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Abstract

Current state-of-the-art relation extraction methods typically rely on a set of lexical,
syntactic, and semantic features, explicitly computed in a pre-processing step. Training
feature extraction models requires additional annotated language resources, which severely
restricts the applicability and portability of relation extraction to novel languages. Simi-
larly, pre-processing introduces an additional source of error. To address these limitations,
we introduce TRE, a Transformer for Relation Extraction, extending the OpenAI Gener-
ative Pre-trained Transformer [Radford et al., 2018]. Unlike previous relation extraction
models, TRE uses pre-trained deep language representations instead of explicit linguistic
features to inform the relation classification and combines it with the self-attentive Trans-
former architecture to effectively model long-range dependencies between entity mentions.
TRE allows us to learn implicit linguistic features solely from plain text corpora by unsuper-
vised pre-training, before fine-tuning the learned language representations on the relation
extraction task. TRE obtains a new state-of-the-art result on the TACRED and SemEval
2010 Task 8 datasets, achieving a test F1 of 67.4 and 87.1, respectively. Furthermore, we
observe a significant increase in sample efficiency. With only 20% of the training examples,
TRE matches the performance of our baselines and our model trained from scratch on
100% of the TACRED dataset. We open-source our experiments and code1.

1. Introduction

Relation extraction aims to identify the relationship between two nominals, typically in the
context of a sentence, making it essential to natural language understanding. Consequently,
it is a key component of many natural language processing applications, such as information
extraction [Fader et al., 2011], knowledge base population [Ji and Grishman, 2011], and
question answering [Yu et al., 2017]. Table 1 lists exemplary relation mentions.

State-of-the-art relation extraction models, traditional feature-based and current neu-
ral methods, typically rely on explicit linguistic features: prefix and morphological fea-
tures [Mintz et al., 2009], syntactic features such as part-of-speech tags [Zeng et al., 2014],
and semantic features like named entity tags and WordNet hypernyms [Xu et al., 2016].
Most recently, Zhang et al. [2018] combined dependency parse features with graph con-
volutional neural networks to considerably increase the performance of relation extraction
systems.

∗. equal contribution
1. https://github.com/DFKI-NLP/TRE
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Sentence Subject Object Relation

Mr. Scheider played the police chief
of a resort town menaced by a shark.

Scheider police chief per:title

The measure included Aerolineas’s
domestic subsidiary, Austral.

Aerolineas Austral org:subsidiaries

Yolanda King died last May of an
apparent heart attack.

Yolanda King heart attack per:cause of death

The key was in a chest. key chest Content-Container

The car left the plant. car plant Entity-Origin

Branches overhang the roof of this
house.

roof house Component-Whole

Table 1: Relation extraction examples, taken from TACRED (1-3) and SemEval 2010 Task
8 (4-6). TACRED relation types mostly focus on named entities, whereas SemEval
contains semantic relations between concepts.

However, relying on explicit linguistic features severely restricts the applicability and
portability of relation extraction to novel languages. Explicitly computing such features
requires large amounts of annotated, language-specific resources for training; many un-
available in non-English languages. Moreover, each feature extraction step introduces an
additional source of error, possibly cascading over multiple steps. Deep language representa-
tions, on the other hand, have shown to be a very effective form of unsupervised pre-training,
yielding contextualized features that capture linguistic properties and benefit downstream
natural language understanding tasks, such as semantic role labeling, coreference resolution,
and sentiment analysis [Peters et al., 2018]. Similarly, fine-tuning pre-trained language rep-
resentations on a target task has shown to yield state-of-the-art performance on a variety of
tasks, such as semantic textual similarity, textual entailment, and question answering [Rad-
ford et al., 2018].

In addition, classifying complex relations requires a considerable amount of annotated
training examples, which are time-consuming and costly to acquire. Howard and Ruder
[2018] showed language model fine-tuning to be a sample efficient method that requires
fewer labeled examples.

