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1 University Center SENAI CIMATEC, National Service of Industrial Learning–SENAI, Salvador, Bahia,

Brazil, 2 Health Institute of Technologies (CIMATEC ITS), National Service of Industrial Learning–SENAI,

Salvador, Bahia, Brazil, 3 Research Centre for Artificial Intelligence, DFKI, Bremen, Germany

☯ These authors contributed equally to this work.

‡ These authors also contributed equally to this work.

* brunam@fieb.org.br

Abstract

Dengue, chikungunya and Zika are arboviruses transmitted by mosquitos of the genus

Aedes and have caused several outbreaks in world over the past ten years. Morphological

identification of mosquitos is currently restricted due to the small number of adequately

trained professionals. We implemented a computational model based on a convolutional

neural network (CNN) to extract features from mosquito images to identify adult mosquitoes

from the species Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. To train the

CNN to perform automatic morphological classification of mosquitoes, we used a dataset

that included 4,056 mosquito images. Three neural networks, including LeNet, AlexNet and

GoogleNet, were used. During the validation phase, the accuracy of the mosquito classifica-

tion was 57.5% using LeNet, 74.7% using AlexNet and 83.9% using GoogleNet. During the

testing phase, the best result (76.2%) was obtained using GoogleNet; results of 52.4% and

51.2% were obtained using LeNet and AlexNet, respectively. Significantly, accuracies of

100% and 90% were achieved for the classification of Aedes and Culex, respectively. A

classification accuracy of 82% was achieved for Aedes females. Our results provide infor-

mation that is fundamental for the automatic morphological classification of adult mosquito

species in field. The use of CNN’s is an important method for autonomous identification and

is a valuable and accessible resource for health workers and taxonomists for the identifica-

tion of some insects that can transmit infectious agents to humans.

Introduction

Arthropod-borne viruses are responsible for more than 100 of the diseases that comprise the

estimated global burden of communicable human diseases[1]. Vector-borne diseases cause
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more than one billion infections and more than one million deaths in humans every year[2].

Dengue, chikungunya and Zika are the most common arboviruses and have caused several

major epidemics in France Polynesia and Latin America during the past 10 years[3–6]. These

three viral diseases are among the greatest public health challenges in the world[7]. Entomol-

ogy research is considered to be a priority by the World Health Organization to develop tools

that can be applied to reduce incidence and mortality and prevent epidemics caused by vector-

borne diseases worldwide[2].

Aedes aegypti and Aedes albopictus have received worldwide attention since both species are

efficient vectors for the transmission of human arboviral diseases, such as Zika, dengue, chi-

kungunya, and yellow fever[3,8,9]. Additionally, controversial studies have also indicated that

the genus Culex could be a possible vector of the Zika virus[10–12]. Ae. aegypti, Ae. albopictus
and C. quinquefasciatus are very common domiciliary mosquito vectors that are present in

almost all urban areas in Brazil[7]. Ae. aegypti, Ae. Albopictus are, among all Aedes species, the

ones that circulate in endemic areas. Furthermore, Aedes mosquitoes have been demonstrated

to be capable of transmitting Zika and other viruses in many tropical areas in the Americas,

Africa, and Asia[13].

Entomological characterization is fundamental for acquiring information about mosquito

behaviour. In general, the current procedure used to identify the species of an insect requires

an individual visual examination of the insect, which is time consuming and requires several

years of experience[14,15]. While the general interest in documenting the diversity of insect

species has grown exponentially over the years, the number of taxonomists and other profes-

sionals trained in species identification has steadily declined[16–18]. Important factors that

can impede the correct identification of mosquito species include the method of preservation

used during the transport of samples and the use of the appropriate equipment to capture mos-

quitoes without damaging them[19]. Due to that, developing a tool to allow the classification

of adult mosquitoes in the field, considering the environmental issues, would be very impor-

tant[20].

Another possibility for species identification is the use of molecular techniques that have

been validated by various studies, such DNA barcoding, environmental DNA testing and real-

time PCR (qPCR)[21–23]. However, molecular identification of mosquitoes is a slow and

expensive process for most laboratories.

