
Learning of Multi-Context Models for Autonomous Underwater Vehicles

Bilal Wehbe1,2, Octavio Arriaga1, Mario Michael Krell2, and Frank Kirchner1,2

Abstract— Multi-context model learning is crucial for marine
robotics where several factors can cause disturbances to the
system’s dynamics. This work addresses the problem of identi-
fying multiple contexts of an AUV model. We build a simulation
model of the robot from experimental data, and use it to fill
in the missing data and generate different model contexts. We
implement an architecture based on long-short-term-memory
(LSTM) networks to learn the different contexts directly from
the data. We show that the LSTM network can achieve high
classification accuracy compared to baseline methods, showing
robustness against noise and scaling efficiently on large datasets.

I. INTRODUCTION
A robotic model is an essential tool for control, action

and path planning, and several other applications. Classically,
models were manually engineered by humans for specific
robotic designs and applications, which restrict their usability
when the environmental conditions or the robot mechanics
are non-stationary. This issue as well presents itself critically
in marine robotics, where robots have to operate persistently
in harsh and unpredictable environments for weeks or even
months. Machine learning methods can avoid the manual
hand crafting of robotic models, and instead learn these
models directly from the data streams acquired by the
robot during operation. Furthermore, machine learning can
generalize better on larger state space of the model and
take into account nonlinearities that are most of the times
neglected by classical physics-based approaches [1].

Model learning has been proven to be an efficient method-
ology in various robotic domains such as inverse kinematics
and dynamics control, robot manipulation, locomotion or
navigation. However learning these models may not always
be straightforward and is still being faced with several
challenges [1]. For most applications, model learning is
regarded as a regression problem mapping the robot’s states
and actions. However, in cases when the robot’s dynam-
ics or operating environment are non-stationary, standard
regression techniques cannot be used since they are not
able to represent the full state space of the model. This
problem is commonly known as multi-context learning [2].
The common challenges that face multi-context learning is
discovering the correct number of contexts present in the data
space, and identifying the current context the robot is in at a
certain time. Furthermore, the incomplete state space of the
sampled data, poses one of the major problems for learning
algorithms. Generally any learning method requires a large
and rich enough dataset to be able to generalize properly. In

1 DFKI - Robotic Innovation Center, Bremen, Germany.
{first name.last name}@dfki.de

2 Robotics Research Group, University of Bremen, Germany.

Fig. 1. The AUV Dagon used in our experiment.

such cases, learning from simulation can help improve the
model by providing an alternative for missing data.

In this work, we study the case of an autonomous under-
water vehicle (AUV) where many factors such as salinity or
density fluctuations, biofouling, or body damage can cause
a change of the robot’s model context. We aim to classify
the different contexts of an AUV model resulting from
disturbances in its dynamics. First, we generate a simulation
model of the AUV Dagon (Fig. 1) that is learned from real
data collected from experiments. We then induce several
faults into the simulated model and generate a sufficiently
rich dataset which contains different model contexts and
covers a large area of the model’s state space. We regard the
multi-context learning as a multi-class classification problem,
where each context of the robot model is assigned to a unique
label. Using the generated dataset, we build a gating network
that classifies the correct model context seen by the robot at
a certain time. We build the gating network using a long-
short-term-memory (LSTM); therefore, modeling the data as
a time series. We show that the LSTM network can achieve a
better performance when compared to standard classification
methods such as support vector machines (SVM), random
forests (RF), and multi-layer perceptrons (MLP).

A. Related Work

Multi-context learning has been recently a quite active
topic for robotic model learning, most frequently in the area
of inverse dynamics modeling for manipulator arms [2], [3].
The mixture of experts (ME) approach [4] is a frequently
used method for learning multi-context models, where the
data is clustered into smaller groups and subsequently a local
model (or an expert) is built for each cluster. An infinite mix-
ture of linear experts was used in [2] to capture the different
contexts of an inverse dynamic model for a humanoid arm
manipulating objects with different weights. However, since
the linear experts only model the system locally, this causes
the number of experts to increase quickly as the system
perceives new contexts. This method results in the number of