Besides recurrent (RNN) and convolutional neural networks (CNN), the Transformer
[Vaswani et al., 2017] is becoming a popular approach to learn deep language representa-
tions. Its self-attentive structure allows it to capture long-range dependencies efficiently;
demonstrated by the recent success in machine translation [Vaswani et al., 2017], text gen-
eration [Liu et al., 2018], and question answering [Radford et al., 2018].

In this paper, we propose TRE: a Transformer based Relation Extraction model. Un-
like previous methods, TRE uses deep language representations instead of explicit linguistic
features to inform the relation classifier. Since language representations are learned by un-
supervised language modeling, pre-training TRE only requires a plain text corpus instead of
annotated language-specific resources. Fine-tuning TRE, and its representations, directly
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to the task minimizes explicit feature extraction, reducing the risk of error accumulation.
Furthermore, an increased sample efficiency reduces the need for distant supervision meth-
ods [Mintz et al., 2009, Riedel et al., 2010], allowing for simpler model architectures without
task-specific modifications.

The contributions of our paper are as follows:

• We describe TRE, a Transformer based relation extraction model that, unlike previous
methods, relies on deep language representations instead of explicit linguistic features.

• We are the first to demonstrate the importance of pre-trained language representations
in relation extraction, by outperforming state-of-the-art methods on two supervised
datasets, TACRED and SemEval 2010 Task 8.

• We report detailed ablations, demonstrating that pre-trained language representations
prevent overfitting and achieve better generalization in the presence of complex entity
mentions. Similarly, we demonstrate a considerable increase in sample efficiency over
baseline methods.

• We make our trained models, experiments, and source code available to facilitate
wider adoption and further research.

2. TRE

This section introduces TRE and its implementation. First, we cover the model architec-
ture (Section 2.1) and input representation (Section 2.2), followed by the introduction of
unsupervised pre-training of deep language model representations (Section 2.3). Finally, we
present supervised fine-tuning on the relation extraction task (Section 2.4).

2.1 Model Architecture

TRE is a multi-layer Transformer-Decoder [Liu et al., 2018], a decoder-only variant of
the original Transformer [Vaswani et al., 2017]. As shown in Figure 1, the model repeat-
edly encodes the given input representations over multiple layers (i.e., Transformer blocks),
consisting of masked multi-headed self-attention followed by a position-wise feedforward
operation:

h0 = TWe +Wp

hl = transformer block(hl−1) ∀ l ∈ [1, L]
(1)

Where T = (t1, . . . , tk) is a sequence of token indices in a sentence2. We is the token
embedding matrix, Wp is the positional embedding matrix, L is the number of Transformer
blocks, and hl is the state at layer l. Since the Transformer has no implicit notion of
token positions, the first layer adds a learned positional embedding ep ∈ Rd to each token
embedding ept ∈ Rd at position p in the input sequence. The self-attentive architecture
allows an output state hpl of a block to be informed by all input states hl−1, which is key to
efficiently model long-range dependencies. For language modeling, however, self-attention

2. In this work a “sentence” denotes an arbitrary span of contiguous text, rather than an actual linguistic
sentence. For pre-training the input consists of multiple linguistic sentences, whereas relation extraction
is applied to a single one. A “sequence” refers to the input token sequence.
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must be constrained (masked) not to attend to positions ahead of the current token. For
a more exhaustive description of the architecture, we refer readers to Vaswani et al. [2017]
and the excellent guide “The Annotated Transformer”3.

Figure 1: (left) Transformer-Block architecture and training objectives. A Transformer-
Block is applied at each of the L layers to produce states h1 to hL. (right) Rela-
tion extraction requires a structured input for fine-tuning, with special delimiters
to assign different meanings to parts of the input.