Recently, new models that facilitate the automatic classification of mosquitoes have been

developed. Some studies have attempted to classify mosquito species based on the frequency

and harmonics of their wingbeats[24,25]. Techniques based on image feature analysis have

also been used as a classification method [26–29]. In addition, Machine Learning and Deep

Learning techniques have been used for mosquito classification[30–32]. Most of these studies,

however, aimed to develop methods and tools that requires a laboratory environment. The

development of a tool to support taxonomist and health workers in the field would be very

helpful in accelerating the knowledge of which mosquito is circulating in the community and

supporting health authorities in controlling harmful mosquitoes, once it will reduce the lag

between the time the trap is placed and the taxonomic inspection occurs[33].

Wingbeat vibration techniques have been reported to demonstrate a high accuracy in the

classification of mosquitoes[32]. However, the sensors used have a limited amount of memory

and are unable to store the entire data stream for later processing. Indeed, the sensors must

process the data stream in real time to identify events of interest and filter out background

noise[34].

Within the field of image feature analysis, studies have been conducted to identify mosqui-

toes according to their life cycle stage (egg, larval phase, pupal stage and adult). Some studies

have attempted to automatize the process of egg counting to assess the level of fecundity and
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thereby estimate the mosquito population size and conduct morphometric analysis[35–38].

Studies conducted to classify mosquito-based image in adult phase still focus on parts of the

body of the mosquito. The outlines of body parts, such as wings, are stable and diverse but

have not been frequently used in conventional taxonomy due to difficulties with lexical

descriptions[15]. A classification method capable of analysing the features of the whole body is

essential, since in the field there is no equipment that allow the health worker to separate parts

of the body and analyse it.

Deep learning methods are essential for the processes underlying general object recognition

[39]. In 2012, during the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),

which was the largest contest conducted in the object recognition field, a breakthrough in deep

learning occurred when a convolutional network won the competition by reducing the state-

of-the-art top-5 error rate from 26.1% to 15.3%[40]. Convolutional neural networks (CNN)

constitute a class of models that utilize prior knowledge to compensate for data that is not

available[39]. A CNN method has been developed to classify Aedes mosquito larva using a

small dataset; when 200 epochs were used, the network achieved 96.8% accuracy[31].

It should be emphasized that correct identification of adult Aedes mosquito species is essen-

tial for both the recognition of the vectors involved in disease transmission and the develop-

ment of fast and efficient control strategies[15]. In this study, we compared three CNN’s,

LeNet, AlexNet and GoogLeNet to evaluate the potential application of a Deep Learning tech-

nique to classify adult mosquito species in the field. The objective is to develop an epidemio-

logical tool to be used in the real-world environment to facilitate the work of entomologists

and health workers in the classification of adult mosquitoes of the species Ae. aegypti, Ae. albo-
pictus and C. quinquefasciatus. As showed, this tool would be very useful to reduce the time, to

allow its use by less experienced expert and to capture preserved features of the body character-

istics of the mosquito. Another objective of this work is to initiate a preliminary scientific

study that would allow the community be part of the control of vector-borne diseases.

Considering that the selection of algorithm training parameters is essential to improve the

accuracy and reliability of the method, this study also applied the statistical analysis prior to

the selection to determine the parameters set to be used to classify the mosquitoes.

Materials and methods

Ethics statement

No permits were required for sampling for this study. The field sampling did not involve any

endangered or protected species.

Sample collection

The mosquito samples used for image capture were obtained from the Parasitology Laboratory

of the Federal University of Bahia–UFBA (Salvador, Brazil) and were also collected in the field.

The samples obtained from UFBA were Ae. aegypti mosquitos (10 females and 6 males). The

capture of adult insects in the field resulted in the collection of 73 specimens of Ae. aegypti, 94

specimens of Ae. albopictus and 110 specimens of C. quinquefasciatus.
The field sampling took place between September and October 2017 in the city of Salvador

in two collection areas (Bahia, Brazil). CDC light traps and suction tubes were used for the col-

lection of adult insects.

