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Abstract— Detection of human cognitive states using biosig-
nals such as the electroencephalogram (EEG) is gaining rele-
vance in different application areas, e.g., teleoperation, human-
robot collaboration, and rehabilitation. Especially, the P300,
which is evoked as an event-related potential (ERP), when
humans perceive task-relevant infrequent events among task-
irrelevant frequent events, is widely used in brain-computer
interfaces (BCIs). P300 detection has been used as an indicator
that a human perceives task-relevant events or detects the
occurrence of task-relevant or important events. In this paper,
we focus on not only perceived task-relevant events but also
not-perceived task-relevant events (i.e., missed events). In fact,
a human can miss task-relevant events for different reasons,
e.g., reduced attention level or increased workload level during
parallel task-processing situations among others. Moreover,
a human can also intentionally ignore task-relevant events
to manage several simultaneous tasks. However, such missed
events do not often occur in real-world applications. In this
paper, we propose a transfer approach to handle insufficient
number of events for training a classifier. For example, task-
irrelevant infrequent events are used for training of classifier to
detect missed task-relevant events. We evaluated our approach
in different settings of training and testing a classifier with and
without classifier transfer.

I. INTRODUCTION

Brain-computer interface (BCI) applications [1], [2] are
making use of the electroencephalogram (EEG) to control
PC programs, devices or to communicate [3], [4], [5], [6].
Either changes in the time domain or frequency domain or
a combination of both are used. In our study, changes in
the time domain, i.e., event-related potentials (ERPs) were
investigated. Different types of ERPs, i.e., EEG correlates
of different cognitive processes (e.g., attention, workload,
motion planing, recognition of errors, etc.) have been used
in various application areas, e.g., rehabilitation, robotics,
gaming areas, etc. [7], [8], [9], [10].

While in some BCI applications there might not necessar-
ily be a natural link between observed changes in the EEG
and control commands since these changes are purposely
evoked, e.g., by thinking of a hand movement to guide
a cursor to the right or left, some BCI applications were
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developed to detect human cognitive states and to make use
of them without attentional control of the user. For example,
in embedded brain reading (eBR) [11], detected ERPs are not
explicitly used for system control. Instead, human intention
and human implicit feedback are used for optimizing human-
robot(machine) interactions, e.g., optimization of system
behavior, of behavior strategy of a robot, of an interface
between human and machine, etc. [12], [13]. Changes in
cognitive states that are detected within eBR applications
are often accompanied by specific ERPs.

The most widespread ERP used for BCI applications is
the P300, which is elicited when recognizing task-relevant
infrequent events among task-irrelevant frequent events. Such
task schema is called an oddball discrimination task [14].
P300 is a well-known ERP and has been investigated in
different modes (auditory/visual) and under different task
conditions (single task/dual task) in numerous studies (see
for review [15]). In classical P300-based BCI applications,
task-relevant events are detected to decode the user’s brain
signal for explicit control of a PC or device [5], [4]. For
example, in the classical BCI-speller paradigm, a matrix is
consisting of various characters that are aligned in columns
and rows. These columns and rows are flashed in random
order. When the user explicitly selects one specific character
in mind and focuses attention to the selected character,
the chosen character is then a task-relevant event (target)
among other task-irrelevant characters (standards). This task-
relevant event (target) elicits a P300 when the column or row
containing this character flashes up. The elicited P300 can
be detected in the EEG using machine learning technique.

In our previous studies and applications, we used the
occurrence of P300 to estimate cognitive state changes to
optimize interaction, i.e., the interface between human and
machine to be better suited for the current cognitive state
(e.g., current levels of workload) of the user. For this purpose
the P300 must be detected online and in single-trial (see
for discussion [11]). When the user’s workload is increased
and his/her attention’s level is reduced, it can occur that
the user does not recognize task-relevant events (targets).
Such reduction of the user’s attention level can be caused
by fatigue or excessive demands due to multi-tasking (e.g.,
control of several robots and several task managements).
On the other hand, ignoring task-relevant events (targets)
can be intended by the user, i.e., it can be a strategy to
manage several simultaneous tasks. In any case, reduction
of cognitive resources, attentional deficits or other forms
of distraction will diminish P300 expression or will even
result in absence of P300 [16], [17], [18], [19]. To detect



such events, i.e., reduced or absent P300 (missed targets),
is an important information to adapt an interface, e.g. to
repeat relevant information or to increase or decrease the
time interval between two targets such that the interacting
person is neither bored nor overstrained.