experts not representing the correct number of contexts, for
example around 60 experts were needed to represent only
two contexts in [2]. A mixture of Gaussian process (GP)
experts was used in [3] to model different contact models
for a humanoid manipulator arm. An SVM was used as
a gating network to select between the different contexts,
which achieved an accuracy comparable to a manually tuned
heuristic method described in the same paper. A multi-
context model of a wheeled mobile robot was learned using
an infinite mixture of Gaussian process experts in [5]. Here,
a Dirichlet process (DP) gating network was used instead,
which allows the classification of different contexts in an
unsupervised manner. One disadvantage of this method is
that clustering via the DP may not always predict the true
context, but can easily get confused depending on the density
distribution of the training data. For example, two batches
from the same context would be classified as two different
contexts if they have different densities. Another drawback
is that all training samples have to be used for a prediction.

While GPs are the state of the art methods for robotic
model learning, it is a well known fact that their com-
putational complexity scales cubically with the number of
training samples O(n3). This fact makes GPs unlikely to
benefit from having big datasets that cover larger regions of
the model’s state space. A recent study [6] shows that LSTM
networks with a training time complexity of only O(n),
can outperform GPs for learning the inverse dynamics of a
manipulator arm. The fact that LSTMs exploit the temporal
correlations in the data makes this method suitable for learn-
ing dynamic models. Furthermore, their good computational
efficiency and their scalability on big datasets is a major
advantage for long-term learning settings.

In the context of marine robotics, the application of ma-
chine learning is still relatively scarce. For instance, convolu-
tional neural networks were used for sonar image recognition
in [7], moreover, the classification of autonomous underwater
vehicle (AUVs) trajectories was studied in [8]. Yet model
learning for underwater vehicles is still understudied in this
field. Locally weighted projection regression was used to
identify the mismatch between the physics based model and
the data output from the vehicle’s navigation sensors in [9].
In [10], a nonlinear auto-regressive network with a gating
network based on a genetic algorithm was used to identify a
simulated model of an AUV with variable mass. In previous
work [11], [12] we showed that support vector regression
can be a good candidate for learning AUV dynamic models.

In this work, we build upon our previous findings, focusing
our efforts on finding a good candidate for a gating network
which can provide an accurate classification of different
model contexts while at the same time being able to scale
on big datasets.

II. PROBLEM STATEMENT

We start with stating the formulation of the dynamic model
of AUVs first. Next, we describe the functionality of the
gating network as a classifier for different model contexts,
followed by a description of the methods being evaluated.

A. The Dynamic Model
Following the notation of [13], the nonlinear 6-degrees-of-

freedom (DOF) equations of motion of an underwater vehicle
are generally described by

η̇ = J(η)ν , (1)

M ν̇ + C(ν)ν + d(ν) + g(η) = τ + ζ(η,ν, τ) . (2)

Eq. (1) represents the kinematics equation, where η =
[x y z φ θ ψ]T is the pose of the vehicle in a fixed
coordinate frame, and ν = [u v w p q r]T is the velocity
of the vehicle expressed in a body-attached frame. The
term J(η) ∈ R6×6 represents the nonlinear Euler angles
transformation matrix. The dynamic equations of motion
are represented in Eq. (2), where M is the total mass
(dry + added mass) of the submerged vehicle, and C(ν)
is the Coriolis and centripetal forces and moments. d(ν)
represents the hydrodynamic damping, and g(η) accounts
for the buoyancy and gravitational efforts. τ is a vector
denoting the actuators forces and moments, and ζ is a
term representing all unmodeled dynamics and sensor noise.
We follow the definition of [13] for all terms except for
the damping term d(ν), where we use the formulation of
McFarland and Whitcomb [14],

d(ν) =

(
6∑

i=1

|νi|Di

)
ν , (3)

where Di ∈ R6×6, i = 1, ..., 6 are six matrices representing
the fully coupled quadratic damping. The choice of this
damping model is based upon our findings in [11], where
we showed that the McFarland-Whitcomb model achieves
a decent performance amongst physics-based models. We
rewrite Eq. (2) as a forward model denoted by

ν̇ = F(η,ν, τ) , (4)

where F represents the dynamics function resulting from
rearranging Eq. (2).