The captured specimens were euthanized with ethyl acetate and stored in entomological

collection tubes until identification was performed by an entomologist.
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Construction of the dataset: Structure, acquisition and distribution

A robust, correctly structured dataset was created to allow the differentiation of the Ae. aegypti,
Ae. albopictus and C. quinquefasciatus species. In addition, differentiation of males and females

was conducted as described in a previous study[41]. A model was developed to classify the

mosquitoes into six different classes according to gender and species. At this stage, our work

does not intend to classify other species and non-mosquitoes images.

The images in the dataset were extracted from the ImageNet platform and were also pho-

tographed with various cameras, including a Leica DMC2900 (Leica Microsystems, Heer-

brugg, Switzerland) coupled to a stereoscopic Leica M205C at the Oswaldo Cruz Institute of

Entomology at FIOCRUZ (Rio de Janeiro–Brazil), a Canon Power Shot D30 (Canon,

Tokyo, Japan) coupled to a Wild M3C stereomicroscope (Leica Microsystems, Heerbrugg,

Switzerland) at SENAI CIMATEC (Salvador–Brazil) and Samsung J5 (Samsung, Seoul,

South Korea) and Apple iPhone 7 (Apple, Cupertino, California, USA) mobile phone cam-

eras. The images were collected at different resolutions and levels of quality to develop a

classification method that utilized a wide range of images to prevent possible overfitting of

the trained model. An average of 10 photographs of each specimen were taken at different

angles and proximities.

Once the dataset was structured and the images acquired, the number of images to be used

for training, validating and testing the model was determined. Fig 1 summarizes how the data-

set was used in the computational model and shows the three different phases of the develop-

ment of the model: training (phase 1), validation (phase 2) and testing (phase 3).

Determination of the application images

The application images were those that we intended use for the classification of mosquitoes

after the model was developed. This was done to allow the model to be used by any person, not

only a specialist using a microscope, who is able to photograph an insect and then run the

model to classify mosquitoes.

A total of 823 out of the 4,056 images used in this study were manually selected according

to the following characteristics: the image should show the entire insect body (to visualize all

relevant morphological features) and should have been taken with a mobile phone. Fig 2

shows some captured images of male and female Ae. aegypti photographed using a digital cam-

era (Fig 2A, 2B, 2C and 2D) and mobile phone (Fig 2E and 2F).

Fig 1. Representation of the training (phase 1), validating (phase 2) and testing (phase 3) processes of the

mosquito classification model.

https://doi.org/10.1371/journal.pone.0210829.g001
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Fig 2. Images used for the validation phase during the development of the model used in this study. (A and C) Ae.
aegypti females photographed using a digital camera; (B and D) Ae. aegypti males photographed using a digital camera;

(E) an Ae. aegypti female photographed using a mobile phone; (F) an Ae. aegypti male photographed using a mobile

phone.

https://doi.org/10.1371/journal.pone.0210829.g002
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Determination of the application images to be used for testing

For the testing phase (phase 3), images were extracted from the dataset and used only after the

model was validated. Additionally, the images used for testing were not used to train or vali-

date the model. This was done to avoid research bias and minimize the chance of overfitting.

To standardize the analysis of the results, the test dataset contained the same number of

images from each of the six classes of mosquitoes. It was decided that the number of images cor-

responding to 20% of the number of images in the smallest class would be used for testing for all

classes. As the C. quinquefasciatus female class was the class with the smallest number of applica-

tion images (70 images), fourteen images (20%) from each of the other classes were randomly

removed from the dataset. Python scripts were employed to randomize the chosen images.

Distribution of the application images used for the training and validation

phases

Within the references used in this work, no consensus was found concerning the ideal dataset

distribution between the training (phase 1), validation (phase 2) and testing (phase 3) phases.

To determine the best image distribution for training and validation, once the test sample

size was already defined, the percentage of application images used in the training phase was

defined as a factor, varying in four levels (either 30%, 40%, 50% or 60%), in a full factorial

experiment. The objective was to evaluate statistically the best distribution of application

images between the training and validation phases that would present the best classification

accuracy for the intended application in entomology.