Given the above mentioned example, in real-world appli-
cations, it can be especially relevant to detect missed targets.
However, missed targets do not often occur compared to
correctly perceiving task-relevant events or irrelevant stimuli.
Hence, it is not always easy to collect a sufficient amount of
training data containing missed targets within a reasonable
time. Here, we assume that missed targets can be more
similar to task-irrelevant events (standards) compared to
task-relevant events (targets). In general, collection of train-
ing data containing task-irrelevant events (standards) is less
time-consuming in real-world applications compared to data
collection of missed targets. Hence, we aimed to investigate
whether a classifier trained on task-irrelevant frequent events
(standards) with task-relevant events (targets) can be used
to classify missed targets. Further, we investigate whether
classification can be improved when EEG data evoked by
task-irrelevant infrequent events (deviants) is used as training
data instead of missed targets or standards. The idea behind
this is the assumption that target events might not only
be missed completely but miss-interpreted as task-irrelevant
events. Hence, missed target events might evoke ERP activity
similar to task-irrelevant events (deviants). In this paper,
different settings of classifier transfer were evaluated on a
dataset containing task-irrelevant frequent events (standards),
task-irrelevant infrequent events (deviants), and task-relevant
infrequent events (targets). The dataset was collected from
13 subjects who performed multi-tasking, i.e., performed an
oddball task and played a labyrinth game.

II. METHODS
A. Data acquisition and experimental setup

Thirteen subjects (2 female, 11 male; age between 27
and 39 years; right- handed; normal or corrected-to-normal
vision) participated in the presented study, which was con-
ducted in accordance with the Declaration of Helsinki and
approved by the ethics committee of the University of
Bremen. Written informed consent was obtained from all
participants that volunteered to perform the experiments.
Written informed consent for publication of identifying in-
formation/images was also obtained from all participants.

EEGs were recorded with 62 active electrodes (extended
10-20 actiCap system) and amplified by two 32-channel
BrainAmp DC amplifiers [Brain Products GmbH, Munich,
Germany]. Electrodes were referenced to electrode FCz.
Impedance was kept below 5 kΩ. Sampling rate was set to
2500 Hz and data was band-pass filtered between 0.1 Hz to
1000 Hz.

Fig. 1 shows the experimental setup. Subjects performed
the oddball task and played the labyrinth game at the
same time. Three stimulus types were displayed to subjects:
task-irrelevant frequent stimuli (standards, N=720), task-
irrelevant infrequent stimuli (deviants, N=60), and task-
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Fig. 1. Experimental setup. The subject who is shown in this figure has
given written informed consent to publish this image.

relevant infrequent stimuli (targets, N=60). Each stimulus
was displayed for 100 ms on a monitor that was placed
directly behind the labyrinth game. Targets were randomly
mixed among standards and deviants with a ratio of 1:12:1
and displayed with an Inter-Stimulus Interval (ISI) of 900
and 1100 ms. Standards (white-colored words, e.g., speed 17
kn) provided no task-relevant information. Deviants (orange-
colored word press SOON) contained no task-relevant infor-
mation, but were infrequently displayed to subjects. Targets
(red-colored word PRESS) provided task-relevant informa-
tion and only in this case the subject was instructed to
press a buzzer which was located approximately 30 cm
away from the left side corner of the game board. More
detailed information about experimental scenario and task
descriptions is given in our previous study [20].

B. Preprocessing and classification

One dataset was collected per subject within two sessions.
We obtained 13 datasets (1×13 subjects) in total. Segments
containing artifacts were rejected semi-automatically (ampli-
tude > 100 and <−100 µV, gradient > 75µV). We merged
13 datasets across all subjects for our evaluation, since the
amount of artifact-free data per subject was very different
and the amount of training examples was not sufficient for
training a classifier for some subjects, when using only
artifact free data as it was required for our former study
[20]. In this way, we obtained sufficient training and testing
instances for classification. Further, this procedure reduces
subject-specific effects on classification performance. After
merging all datasets, we obtained one dataset.