2.2 Input Representation

Our input representation (see also Figure 1) encodes each sentence as a sequence of tokens.
To make use of sub-word information, we tokenize the input text using byte pair encoding
(BPE) [Sennrich et al., 2016]. The BPE algorithm creates a vocabulary of sub-word tokens,
starting with single characters. Then, the algorithm iteratively merges the most frequently
co-occurring tokens into a new token until a predefined vocabulary size is reached. For
each token, we obtain its input representation by summing over the corresponding token
embedding and positional embedding.

While the model is pre-trained on plain text sentences, the relation extraction task
requires a structured input, namely a sentence and relation arguments. To avoid task-
specific changes to the architecture, we adopt a traversal-style approach similar to Radford
et al. [2018]. The structured, task-specific input is converted to an ordered sequence to
be directly fed into the model without architectural changes. Figure 1 provides a visual
illustration of the input format. It starts with the tokens of both relation arguments a1

and a2, separated by delimiters, followed by the token sequence of the sentence containing
the relation mention, and ends with a special classification token. The classification token
signals the model to generate a sentence representation for relation classification. Since our

3. http://nlp.seas.harvard.edu/2018/04/03/attention.html
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model processes the input left-to-right, we add the relation arguments to the beginning,
to bias the attention mechanism towards their token representation while processing the
sentence’s token sequence.

2.3 Unsupervised Pre-training of Language Representations

Relation extraction models benefit from efficient representations of long-term dependencies
[Zhang et al., 2018] and hierarchical relation types [Han et al., 2018]. Generative pre-
training via a language model objective can be seen as an ideal task to learn deep language
representations that capture important lexical, syntactic, and semantic features without
supervision [Linzen et al., 2016, Radford et al., 2018, Howard and Ruder, 2018], before
fine-tuning to the supervised task – in our case relation extraction.

Given a corpus C = {c1, . . . , cn} of tokens ci, the language modeling objective maximizes
the likelihood

L1(C) =
∑
i

logP (ci|ci−1, . . . , ci−k; θ) (2)

where k is the context window considered for predicting the next token ci via the conditional
probability P . TRE models the conditional probability by an output distribution over target
tokens:

P (c) = softmax(hLW
T
e ), (3)

where hL is the sequence of states after the final layer L, We is the embedding matrix, and
θ are the model parameters that are optimized by stochastic gradient descent.

2.4 Supervised Fine-tuning on Relation Extraction

After pre-training with the objective in Eq. 2, the language model is fine-tuned on the
relation extraction task. We assume a labeled dataset D = ([x1i , . . . , x

m
i ], a1i , a

2
i , ri), where

each instance consists of an input sequence of tokens x1, . . . , xm, the positions of both
relation arguments a1 and a2 in the sequence of tokens, and a corresponding relation label
r. The input sequence is fed to the pre-trained model to obtain the final state representation
hL. To compute the output distribution P (r) over relation labels, a linear layer followed by
a softmax is applied to the last state hmL , which represents a summary of the input sequence:

P (r|x1, . . . , xm) = softmax(hmLWr) (4)

During fine-tuning we optimize the following objective:

L2(D) =

|D|∑
i=1

logP (ri|x1i , . . . , xmi ) (5)

According to Radford et al. [2018], introducing language modeling as an auxiliary objective
during fine-tuning improves generalization and leads to faster convergence. Therefore, we
adopt a similar objective:

L(D) = λ ∗ L1(D) + L2(D), (6)

where λ is the language model weight, a scalar, weighting the contribution of the language
model objective during fine-tuning.
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3. Experiment Setup

We run experiments on two supervised relation extraction datasets: The recently published
TACRED dataset [Zhang et al., 2017] and the SemEval dataset [Hendrickx et al., 2010].
We evaluate the PCNN implementation of Zeng et al. [2015]4 on the two datasets and use
it as a state-of-the-art baseline in our analysis section. In the following we describe our
experimental setup.

3.1 Datasets

Table 2 shows key statistics of the TACRED and SemEval datasets. While TACRED is
approximately 10x the size of SemEval 2010 Task 8, it contains a much higher fraction of
negative training examples, which makes classification more challenging.