Selection of neural networks

We used nVidia DIGITS software (nVidia, Santa Clara, California, USA) with a NVIDIA

GeForce GTX TITAN GPU for processing. We used the software on the Linux Ubuntu operat-

ing system LTS Distribution 16.04 (Linux, San Francisco, California, USA). The Caffe frame-

work was used for the LeNet[42,43], AlexNet[31] and GoogLeNet convolutional neural

networks [42,43].

For a long period, LeNet was considered the state of the art of Artificial Neural Networks

(ANN’s). LeNet was one of the first ANN’s used to improve the original backpropagation algo-

rithm; the remarkable development of this well-known network was the first step towards the

application of the Deep Learning method.

In 2012, Alex Krizhevsky released AlexNet, which was a deeper and much wider version of

the LeNet that won, by a large margin, the difficult ImageNet competition[39]. AlexNet has a

very similar architecture to that of LeNet, but it can better describe images. This network relies

on eight layers, including convolutional, local responses, max-pooling and fully connected

layers.

In 2014, Christian Szegedy, from Google, began to investigate methods to reduce the

computational burden of deep neural networks[43]. In doing so, he focused on the efficiency

of the architecture of the deep neural network (codenamed Inception, later named GoogLeNet).
This neural network was the winner of ILSVRC 2014, surpassing AlexNet, and was proclaimed

the new paradigm for convolutional neural networks.

Classification of the model parameters

The CNN algorithms requires the definition of several parameters prior to the training phase.

Depending on the application, these parameters might have more or less influence on the clas-

sification results. Prior random tests were performed to understand which set parameters have
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more influence and should be statistically analysed as a factor in the full factorial experiment

in order to stablish the best value. Other parameters with less influence on the results were set

as default in the algorithm.

Number of epochs and Seed were parameters defined as a constant value. The prior random

tests showed that 200 epochs are enough to stabilize the training and validation phases. In case

it generates overfitting it would be easily identified. Define the seed as a constant value was

important to standardize the neural network weights initiation for all CNN and also, for each

time we run the algorithm. The parameters evaluated in the full factorial experiment were: per-

centage of the application image used in the training phase; solver algorithm; the learning rate

(LR); and learning rate decay function. The other parameters, such as the batch size, batch

accumulation, learning rate step size, learning rate power, learning rate gamma, crop size and

mean subtraction, were set according to pre-defined default for each network.

Full factorial experiments

To understand the influence of each parameter and their correlations with one another, full

factorial experiments were conducted using the Minitab 17 software (Minitab, State College,

Pennsylvania, USA). The parameters used as the inputs for the full factorial experiments are

shown in Table 1.

Using the Minitab software, we created an experiment with four factors: the percentage of

application images used at training, solver algorithm, learning rate, and LR decay function.

The number of epochs and the seed was fixed. For the experiments, we defined the number of

levels as shown in Table 1. During the next step, the formats of the selected parameters were

defined as either numerical or text; the percentage of application images used at training and

the LR were defined as numerical, and the solver algorithm and LR decay function were

defined as text. The values for each level was defined based on the random experiments per-

formed before.

Based on the result of the factorial experiments, it was calculated that 192 experiments

should be conducted on one of the three convolutional neural networks. The output variables

to be evaluated were the percent accuracy during the validation phase, loss function and per-

cent accuracy during the testing phase.

Full factorial experiments analysis

Based on the full factorial experiments, GoogLeNet was the network selected for conducting

the 192 planned experiments.

The first step in the analysis was to interpret the statistical significance of the parameters

that were used (percent accuracy during the validation phase, loss function and percent accu-

racy during the testing phase) and their relationship with the results. The ‘P value’ was

Table 1. Parameters used as inputs for the full factorial experiments in this study.

Parameters Levels Level

1 2 3 4

Number of epochs 1 200

Seed 1 10

% application images used at training 4 30 40 50 60

Solver algorithm 4 SGD NAG Adam AdaGrad

Learning rate 3 0.001 0.01 0.1

LR decay function 4 Step Down Exponential Sigmoid Polynomial

https://doi.org/10.1371/journal.pone.0210829.t001
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calculated to evaluate the statistical significance of the parameters and the effects of their inter-

actions on the outcome of the experiments.