We define a context (c) of the model as a unique set
of the hydrodynamic parameters underlying the function
Fc. In other words, any changes in the set of the model
parameters (mass, coriolis, damping, buoyancy, ...) will result
in a different model context. For practicality reasons, we
will constrain the set of possible contexts to a finite set
{Fc, c = 1, ..., n}. Accordingly, we will denote a dataset
sampled from a model context Fc as the vector formed by
the model’s states and control inputs, Dc = 〈ν̇,ν,η, τ 〉c.

B. The Gating Network
The goal of the gating network is to be able to infer from

an observation D = 〈ν̇,ν,η, τ 〉, the true underlying model
context currently in action. The gating network (Fig. 2) can
be seen as a decision layer that determines the active context.
We implement the gating network in this work as a multi-
class classifier taking the state and control input observations
as a feature inputs, denoted as Clf (ν̇,ν,η, τ).

We differentiate between two types of gating networks,
temporal and non-temporal. As their name infers, temporal

Context n
Context 2

Context 1

Gating
Network

Model

Fig. 2. The gating network classifier which acts as a decision layer on
which context to select.

learning algorithms can model the temporal relations in the
data if they exist, taking in data in the form of a time-series
of shape (n, l, f). Here, n is the number of samples, l is the
series length (or time-steps), and f is the number of features.
Non-temporal algorithms do not model any time dependency
in the data, and thus take a feature vector as input, of shape
(N , f), where in this case N = n× l.

C. Non-Temporal Learning

We use three standard classifiers as our baseline namely
SVM, MLP, and random forest (RF) classifier. We won’t
consider any method involving GPs in this study due to
their cubic time complexity, which makes such method
impractical to train on a datasets larger than 10K samples. In
the following, we describe briefly the non-temporal baseline
algorithms we use to classify the model contexts.

1) Support Vector Machine: SVMs are binary classifiers
that map the input vectors into a higher dimensional feature
space using a kernel transformation, and then fit a decision
hyperplane linearly onto this space [15]. For classifying
multiple classes with SVM, the problem is split into multiple
binary classification problems. In our implementation, we
distinguish between every pair of classes, known as the one-
versus-one (ovo) approach, to avoid class imbalance problem
that would come with the one-vs-all approach. As kernel, we
use the radial-basis-function (RBF). The hyperparameters to
be optimized for the SVM are given as (C, γ), where C is a
regularization parameter and γ is the kernel’s length scale.

2) Multi-layer Perceptron: The basic element of an MLP
is a single neuron, which is a linear weighted sum of several
inputs with a non-linear activation function at its output
[16]. Several neurons can be stacked to form one layer,
and thereafter several layers are connected to form an MLP.
MLPs are trained using the back-propagation method. To
perform classification tasks, MLPs minimize a cross-entropy
loss function, with a softmax activation at the last layer to
handle multi-class problems [16]. For our application, we
use a standard architecture with three hidden fully-connected
layers with a size of [256, 512, 128] respectively. Every layer
uses a ReLU [17] activation function, with and a dropout
[18] of 50% to reduce overfitting. The output layer uses a
softmax activation as mentioned earlier. The total number of
parameters used is 201,098.

3) Random Forest: RF is an ensemble method which
fits a set of decision trees classifiers by randomly sampling
from the training set with replacement. The decision of
the RF is computed by averaging the prediction of the

LSTM
 -128

LSTM
 - 256

ReLu
 - 512

ReLu
 - 128

dropo
ut 50

%

dropo
ut 50

%
Softm

ax

LSTM
 -16

LSTM
 - 32

ReLu
 - 256

dropo
ut 50

%
Softm

ax

Input

Input

LSTM

LightLSTM
Fig. 3. Architectures of LSTM networks. Top: standard LSTM network
with two LSTM layers, two Dense layers with dropouts and a softmax
output layer. Bot.: Light LSTM architecture with two small LSTM layers,
one Dense layer and a softmax output.

individual classifiers [19]. Additionally, RFs can naturally
handle multiple classes. We optimize two hyperparameters
for this method, namely the number of individual trees used
and the maximum depth of a each tree.