Dataset relation types examples negative examples

TACRED 42 106,264 79.5%
SemEval 2010 Task 8 19 10,717 17.4%

Table 2: Comparison of the datasets used for evaluation

TACRED: The TAC Relation Extraction Dataset [Zhang et al., 2017] contains 106k
sentences with entity mention pairs collected from the TAC KBP evaluations5 2009–2014,
with the years 2009 to 2012 used for training, 2013 for evaluation, and 2014 for testing.
Sentences are annotated with person- and organization-oriented relation types, e.g. per:title,
org:founded, and no relation for negative examples. In contrast to the SemEval dataset the
entity mentions are typed, with subjects classified into person and organization, and objects
categorized into 16 fine-grained classes (e.g., date, location, title). As per convention, we
report our results as micro-averaged F1 scores. Following the evaluation strategy of Zhang
et al. [2017], we select our best model based on the median validation F1 score over 5
independent runs and report its performance on the test set.

SemEval 2010 Task 8: The SemEval 2010 Task 8 dataset [Hendrickx et al., 2010] is
a standard benchmark for binary relation classification, and contains 8,000 sentences for
training, and 2,717 for testing. Sentences are annotated with a pair of untyped nominals
and one of 9 directed semantic relation types, such as Cause-Effect, Entity-Origin, as well
as the undirected Other type to indicate no relation, resulting in 19 distinct types in total.
We follow the official convention and report macro-averaged F1 scores with directionality
taken into account by averaging over 5 independent runs. The dataset is publicly available6

and we use the official scorer to compute our results.

3.2 Pre-training

Since pre-training is computationally expensive, and our main goal is to show its effective-
ness by fine-tuning on the relation extraction task, we reuse the language model7 published

4. https://github.com/thunlp/OpenNRE
5. https://tac.nist.gov/2017/KBP/index.html
6. https://drive.google.com/file/d/0B_jQiLugGTAkMDQ5ZjZiMTUtMzQ1Yy00YWNmLWJlZDYtOWY1ZDMwY2U4YjFk

7. https://github.com/openai/finetune-transformer-lm
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by Radford et al. [2018] for our experiments. The model was trained on the BooksCor-
pus [Zhu et al., 2015], which contains around 7,000 unpublished books with a total of more
than 800M words of different genres. It consists of L = 12 layers (blocks) with 12 attention
heads and 768 dimensional states, and a feed-forward layer of 3072 dimensional states. We
reuse the model’s byte pair encoding vocabulary, containing 40,000 tokens, but extend it
with task-specific ones (i.e., start, end, and delimiter tokens). Also, we use the learned
positional embeddings with supported sequence lengths of up to 512 tokens.

3.3 Entity Masking

We employ four different entity masking strategies. Entity masking allows us to investi-
gate the model performance while providing limited information about entities, in order to
prevent overfitting and allow for better generalization to unseen entities. It also enables
us to analyze the impact of entity type and role features on the model’s performance. For
the simplest masking strategy UNK, we replace all entity mentions with a special unknown
token. For the NE strategy, we replace each entity mention with its named entity type.
Similarly, GR substitutes a mention with its grammatical role (subject or object). NE +
GR combines both strategies.

3.4 Hyperparameter Settings and Optimization

During our experiments we found the hyperparameters for fine-tuning, reported in [Radford
et al., 2018], to be very effective. Therefore, unless specified otherwise, we used the Adam
optimization scheme [Kingma and Ba, 2015] with β1 = 0.9, β2 = 0.999, a batch size of 8,
and a linear learning rate decay schedule with warm-up over 0.2% of training updates. We
apply residual, and classifier dropout with a rate of 0.1. Also, we experimented with token
dropout, but did not find that it improved performance. Table 3 shows the best performing
hyperparameter configuration for each dataset. On SemEval 2010 Task 8, we first split
800 examples of the training set for hyperparameter selection and retrained on the entire
training set with the best parameter configuration.