The best performance obtained for each outcome was then defined as the target value for

optimization analysis and was used to determine the best combination of parameters. These

combinations were used to train the other two convolutional neural networks, LeNet and

AlexNet.

Results

The species and gender of each of the dataset classes used to classify the 4,056 images are

shown in Table 2.

Fig 3 shows the effects of each parameter (1st level analysis) on the accuracy of the testing

phase (phase 3). In this analysis, the use of the solver algorithm ‘3’ (Adam) and a learning rate

of ‘3’ (0.1) significantly reduced the accuracy of the mosquito image classification. However, a

learning rate of ‘1’ (0.001) was an important parameter that was used (‘p value’ < 0.00001).

Almost every parameter had a significant influence on the results of the performance of the

trained neural network (‘p value’< 0.05), with the exception of the interaction between ‘%

application images (train) � Solver’ and ‘% application images (train) � LR Decay Function’ (‘p

value’> 0.05).

Fig 4 shows the effects of the parameter combination (2nd level analysis) on the interaction

of the parameters with one another. It is clear that a learning rate of ‘3’ (0.1) reduced the accu-

racy of the testing phase when combined with any of the other parameters. Consequently, this

learning rate should not be used subsequent analysis. It was also confirmed that the solver

algorithm ‘3’ (Adam) reduced the accuracy of the testing phase. However, the combination of

a learning rate of ‘2’ (0.01) with solver algorithm ‘4’ (AdaGrad) obtained better results than the

combination of a learning rate of ‘1’ (0.001) with the same solver algorithm (‘p value’ <

0.00001). Overall, the learning rate of ‘1’ (0.001) produced the best results.

To define the best set of parameters, an optimization function was calculated in Minitab

that set the target values for each outcome. Fig 5 shows the variation of the data obtained for

each outcome. The best performance in terms of the percentage accuracy during validation

was 83.9%, with a loss function of 0.67 and percentage accuracy during testing of 86.9%.

The best parameter combination was obtained in the 4-2-1-3 set, which resulted in the use

of 60% of the application images during training (the NAG Solver algorithm; 0.001 LR and Sig-

moid LR decay function). Therefore, this parameter set was used for the subsequent training

of all three convolutional neural networks.

Fig 6 shows the results obtained during the training and validation phases for the convolu-

tional neural networks LeNet, AlexNet and GoogLeNet.

Table 2. Dataset structure and sample sizes of the mosquito images used in this study.

Class name Total number of

images

Non-application images (used

in training)

Application

images

Application images used for training

and validation

Application images used

for testing

Ae. aegypti female 947 723 224 210 14

Ae. aegypti male 282 201 81 67 14

Ae. albopictus female 1050 821 229 215 14

Ae. albopictus male 436 327 109 95 14

C. quinquefasciatus
female

965 895 70 56 14

C. quinquefasciatus
male

376 266 110 96 14

https://doi.org/10.1371/journal.pone.0210829.t002
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The LeNet neural network achieved an accuracy of 57.5% for the classification of mosqui-

toes (Fig 6A). Interestingly, the loss function (2.07) significantly increased during the training

of the network, indicating possible overfitting. Table 3 presents the accuracy achieved by this

network for each mosquito species. The overall performance of the LeNet neural network dur-

ing the testing phase (phase 3) was 52.4%.