D. Temporal Learning with LSTM Networks

LSTM networks are recurrent neural networks used for
modeling long-term dependencies in time series. LSTMs
avoid the vanishing gradient problem that classical recurrent
networks suffer from, by adding special types of forgetting
and remembering gates [20]. LSTMs have a chain like
structure with a repeating module. The repeating module
consists of four networks (also called gates) namely, input
and output gates, a forget-gate and a state-update-gate. A
detailed explanation can be found in [20].

We implement two architectures of LSTM networks
Fig. (3) as follows. The first network has a bigger architec-
ture, with an LSTM input layer of 128 nodes, followed by
another hidden LSTM layer with 256 nodes, then followed
by two fully-connected (dense) layers with 512 and 128
nodes, respectively. Both dense layers have a dropout of
50% each to avoid overfitting. The output is a softmax layer,
and the total number of parameters is 662,531. We denote
the second network as "Light LSTM" due to its smaller
configuration, including two LSTM layers with 16 and 32
nodes respectively, one dense layer with 256 nodes and 50%
dropout, and a softmax output layer. The overall number of
parameters of light LSTM is 17,155.

III. EVALUATION AND RESULTS

First, we briefly describe the robotic platform used for
our experiment, and the data collection procedure. Next, we
describe the simulation model we fit using the collected
dataset, and the generation of the synthetic datasets. We
report afterwards, the training and model evaluation proce-
dures, and compare the testing results of each model.

A. The Robotic Platform

We use the AUV Dagon (Fig. 1) as a testing platform to
collect the data needed to fit the model described in Eq. (2).
Dagon is a hovering type AUV that can be actuated in five
DOFs (roll is passive). A detailed description of the vehicle
can be found in [21]. To reduce the dimensionality of the
problem, we stabilize Dagon in the pitch and heave DOFs,
and let it run freely in surge, sway and yaw DOFs. We actuate

TABLE I
DESCRIPTION OF DIFFERENT MODEL CONTEXTS

label context description
class 0 nominal model
class 1 thruster 1 damage
class 2 damping change - surge
class 3 thruster 1 broken
class 4 damping change - yaw
class 5 random damping change 1
class 6 random damping change 2
class 7 random damping change 3
class 8 random thrusters configuration 1
class 9 random thrusters configuration 2

the three lateral thrusters with a sinusoidal signal of varying
frequencies in order to cover as much range as possible of the
model’s state space. A more detailed description of the data
collection procedure can be found in [11]. Using this dataset
with a total of 2063 samples, we identify the parameters of
Eq. (4) by minimizing the sum of squared errors.

B. Synthetic Data Generation

We generate our datasets by running the resulting model
through an ordinary-differential-equation (ODE) solver. As
an input signal, we give the rotational velocity of each
thruster in the form of a sinusoidal signal with a period ran-
domly selected between 20 and 70 seconds. For each model
context, we run the simulation for 40K seconds, randomly
changing the value of the sine periods every 1000 seconds.
We sample the simulations with a frequency of 1 Hz resulting
in a dataset with 40K samples per context. The choice of
these values was made in order to have a large enough dataset
that covers as much area as possible of the model’s state
space. We assume the disturbances representing different
contexts are in the robot frame. By inducing disturbances
in the simulation model, we generate data for 10 different
model contexts described in Table I. Disturbances in classes
1 to 4 were manually selected, whereas for the rest a we
applied a random disturbance to the damping and thrusters
coefficients using a uniform distribution bounded to [0.5, 3].
We follow this approach to ensure having physically realistic
models that simulates random disturbances that might happen
in a real world scenario.

C. Training the Gating Networks

In this section, we describe the training procedure of
the different methods. Moreover, we study the effect of
incrementally adding more classes on the performance of
each classifier. From the generated dataset described in
Sec. III-B we construct three sets,

{
D3,D6,D10

}
, where

D3 contains classes 0 to 2, D6 contains classes 0 to 5, and
D10 contains all 10 classes.