Epochs Learning Rate Warmup Learning Rate λ Attn. Dropout

TACRED 3 5.25e-5 2e-3 0.5 0.1
SemEval 3 6.25e-5 1e-3 0.7 0.15

Table 3: Best hyperparameter configuration for TACRED and SemEval

4. Results

This section presents our experimental results. We compare our TRE model to other works
on the two benchmark datasets, demonstrating that it achieves state-of-the-art performance
even without sophisticated linguistic features. We also provide results on model ablations
and the effect of the proposed entity masking schemes.
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4.1 TACRED

On the TACRED dataset, TRE outperforms state-of-the-art single-model systems and
achieves an F1 score of 67.4 (Table 4). Compared to SemEval, we observe methods to
perform better that are able to model complex syntactic and long-range dependencies, such
as PA-LSTM [Zhang et al., 2017] and C-GCN [Zhang et al., 2018]. Outperforming these
methods highlights our model’s ability to implicitly capture patterns similar to complex
syntactic features, and also capture long-range dependencies.

We would like to point out that the result was produced by the same “entity masking”
strategy used in previous work [Zhang et al., 2017, 2018]. Similar to our NE + GR masking
strategy, described in Section 3.3, we replace each entity mention by a special token; a
combination of its named entity type and grammatical role. While we achieve state-of-the-
art results by providing only named entity information, unmasked entity mentions decrease
the score to 62.8, indicating overfitting and, consequently, difficulties to generalize to specific
entity types. In Section 5.3, we analyze the effect of entity masking on task performance in
more detail.

System P R F1

LR† Zhang et al. [2017] 72.0 47.8 57.5
CNN† Zhang et al. [2017] 72.1 50.3 59.2
Tree-LSTM† Zhang et al. [2018] 66.0 59.2 62.4
PA-LSTM† Zhang et al. [2018] 65.7 64.5 65.1
C-GCN† Zhang et al. [2018] 69.9 63.3 66.4
TRE (ours) 70.1 65.0 67.4

Table 4: TACRED single-model test set performance. We selected the hyperparameters
using the validation set, and report the test score of the run with the median
validation score among 5 randomly initialized runs. † marks results reported in
the corresponding papers.

4.2 SemEval

On the SemEval 2010 Task 8 dataset, the TRE model outperforms the best previously
reported models, establishing a new state-of-the-art score of 87.1 F1 (Table 5). The result
indicates that pre-training via a language modeling objective allows the model to implicitly
capture useful linguistic properties for relation extraction, outperforming methods that rely
on explicit lexical features (SVM [Rink and Harabagiu, 2010], RNN [Zhang and Wang,
2015]). Similarly, our model outperforms approaches that rely on explicit syntactic features
such as the shortest dependency path and learned distributed representations of part-of-
speech and named entity tags (e.g., BCRNN [Cai et al., 2016], DRNN [Xu et al., 2016],
CGCN [Zhang et al., 2018]).

Similar to Zhang et al. [2018], we observe a high correlation between entity mentions
and relation labels. According to the authors, simplifying SemEval sentences in the training
and validation set to just “subject and object”, where “subject” and “object” are the actual
entities, already achieves an F1 score of 65.1. To better evaluate our model’s ability to
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System P R F1

SVM† Rink and Harabagiu [2010] – – 82.2
PA-LSTM† Zhang et al. [2018] – – 82.7
C-GCN† Zhang et al. [2018] – – 84.8
DRNN† Xu et al. [2016] – – 86.1
BRCNN† Cai et al. [2016] – – 86.3
PCNN Zeng et al. [2015] 86.7 86.7 86.6
TRE (ours) 88.0 86.2 87.1 (±0.16)

Table 5: SemEval single-model test set performance. † marks results reported in the corre-
sponding papers. We report the mean and standard deviation across 5 randomly
initialized runs.