Fig 6B shows the results obtained during the training and validation phases for the AlexNet

neural network. Using the previously selected parameters (200 epochs; seed of 10; 60% of

application images used for training; NAG solver algorithm; 0.001 LR; sigmoid LR decay func-

tion), the network achieved an accuracy of 74.7%, and the validation and training losses were

reduced by approximately 0.83 and 0.11, respectively. Table 4 presents the overall accuracy

Fig 3. Effects of the first level parameters on the accuracy of the testing phase (average accuracy percentage).

https://doi.org/10.1371/journal.pone.0210829.g003

Fig 4. Effects of the second level parameters on the accuracy of the testing phase (average accuracy percentage).

https://doi.org/10.1371/journal.pone.0210829.g004
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Fig 5. Histograms representing the outcome data: (A) percent accuracy–validation, (B) percent accuracy–testing,

(C) loss function.

https://doi.org/10.1371/journal.pone.0210829.g005
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Fig 6. Representation of the training process of each CNN: (A) LeNet, (B) AlexNet and (C) GoogLeNet (orange

line: accuracy validation; green line: loss validation; blue line: loss training). A–LeNet (after 200 epochs): percent

accuracy (validation) 57.50%, loss (validation) 2.07, loss (training) 0.03; B–AlexNet (after 200 epochs): percent

accuracy (validation) 74.69%, loss (validation) 0.83, loss (training) 0.11; C–GoogLeNet (after 200 epochs): percent

accuracy (validation) 83.88%, loss (validation) 1.03, loss (training) 0.00.

https://doi.org/10.1371/journal.pone.0210829.g006
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obtained during the testing phase (phase 3) for each of the mosquito species for the AlexNet

neural network. The overall result of the testing phase was 51.2%.

Fig 6C shows the results obtained during training and validation phases for the GoogLeNet

convolutional neural network. Using the previously selected parameters, the network achieved

an accuracy of 83.9%, and the validation and training losses were reduced by approximately

1.03 and 0, respectively. Table 5 presents the accuracy of the results obtained by the GoogLe-

Net network during the testing phase for each of the mosquito species (phase 3). Overall, the

performance of the GoogLeNet neural network during the testing phase was 76.2%.

With the exception of its performance during the classification of C. quinquefasciatus in the

validation phase in terms of the loss function after 200 epochs, GoogLeNet demonstrated the

best performance for the classification of adult mosquitoes.

It is also relevant to evaluate the classification performance for the different genera of mos-

quitoes. For the classification of the Aedes and Culex genera, an accuracy of 96.4% was

obtained. Another important outcome was the performance in the classification of Aedes
females, during which an overall accuracy of 82.1% was achieved.

Discussion

To the best of our knowledge, this is the first study that uses convolutional neural networks

(CNN’s) to extract features from images of adult mosquitoes to identify Ae. aegypti and Ae.
albopictus species in the field. Members of the genus Aedes are well-known carriers and dis-

seminators of arboviruses[1,13,44,45]. Also, we included the C. quinquefasciatus mosquito in

our study because its medical importance as a vector for some arboviruses associated with the

recent explosive epidemic occurred in Brazil[10,12]. However, the competence of Culex sp. to

transmit Zika virus has not been confirmed by recent studies[11,46].

Table 3. Confusion matrix showing the results of the testing phase for the LeNet neural network.

Class Ae. aegypti
female

Ae. aegypti
male

Ae. albopictus
female

Ae. albopictus
male

C. quinquefasciatus
female

C. quinquefasciatus
male

Accuracy

(%)

Ae. aegypti female 7 1 2 4 0 0 50.00

Ae. aegypti male 5 6 3 0 0 0 42.86

Ae. albopictus female 1 2 10 0 1 0 71.43

Ae. albopictus male 2 0 0 7 3 2 50.00

C. quinquefasciatus
female

1 0 1 1 9 2 64.29

C. quinquefasciatus
male

2 3 2 0 2 5 35.71

https://doi.org/10.1371/journal.pone.0210829.t003

Table 4. Confusion matrix showing the results of the testing phase for the AlexNet neural network.