We split the generated datasets into 3 consecutive (no
shuffle) subsets: training, validation, and testing. The training
and validation sets are used to run a grid-search to find
the best hyper parameters for the classifiers. The classifier
with the best validation accuracy is then evaluated on the
testing set. To keep the classes balanced, we use a stratified

TABLE II
CROSS-VALIDATION RESULTS SHOWING BEST VALIDATION

ACCURACIES WITH THE CORRESPONDING TRAINING ACCURACIES

Classifier dataset 3 classes 6 classes 10 classes

LSTM training 0.966 0.998 0.998
validation 0.946 0.977 0.973

Light LSTM training 0.979 0.981 0.995
validation 0.947 0.956 0.964

SVM training 0.854 0.844 0.847
validation 0.783 0.779 0.788

MLP training 0.784 0.751 0.688
validation 0.790 0.768 0.745

RF training 0.970 0.936 0.867
validation 0.578 0.553 0.504

split with a ratio of 60/20/20 % for training, validation
and testing respectively. We train the LSTM networks using
backpropagation-through-time method described in [20], and
run several passes over the whole training set (epochs). The
learning rate is reduced by a factor of 0.9 after 10 epochs
if no improvement in the validation loss is observed. The
training is stopped after 20 epochs with no improvement in
the validation loss or if the improvement is less than 10−4.
We run this process as a grid-search for different time-series
lengths. Fig. 4 reports the validation accuracy plotted against
the number of epochs for the two LSTM networks, where
the standard LSTM requires less epochs to converge than the
ligh LSTM architecture. Although the time per epoch for the
light LSTM is less than that of the standard LSTM, the total
time required by the light version is slightly higher.

In Fig. 5 we report the validation accuracies of both
LSTMs versus the length of the time-series. Both architec-
tures achieve an accuracy higher the 95% with a time-series
length of 80 and 100 samples.

We use the same mechanism to train the MLP network,
except we only optimize for the number of epochs since
the MLP is a non-temporal method which takes in data
in the form of a feature vector. For the SVM and RF,
we run a grid search over the hyperparameters described
in Sec. II-C.1 & II-C.3. Consequently, the hyperparameters
resulting in the best validation accuracy are selected for
each classifier. Table II reports the best validation accuracy
for each method. We report also the corresponding training
accuracies to determine if a classifier overfits the data. An
overfit can be clearly noticed with the RF classifier, where
the training accuracy is much higher than the validation
accuracy. Contrarily, all other methods show close values
of the training and validation accuracies.

Furthermore, we compare the time complexity of the
methods being evaluated. According to [20], an LSTM unit
is local in space and time, meaning that the time complexity
does not depend on the network size and the storage require-
ment is independent of the time-series length. These factors
render an LSTM to scale linearly with respect to the number
of training samples. On the other hand, the time complexity
of an MLP with fully connected layers, scales with the
number number of neurons and hidden layers. Note that the

0 20 40 60 80
epochs

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy
LSTM 3 classes
LSTM 6 classes
LSTM 10 classes

(a) Grid search vs. no. of epochs length for LSTM

0 20 40 60 80 100 120 140 160
epochs

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

light LSTM 3 classes
light LSTM 6 classes
light LSTM 10 classes

(b) Grid search vs. no. of epochs length for Light LSTM

Fig. 4. Validation accuracies with different epochs. A saturation in accuracy is observed after 60 epochs for the LSTM network, whereas the Light LSTM
required around 120 epochs.

20 40 60 80 100
time-series length

0.7

0.8

0.9

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

LSTM 3 classes
LSTM 6 classes
LSTM 10 classes

(a) Grid search vs. time-series length for LSTM

20 40 60 80 100
time-series length

0.7

0.8

0.9

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

Light LSTM 3 classes
Light LSTM 6 classes
Light LSTM 10 classes

(b) Grid search vs. time-series length for Light LSTM

Fig. 5. Validation accuracies LSTM with different series lengths. Results show a saturation in accuracy of the LSTM for a series length of 100 samples.
The Light LSTM shows similar results except with the 3 classes dataset.

LSTM and MLP networks were trained on a GPU operating
at 1 GHz, whereas the SVM and RF where trained on a 10-
core CPU operating at 3.3 GHz. To give a fair evaluation, we
only compare methods trained on the same kind of processor.
The processing times are depicted in in Fig. 6, where the
LSTM networks show much more computational efficiency
as compared to the MLP. For example in the 10 classes
dataset, the MLP required an average of 39 seconds per
epoch with 230 epochs to reach the best validation accuracy,
whereas the LSTM required only an average of 16 seconds
per epoch with 80 epochs for the validation accuracy to
saturate. On the other hand, the time complexity of RFs are
proportional to the number of trees in the forest, which in
this case is still more efficient than the SVM which scales
quadratically with the number of samples.