We segmented the continuous EEG signal into
epochs from 0 to 1 s after each stimulus type
(standard/deviant/target). Here, we labeled only target
stimuli as target class for classifier, when subjects responded
on target stimuli. Otherwise, we labeled target stimuli as
missed targets. As stated above, we used only artifacts-
free trials for our evaluation. After artifacts-rejection, we
obtained 6226 standards, 524 deviants, 360 targets, and 42
missed targets. All epochs were normalized to zero mean
for each channel, decimated to 25 Hz, and bandpass filtered
between 0.1 and 4 Hz. The low-pass filter was used to
assure that the classifier could only make use of data in the



frequency range of mainly ERP activity. The xDAWN [21]
was used as a spatial filter to enhance the signal-to-signal
plus noise ratio. By applying the xDAWN algorithm, 62
physical channels were reduced to 8 pseudo channels.
We used data points in the time domain as features. We
extracted features from 0.4 to 0.8 s and obtained 88 features
(8 channels × 11 data points = 88). The extracted features
were normalized over all trials and used to train a classifier.

We used a linear support vector machine (SVM) [22] to
classify different types of class pairs: standards vs. deviants,
standards vs. targets, targets vs. deviants, targets vs. missed
targets, deviants vs. missed targets. Under classifier transfer
condition, a classifier was trained on one class pair and
tested on another class pair. For parameter optimization of
the SVM, the cost parameter of the SVM (i.e., regularization
constant [23]) was optimized with a stratified five-fold cross
validation using a grid search among the predetermined
values [100, 10−1, ... , 10−6]. As performance metric, we
used balanced accuracy (bACC), i.e., an arithmetic mean of
true positive rate (TRP) and true negative rate (TNR) [(TPR +
TNR)/2]), where the class of detected ERP refers to positive
class (details for bACC, see [24]).

We designed different settings of classifier transfer. Here,
different types of class pairs were used for training and
testing a classifier (see Tab. I). We detected three ERP
correlates of targets, missed targets, and deviants. For target
detection (test case), we used three kinds of class pairs as
test data: (a) standards and targets, (b) missed targets and
targets, and (c) deviants and targets. For detection of missed
targets (test case), we used two kinds of class pairs as test
data: (a) targets and missed targets and (b) deviants and
missed targets. Finally, three kinds of class pairs were used
as test data for deviant detection (test case): (a) standards and
deviants, (b) missed targets and deviants and (c) targets and
deviants. Different combinations of class pairs were used to
build training data for detection of targets, missed targets, and
deviants. Note that 10×10 cross validation was performed for
evaluation of none-transfer cases (i.e., the same class was
used for training and testing).

III. RESULTS

Table I and Figure 2 show classification performance
detection of detection of targets, missed targets, and deviants.

A. Target detection

Table I shows classification performance for target detec-
tion in 11 transfer cases and one case of no transfer (base-
line). Three different settings of test data were constructed
for target detection: standards and targets; missed targets and
targets; deviants and targets. For each setting of test data, we
set a baseline (bl): the same class pair was used for training
and testing a classifier, i.e., no transfer case. As expected, the
best performance of target detection was achieved in case of
baseline, e.g., a classifier which was trained on standards and
targets was tested on data containing standards and targets
(see bl in Tab. I). An overview of results on different settings
of training data and test data is illustrated in Figure 2.