Class Ae. aegypti
female

Ae. aegypti
male

Ae. albopictus
female

Ae. albopictus
male

C. quinquefasciatus
female

C. quinquefasciatus
male

Accuracy

(%)

Ae. aegypti female 5 1 6 0 1 1 35.71

Ae. aegypti male 2 7 2 1 0 2 50.00

Ae. albopictus female 1 1 11 1 0 0 78.57

Ae. albopictus male 0 2 3 9 0 0 64.29

C. quinquefasciatus
female

2 4 0 0 2 6 14.29

C. quinquefasciatus
male

2 1 0 0 2 9 64.29

https://doi.org/10.1371/journal.pone.0210829.t004
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Sanchez-Ortiz et al.[31] used a very similar CNN-like method as our study, but focused on

the use of digital images of larva as input for a machine learning algorithm for Aedes larva

identification. The algorithm showed excellent performance, with 100% accuracy, in the iden-

tification of Aedes larva; however, for other mosquito species, the misclassification rate was

30%. Additionally, the sample size used in this study was tiny. Although their review have a

significant scientific contribution, it requires the use of laboratory equipment and do not

address issues such as time and logistics required in the traditional classification method for

capturing and analysing the samples.

In our work, we used over 4,000 mosquito images in this preliminary study of the use of

CNN’s for the identification of mosquitoes; with such a small sample size, we achieved an

accuracy of 76.2% in the automatic recognition of species and gender for six classes of mos-

quito. However, it is very promising that we were able to distinguish Aedes mosquitoes from

other mosquitoes correctly. Our method was able to achieve 100% accuracy in classifying

between Aedes and Culex, although Culex was misclassified as Aedes 10% of the time during

the test phase. In the recognition of the Aedes female, which is the most important vector of

arboviruses, we achieved 82% accuracy. It is essential to understand that it is a training process

and every time we add a new species further training of the network will be necessary.

The importance of insects to transmit human diseases have motivated researchers to

develop an arsenal of mechanical, chemical, biological and educational tools to help mitigate

the harmful effects of insects. Batista et al.[33] reinforce that the efficiency of such systems

depends on the knowledge of the spatiotemporal dynamics of insects. In that work, the authors

developed a sensor that can measure the wingbeat frequency of flying insects at a distance.

However, the study collected data under laboratory conditions. Thus, future works would be

required to obtain additional features for real-world deployment.

Taxonomists have been searching for efficient methods to meet real world insect identifica-

tion requirements[47]. The correct identification of insects is critically important in entomo-

logical research, pest control, and insect-resource utilization for the development of effective

control strategies for diseases transmitted by these vectors and can aid in preventing arbovirus

infections in humans[2,15]. Also, identifying the vectors associated with pathogens is funda-

mental to understand the transmission of arthropod-borne viruses[48]. This problem is recog-

nized since the end of the last century, and computer-based recognition systems have been

developed to identify insect species automatically, not only for mosquitoes, but also for wasps,

moths, spiders, bees and others[15].

Unfortunately, as mentioned previously, taxonomic identification of mosquitoes is a time-

consuming and challenging process that requires trained specialists. The high variability also

compromises this method of identification of the morphological and molecular characteristics

Table 5. Confusion matrix showing the results of the testing phase for the GoogLeNet neural network.

Class Ae. aegypti
female

Ae. aegypti
male

Ae. albopictus
female

Ae. albopictus
male

C. quinquefasciatus
female

C. quinquefasciatus
male

Accuracy

(%)

Ae. aegypti female 9 3 2 0 0 0 64.29

Ae. aegypti male 1 12 1 0 0 0 85.71

Ae. albopictus female 0 1 12 1 0 0 85.71

Ae. albopictus male 0 1 0 13 0 0 92.86

C. quinquefasciatus
female

1 1 0 0 8 4 57.14

C. quinquefasciatus
male

0 0 0 1 3 10 71.43

https://doi.org/10.1371/journal.pone.0210829.t005
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found in members of the Culicidae subfamily, which was the object of our study. Furthermore,

molecular identification, although generally accurate, is costly and often impractical. Other

disadvantages of molecular techniques are the high cost and time applied in the laboratory. In

this way, developing countries, which are often the main endemic areas, do not have sufficient

resources for investments in laboratories with high technologies.

Although there is progress in autonomous identification systems for insects, two inadequa-

cies remain. First, some systems obtain high accuracy of identification for limited insect spe-

cies but have very narrow functionality, because the source code for those computer programs

must be rewritten when these types of system are tested with new morphological insect data.