D. Test Results and Discussion

After selecting the classifiers with the best performances
on the validation set, we evaluate how well can each clas-
sifier generalize on an unseen testing dataset that was left
completely independent from the hyperparameter optimiza-
tion process. Moreover, we test the effect of noise on the
performance of the classifiers. For this purpose we train
the classifiers with the same datasets described, but this
time adding Gaussian noise similar to the natural noise
observed on the robot’s sensors. The comparison of testing
results is reported numerically in Table III and graphically
in Fig. 7. Both LSTM networks show a prediction accuracy
higher than 90% in all cases, whereas none of the other
baseline classifiers achieves more than 80% accuracy. With
an increasing number of classes and therefore increasing
number of samples, the LSTM networks maintain a con-
sistent performance. It can also be noticed that the light

50K 100K 150K 200k
number of training samples

0

2000

4000

6000

8000

10000

12000
tra

in
in

g
tim

e
in

 se
c

LSTM
Light LSTM
MLP
RF
SVM

Fig. 6. Comparison of computational times for different classifiers used.
Dot labels represent methods trained on GPU and triangle labels represent
methods trained on a CPU.

LSTM network performs even better than the larger LSTM
for the 3 classes case. This result is not surprising a large
network tends more to overfit and less generalize on small
training datasets. Moreover, the SVM shows a consistent
performance with increasing the number of classes, whereas
the performance of both the MLP and the RF degrades
with additional classes. A decrease of performance is usually
expected because the classification problem becomes more
challenging with more classes. Eventually, with more classes
come with more data, and if a classifier can take advantage
of that and obtain a better overall understanding of the data,
performance might increase. In addition, we analyse the
effect of noisy data on the performance of the methods being
tested. The LSTM networks show a high robustness against
noise with only a slight drop in the accuracy with the noisy
datasets. The RF shows also an invariance in the results when
evaluated with noisy data, although its overall performance
is the worst amongst the other methods. On the contrary,
the SVM and MLP classifiers show a significant drop in
performance with noisy data.

TABLE III
TEST ACCURACIES OF DIFFERENT CLASSIFIERS WITH THE EFFECT OF

ADDING NOISE

Classifier noise 3 classes 6 classes 10 classes

LSTM no noise 0.903 0.960 0.949
noise 0.900 0.950 0.939

Light LSTM no noise 0.950 0.960 0.958
noise 0.945 0.931 0.936

SVM no noise 0.792 0.777 0.781
noise 0.746 0.722 0.704

MLP no noise 0.784 0.751 0.688
noise 0.729 0.687 0.634

RF no noise 0.612 0.561 0.500
noise 0.606 0.552 0.488

3classes 6classes 10classes

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

LSTM
LSTM - noise
Light LSTM
Light LSTM - noise
MLP
MLP - noise
RF
RF - noise
SVM
SVM - noise

Fig. 7. Testing accuracies of the different classifiers. Dot labels represent
noiseless data and triangle labels represent noisy data.

TABLE IV
TEST ACCURACIES AND TRAINING TIMES OF LSTMS WITH 100

CLASSES

Classifier noise Test Accuracy Training time

LSTM no noise 0.994 12865 sec
noise 0.992 12798 sec

Light LSTM no noise 0.988 14080 sec
noise 0.985 14400 sec

Finally, we present an extreme case where we generate 90
more classes on top of the original D10 dataset, resulting in
a dataset of 100 classes with a total of 4 million samples.
The additional classes were generated by inducing random
disturbances onto the damping and thrusters parameters, in a
similar fashion as classes 5 to 9. We evaluate only the LSTM
networks on this dataset, since training the other algorithms
would have taken too much processing resources. Table IV
shows the test results, where both networks maintain a very
high classification accuracy (98-99%). These results show
clearly the capability of LSTM networks to generalize with
very high accuracy on datasets that are considered extremely
large in robotic applications.