TABLE I
PERFORMANCE FOR DIFFERENT TRANSFER CASES (ST: STANDARDS, T:

TARGETS, D: DEVIANTS, MT: MISSED TARGETS, BL: BASELINE)

transfer training test detected classification
case data data ERP performance

detection of target (t)
1 (bl) st, t st, t t 0.96
2 mt, t st, t t 0.94
3 d, t st, t t 0.92
4 st, d st, t t 0.71
5 (bl) mt, t mt, t t 0.91
6 st, t mt, t t 0.90
7 d, t mt, t t 0.85
8 mt, d mt, t t 0.73
9 st, d mt, t t 0.67
10 (bl) d, t d, t t 0.86
11 st, t d, t t 0.79
12 mt, t d, t t 0.79

detection of missed target (mt)
1 (bl) mt, t t, mt mt 0.85
2 st, t t, mt mt 0.84
3 mt, d t, mt mt 0.80
4 d, t t, mt mt 0.75
5 st, d t, mt mt 0.64
6 (bl) mt, d d, mt mt 0.82
7 mt, t d, mt mt 0.80
8 st, t d, mt mt 0.61

detection of deviant (d)
1 (bl) st, d st, d d 0.62
2 mt, d st, d d 0.64
3 st, t st, d d 0.66
4 (bl) mt, d mt, d d 0.71
5 mt, t mt, d d 0.61
6 st, t mt, d d 0.60
7 (bl) d, t t, d d 0.66

a) Test data: standards and targets: We used four train-
ing data settings for evaluation on data containing standards
and targets (transfer case 1, 2, 3, 4, see Tab. I). Target
detection performance was not substantially reduced when
missed targets (instead of standards) were used for training
a classifier (transfer case 1 vs. 2: 0.96 vs. 0.94 bACC). A
high classification performance was still achieved when we
used deviants (instead of standards) for training a classifier
(transfer case 3: 0.92 bACC). However, the classification
performance was reduced when using deviants (instead of
targets) as training examples (transfer case 4: 0.71 bACC).

b) Test data: missed targets and targets: We did not use
standards as test data for target detection. Instead, missed
targets were used as test data. Again, we used different
training data settings for evaluation on data containing
standards and targets (transfer case 5, 6, 7, 8, 9, see Tab.
I). The classification performance was slightly reduced in
general, when we used missed targets (instead of standards)
as test data for target detection. However, the classification
performance was still high, when missed targets or standards
were used as training examples (transfer case 5, and 6: 0.91
and 0.90 bACC).

c) Test data: deviants and targets: The classification
performance was reduced when we used deviants as test data
irrespective of which training data setting was used (transfer
case: 10, 11, 12, see Tab. I). As expected, the usage of the
same data for training and testing led to the best performance
(transfer case 10: 0.86 bACC).



B. Detection of missed targets

Table I shows classification performance for the detection
of missed targets. Here, we evaluated 7 transfer cases and
one case of no transfer (bl). Two settings of test data were
constructed for the detection of missed targets: targets and
missed targets and deviants and missed targets. We used
different settings of training data for both settings of test
data. Again, we used no transfer case, i.e., same class pair
was used for training and testing a classifier as baseline (see
bl in Tab. I). An overview of results on different settings of
training data and test data is illustrated in Figure 2.

a) Test data: targets and missed targets: In the first
setting of test data, targets and missed targets were used for
evaluation. As expected, we obtained the best performance
in no transfer case, i.e., missed targets and targets were used
for training and testing. An interesting finding is that a high
performance was achieved although standards were used as
test data for the detection of missed targets (transfer case
1 vs. 2: 0.85 vs. 0.84). The classification performance was
reduced when using deviants as training example (transfer
case 4 and 5), but the performance was not reduced when
training data contained missed target (transfer case 3).

b) Test data: deviants and missed targets: In the second
setting of test data, we used deviants (instead of targets) as
test data. Here, we still obtained a high performance as long
as missed targets were used as training example (transfer
case 6 and 7).

C. Deviant detection

Table I shows classification performance of deviant detec-
tion for 6 transfer cases and one case of no transfer (bl).
Three different settings of test data were constructed for
target detection: standards and deviants; missed targets and
deviants; targets and deviants. We used different settings of
training data for both settings of test data. Again, we used no
transfer case, i.e., the same class pair was used for training
and testing a classifier as baseline (see bl in Tab. I). An
overview of results on different settings of training data and
test data is illustrated in Figure 2.

a) Test data: standards and deviants: Deviant detection
performance was lower compared to detection of targets and
missed targets in general.

b) Test data: missed targets and deviants: When using
missed targets for training and testing a classifier, the clas-
sification performance was higher compared to the use of
standards as training and test data.

c) Test data: targets and deviants: The use of deviants
and targets as training and test data led to the same classi-
fication performance when using standards and deviants for
training and testing a classifier.

