogs, data-

base technologies, intelligence and analytics software components serve as enabler 

and technological framework for the running of this connecting technology. These 

technological developments lead to a widespread use of digital platforms in the pro-

duction as well as in the service sector [47]. Within the Industrial IOT scenario, plat-

forms have the potential to realize the holistic framework of a "smart factory", in 

which centralized robotic control scenarios can be established as well [49]. In the 

field of data intelligence and analytics, big-data scenarios in particular can be imple-

mented e.g. as predictive analyses and real-time data processing [50]. 

The use of smart devices such as wearables reflects the current development of 

the “quantify yourself” trend, which mainly focused on tracking and analyzing data 

from everyday activities such as sports, weight control, sleeping activities and other 

habits [51]. Technologically, applications can be deployed on the wearable that estab-

lish an interface to other decentralized services thus analyzing data in real-time. Be-

sides sports and clinical approaches [52], new approaches arise in field of occupation-

al safety e.g. for personalized construction safety environment using techniques like 

physiological monitoring; environmental sensing; proximity detection; and location 

tracking [53]. 

Regarding those technical developments, the combination of the components leads 

to the conception of the following holistic approach. 

4 Cognitive Work Protection 

The first goal of our approach (Fig. 1 shows the holistic design) is to measure the 

cognitive condition, for example the stress level or the workers' ability to concentrate, 

and thus to optimize interaction with robots and machines in real time with a view to 
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increased safety. The second objective is to reduce accidents at work that occur in 

cooperation between humans and robots and to promote the physical and mental 

health of employees. 

Starting point of our approach are EEG measurements of employees during the op-

eration of machines or in cooperation with robots. The electrical activity of the brain 

is determined by electrodes that measure the voltage fluctuations at the head surface. 

The focus is on the electrode design and the ergonomic design of the sensor system. 

The system is optimized for a minimum number of sensors that are able to detect the 

desired cognitive states. For this purpose, the brain and thus head regions are identi-

fied which have the highest information content when determining the various cogni-

tive states.  

 

 

Fig. 1. Design representation of the holistic framework 

The electrodes based on flexible polymer substrates are installed at the identified 

head- and electrode positions in safety goggles and thus integrated into the safety 

equipment that is required in any case. Based on the identified electrode positions, 

optimal electrode flexibility and shape is identified by various prototypes and tests on 

person. These optimal electrode shapes should ensure reliable hair penetration and 

head contact as well as high long-term wearing comfort.  

The measured brain waves are recorded in real time and transmitted via a wireless 

interface to a central digital platform. The data is processed there by means of auto-

mated analysis methods. Based on data preparation, characteristics are generated and 

patterns are classified using methods of machine learning and artificial intelligence. 

Thus, online measured EEG patterns can be assigned to certain cognitive states. EEG 

analyses can be performed in regards to time and frequency. Regarding the timing 

sequence, changes in natural potentials generated by the brain can be detected. An 

example of this is the potential P300 attributed to the attention of a test person; with 

an increasing workload, the amplitude of the signal decreases. A higher latency of the 

potential can also occur. To do this, the data is first filtered in time and then a spatial 

filter (e.g. xDAWN) [38] is trained, which reduces the amount of data and extracts 
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important characteristics. Then the extracted characteristics are classified with a clas-

sifier like a support vector machine [54]. If the target signal changes, the processing 

chain can no longer correctly classify this signal, which can then be an indication of 

an overload or distraction of the subject. Furthermore, there are different frequency 

bands in the EEG. The activity in the respective frequency bands allows conclusions 

to be drawn about the mental state of the subject. To use this online, the energy of the 

respective band is measured under normal stress or no stress on the subject. This can 

be done by spectral analysis, for example. The determined rest values are then contin-

uously compared with the current values in the application in order to be able to eval-

uate any differences directly. Error related potentials [33,34,35,36] are generated in 

the brain when a subject perceives something unexpected, such as a robot behaving 

incorrectly. These potentials can be classified with a comparable processing chain to 

that of the P300.  

The information about the employee's cognitive states is then used for two different 

functions: to optimize interaction with robots and machines and to provide feedback 

for the employee himself. Based on the determined cognitive state of the employee, a 

rule-based control of the robot is realized. For example, the higher the measured stress 

level of the employee, the lower the speed of the robot. The robot is also controlled in 

real time and is connected via wireless communication to the digital platform [47,49].  

Within the feedback system, the real-time results of the EEG analysis, i.e. the in-

formation about the cognitive state, are visualized and made available to the employee 

via mobile devices. This ensures that the employee is permanently informed about his 

own data. This is realized via various visualization components (pie charts, alerts etc.) 

and haptic signals (e.g. vibration alarm). On the other hand, algorithms are included to 

identify patterns in continuous EEG measurements and to generate recommendations 

for optimizing working conditions. For example, with the help of a time series or 

classification analysis, which are usually found in Business Intelligence and Analytics 

components, mental state developments such as fatigue in time can be anticipated and 

thus recommendations can be displayed early via text windows and alarms (e.g. via 

wearables [51,52,53].  

In order to ensure adequate data protection, the design of the system has to ensure 

that only the employee himself receives information about his EEG measurements. 

The resulting recommendations for improving working conditions are also only made 

available to the employee in a first step. 

5 Discussion and Future Research 

The Cognitive Work Protection approach has the potential to change the way oc-

cupational safety is realized in human-machine interaction scenarios. Compared to 

classical approaches it allows a close collaboration and real collaborative work be-

tween humans and robots. It is the first approach to directly detect the main reasons 

for work accidents - namely stress, fatigue, inattention - and to trigger countermeas-

ures in a proactive way.  
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Besides occupational safety, the presented approach offers the possibility to im-

prove the general working conditions in particular with respect to work overload and 

boredom. As discussed, this can be realized by providing recommendations for im-

proving the working conditions to the employees themselves. In a next step however, 

the method can also be used for a company-wide management of human resources. 

Employees could be assigned varying tasks depending on their skills and level of 

satisfaction. For example, employees that typically feel unchallenged performing the 

same tasks every day could be dynamically assigned to frequently changing tasks, 

while the workload of employees feeling overstrained could be reduced. In this sce-

nario, the presented approach therefore not only reduces work accidents and improves 

the working conditions of employees, but also has the potential to increase a compa-

ny's productivity through managing human resources in an optimal way.  

Despite the great potential of the approach, there are also challenges that need to be 

overcome for practical applications. From a technical point-of-view the main chal-

lenge is to construct a reliable and comfortable EEG measurements sensor system that 

does not interfere employees in their work. Current advances in EEG sensor systems 

show promising results in this regard and hint to a realistic possibility for a practical 

realization. The second and most important challenge comes with the fact that EEG 

sensors determine highly sensitive data in the human working environment within 

which the employee is in a relationship of dependence. In this regard, urgent ques-

tions arise which are of an ethical, social and legal nature and which must be suffi-

ciently addressed before a practical realization.  

In our future research, we plan to address these challenges and drive the develop-

ment of a Cognitive Work Protection system, that is accepted by employees and em-

ployers alike. Therefor we will develop a prototype that can be tested and evaluated 

regarding usability, security and privacy issues. 
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