Second, some systems, can be used to identify different taxonomic groups of insects, but the

accuracy is not sufficient due to high variations during processes of digitizing morphological

features and insufficient powerful classifiers which only can search local optimizing solutions

rather than the global optimizing solutions during computation[15].

Autonomous identification method could be valuable and more accessible to health work-

ers and other non-taxonomists for use in the identification of insects that can transmit infec-

tious agents to humans. Herein, we demonstrated that it is possible to use a CNN to analyse

photographic images to identify and classify mosquitoes by species and gender.

When adequate data are available, many methods, such as the Support Vector Machine

(SVM) and Tangent Distance Classifiers (TDCs), can achieve good accuracy in automatic clas-

sification[42]. In a report by LeCun et al. on handwritten character recognition, more than

60,000 handwritten characters were used, resulting in a significantly reduced error rate[42].

Additionally, the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) uses approxi-

mately 1.2 million images for training, 50,000 for validation, and 150,000 images for testing

[39].

In another application of a convolutional neural network for the identification of Aedes
wings and larva, Lorenz et al.[26] used 17 species from the Anopheles, Aedes and Culex genera

to test the hypothesis that classification based on wing shape characteristics using an Artificial

Neural Network (ANN) was more accurate than traditional classification using discriminant

analysis. The ANN was able to correctly classify species with greater accuracy than the conven-

tional method using multivariate discriminant analysis, with an accuracy varying from 86% to

100%. However, this study focus on parts of the body of the mosquito and requires the use of

laboratory equipment.

Another challenge in the use of convolutional neural networks for image recognition with a

limited number of images is the risk of overfitting. Application of different sets of images dur-

ing the training, validation and testing phases may reduce the risk of overfitting[39]. Addition-

ally, the use of different, randomly selected images during the testing phase, as demonstrated

in our study, is a promising method to avoid overfitting. Limitations due to dataset size and its

balance between the classes may explain the low accuracy achieved for some species classified

individually in our study. We firmly believe that increasing the dataset for all three phases

(training, validation and testing) and the use of different neural network architectures will

improve the precision of automatic classification.

Another possible way to increase the reliability of our neural network for the identification

of mosquito images is to re-design the layers of the neural network to include additional mor-

phological characteristics, such as wing shapes, palps and other features.

This preliminary study is an opportunity to construct a dense dataset of images of mosqui-

toes that can transmit diseases to humans, including Anopheles and other species among the

3,556 species of Culicidae that are currently recognized.

The final goal is to embed the model in a mobile APP that will allow for community partici-

pation and thereby facilitate efforts to control vector borne diseases.
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Conclusion

This work demonstrates that CNN’s can be applied to the autonomous classification of mos-

quitoes to aid in the screening of possible vectors of arboviruses by health workers and other

non-taxonomists. High accuracy of classification of mosquitoes using CNN’s can be achieved

using different neural networks. LeNet and AlexNet had inferior performances to that of Goo-

gLeNet, which indicates that the use of more complex networks with more layers is necessary

to improve accuracy. Taxonomic classification of insects can be performed automatically via

the acquisition of image’s features that differentiate one insect from another. Only by using

both the genus and sex we achieved high accuracy in the identification of Aedes females.

Our results provide information that is fundamental to the automatic morphological classi-

fication of a species of interest applying CNN to classify the adult mosquito in the environment

it lives. In the critical discussion, the published works develop mainly a laboratory tool. In the

taxonomy of adult mosquitoes, an epidemiological classification has a different implication.

The application method we propose will be a robust epidemiological instrument for the rapid

identification of focus of mosquitoes allowing the community to be part of the control of vec-

tor-borne diseases.

Another essential contribution relies on the construction of a mosquito dataset. Much data

is required to increase the reliability of any autonomous method to recognize objects. This

study already provides more than 4,000 mosquito images, which is vital in creating a signifi-

cant and robust dataset for later applications.

We hope that later, the model can be embedded in a mobile APP to allow for community

participation and thereby facilitate efforts to control vector borne diseases. Indeed, this model

can be used to improve vector control operations that are linked with fast and reliable identifi-

cation of targeted species and to provide knowledge of their biology and ecology.
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