IV. DISCUSSION AND CONCLUSION

In this study, we could show that it is possible to use
a classifier trained on standards and targets to distinguish
between missed targets and targets. For this transfer case, we
obtained a high classification performance for the detection
of missed targets (0.84 bACC), which was not essentially
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Fig. 2. Classification performance in single-trial detection of targets, missed
targets, and deviants (st: standards, t: targets, d: deviants, mt: missed targets).

different from the case of no transfer, i.e., missed targets and
targets were used for both training and testing a classifier
(detection of missed targets: 0.85 bACC). These findings
support our assumption that the EEG pattern evoked by
missed targets is similar to the pattern evoked by standards.
Furthermore, such transfer was successful not only for the
detection of missed targets but also for target detection
(0.90 bACC). Moreover a reversed transfer case, i.e., the
use of a classifier trained on missed targets and targets
for distinguishing between standards and targets, was also
successful for target detection (0.94 bACC). These results
also support our assumption. Finally, the obtained results
are relevant for applications, since it is not always easy to
collect a sufficient amount of missed targets in real-world
applications within a reasonable time.

The use of deviants as training examples was less success-
ful for the detection of missed targets (0.75 bACC) compared
to the use of standards as training examples (0.84 bACC).
This finding indicates that the use of standards as training
examples is more effective for detection of missed targets.
Additionally, this finding suggests that in our experimental
setting, subjects did likely miss target events, since missed
target events were more similar to standards than to deviants.
Correspondingly, we obtained a high performance when
using deviants as test examples for detection of missed
targets irrespective of whether target or deviant was used as
training examples (deviants used for training: 0.82 bACC;
targets used for training: 0.80). These results suggest that
under our experimental setup it is possible to distinguish
between EEG activity evoked by missed targets and deviants.
In future work, it would be interesting to evaluate the same
transfer cases when subjects have to actively decide not
to respond to target events due to task load. Under such
a condition it might be possible that EEG activity evoked
by missed events (consciously not responded events) might



be more similar to EEG activity evoked by task-irrelevant
infrequent events (deviants).

In summary, we showed that missed task-relevant events
(missed targets) can successfully be detected applying classi-
fier transfer. Classification performance was close to baseline
condition when an appropriate transfer case was chosen. The
dependency of appropriateness of a specific transfer case
for different experimental conditions (missing target events
versus ignoring target events) must still be investigated in
future work.
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[19] H. Wöhrle and E. A. Kirchner, “Online classifier adaptation for the
detection of P300 target recognition processes in a complex teleopera-
tion scenario,” in Physiological Computing Systems, ser. Lecture Notes
in Computer Science, H. P. da Silva, A. Holzinger, S. Fairclough, and
D. Majoe, Eds. Springer Berlin Heidelberg, 2014, pp. 105–118.

[20] E. A. Kirchner and S. K. Kim, “Multi-tasking and choice of training
data influencing parietal ERP expression and single-trial detection
- relevance for neuroscience and clinical applications,” Frontiers in
Neuroscience, vol. 12: 188, March 2018.

[21] B. Rivet, A. Souloumiac, V. Attina, and G. Gibert, “xDAWN algo-
rithm to enhance evoked potentials: Application to brain-computer
interface,” IEEE trans. Biomed. Eng., vol. 56, no. 8, pp. 2035–2043,
2009.

[22] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans Intell. Sys. Technol. (TIST), vol. 2, no. 3, pp.
27:1–27:27, may 2011.

[23] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, “New
support vector algorithms,” Neural computation, vol. 12, no. 5, pp.
1207–1245, 2000.

[24] S. Straube and M. M. Krell, “How to evaluate an agent’s behaviour
to infrequent events? – reliable performance estimation insensitive to
class distribution,” Frontiers in Computational Neuroscience, vol. 8,
no. 43, 2014.