IV. CONCLUSIONS
In this work, we demonstrated the capability of LSTM

networks to classify accurately different contexts of an AUV
model. The LSTM showed high robustness when dealing
with increasing number of classes as well as the ability to
generalize on noisy data, outperforming all other baseline
classifiers tested in this paper. Another advantage of LSTMs
is their scalability on big datasets (up to 4M samples). As
future work, we aim to perform transfer learning with an
LSTM network trained with simulation onto real data.

ACKNOWLEDGMENT

This work is part of the Europa-Explorer project (grant
No. 50NA1704) funded by the German Federal Ministry of
Economics and Technology (BMWi).

REFERENCES

[1] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey,” Cognitive processing, vol. 12, no. 4, pp. 319–340, 2011.

[2] L. Jamone, B. Damas, and J. Santos-Victor, “Incremental learning
of context-dependent dynamic internal models for robot control,” in
Intelligent Control (ISIC), 2014 IEEE International Symposium on.
IEEE, 2014, pp. 1336–1341.

[3] R. Calandra, S. Ivaldi, M. P. Deisenroth, E. Rueckert, and J. Peters,
“Learning inverse dynamics models with contacts,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), May
2015, pp. 3186–3191.

[4] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture
of experts,” IEEE transactions on neural networks and learning
systems, vol. 23, no. 8, pp. 1177–1193, 2012.

[5] C. D. McKinnon and A. P. Schoellig, “Learning multimodal models for
robot dynamics online with a mixture of gaussian process experts,” in
Robotics and Automation (ICRA), 2017 IEEE International Conference
on. IEEE, 2017, pp. 322–328.

[6] E. Rueckert, M. Nakatenus, S. Tosatto, and J. Peters, “Learning
inverse dynamics models in o(n) time with lstm networks,”
in Proceedings of the International Conference on Humanoid
Robots (HUMANOIDS), 2017. [Online]. Available: https://ai-
lab.science/wp/Humanoids2017Rueckert.pdf, Article File

[7] M. Valdenegro-Toro, “Best practices in convolutional networks
for forward-looking sonar image recognition,” in OCEANS 2017-
Aberdeen. IEEE, 2017, pp. 1–9.

[8] M. D. L. Alvarez, H. Hastie, and D. Lane, “Navigation-based learning
for survey trajectory classification in autonomous underwater vehi-
cles,” in 2017 IEEE 27th International Workshop on Machine Learning
for Signal Processing (MLSP), Sept 2017, pp. 1–6.

[9] G. Fagogenis, D. Flynn, and D. M. Lane, “Improving underwater
vehicle navigation state estimation using locally weighted projection
regression,” in Robotics and Automation (ICRA), 2014 IEEE Interna-
tional Conference on. IEEE, 2014, pp. 6549–6554.

[10] M. Shafiei and T. Binazadeh, “Application of neural network and
genetic algorithm in identification of a model of a variable mass
underwater vehicle,” Ocean Engineering, vol. 96, pp. 173–180, 2015.

[11] B. Wehbe and M. M. Krell, “Learning coupled dynamic models of
underwater vehicles using support vector regression,” in OCEANS
2017 - Aberdeen, June 2017, pp. 1–7.

[12] B. Wehbe, A. Fabisch, and M. M. Krell, “Online model identifi-
cation for underwater vehicles through incremental support vector
regression,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sept 2017, pp. 4173–4180.

[13] T. I. Fossen, Marine control systems: guidance, navigation and control
of ships, rigs and underwater vehicles, 2002.

[14] C. J. McFarland and L. L. Whitcomb, “Comparative experimental
evaluation of a new adaptive identifier for underwater vehicles,” in
ICRA. IEEE, 2013, pp. 4614–4620.

[15] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, Sep 1995. [Online]. Available:
https://doi.org/10.1007/BF00994018

[16] E. Alpaydin, Introduction to machine learning. MIT press, 2014.
[17] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural

networks,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, 2011, pp. 315–323.

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[19] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] M. Hildebrandt and J. Hilljegerdes, “Design of a versatile auv for
high precision visual mapping and algorithm evaluation,” in 2010
IEEE/OES Autonomous Underwater Vehicles, Sept 2010, pp. 1–6.