generalize beyond entity mentions, we substitute the entity mentions in the training set
with a special unknown (UNK) token. The token simulates the presence of unseen entities
and prevents overfitting to entity mentions that strongly correlate with specific relations.
Our model achieves an F1 score of 79.1 (Table 6), an improvement of 2.6 points F1 score over

System P R F1

PA-LSTM† Zhang et al. [2018] – – 75.3
C-GCN† Zhang et al. [2018] – – 76.5
TRE (ours) 80.3 78.0 79.1 ( ± 0.37)

Table 6: SemEval single-model test set performance with all entity mentions masked by
an unknown (UNK) token. † marks results reported in the corresponding papers.
Due to the small test set size, we report the mean and standard deviation across
5 randomly initialized runs.

the previous state-of-the-art. The result suggests that pre-trained language representations
improve our model’s ability to generalize beyond the mention level when predicting the
relation between two previously unseen entities.

5. Analysis & Ablation Studies

Although we demonstrated strong empirical results, we have not yet isolated the contri-
butions of specific parts of TRE. In this section, we perform ablation experiments to un-
derstand the relative importance of each model component, followed by experiments to
validate our claim that pre-trained language representations capture linguistic properties
useful to relation extraction and also improve sample efficiency. We report our results on
the predefined TACRED validation set and randomly select 800 examples of the SemEval
training set as a validation set.
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5.1 Effect of Pre-training

Pre-training affects two major parts of our model: language representations and byte pair
embeddings. In Table 7, we first compare a model that was fine-tuned using pre-trained
representations to one that used randomly initialized language representations. On both
datasets we observe fine-tuning to considerably benefit from pre-trained language represen-
tations. For the SemEval dataset, the validation F1 score increases to 85.6 when using a
pre-trained language model and no entity masking, compared to 75.6 without pre-training.
We observe even more pronounced performance gains for the TACRED dataset, where us-
ing a pre-trained language model increases the validation F1 score by 20 to 63.3. With
entity masking, performance gains are slightly lower, at +8 on the SemEval dataset and
+9.4 (UNK) respectively +3.8 (NE+GR) on the TACRED dataset. The larger effect of pre-
training when entity mentions are not masked suggests that pre-training has a regularizing
effect, preventing overfitting to specific mentions. In addition, the contextualized features
allow the model to better adapt to complex entities. Our observations are consistent with
the results of Howard and Ruder [2018], who observed that language model pre-training
considerably improves text classification performance on small and medium-sized datasets,
similar to ours.

SemEval TACRED
None UNK None UNK NE + GR

Best model 85.6 76.9 63.3 51.0 68.0
– w/o pre-trained LM 75.6 68.2 43.3 41.6 64.2
– w/o pre-trained LM and BPE 55.3 60.9 38.5 38.4 60.8

Table 7: Ablation with and without masked entities for SemEval (left) and TACRED val-
idation set (right). We report F1 scores over 5 independent runs.

In addition, we train a model from scratch without pre-trained byte pair embeddings.
We keep the vocabulary of sub-word tokens fixed and randomly initialize the embeddings.
Again, we observe both datasets to benefit from pre-trained byte-pair embeddings. Because
of its small size, SemEval benefits more from pre-trained embeddings, as these can not be
learned reliably from the small corpus. This increases the risk of overfitting to entity
mentions, which can be seen in the lower performance compared to UNK masking, where
entity mentions are not available. For the TACRED dataset, model performance drops by
approximately 3 − 5% with and without entity masking when not using pre-trained byte
pair embeddings.

5.2 Which Information is captured by Language Representations?

Undoubtedly, entity type information is crucial to relation extraction. This is confirmed by
the superior performance on TACRED (Table 7) when entity and grammatical role informa-
tion is provided (NE+GR). The model achieves a validation F1 score of 68.0, compared to
63.3 without entity masking. Without pre-trained language representations, the model with
NE+GR masking still manages to achieve a F1 score of 64.2. This suggests that pre-trained
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language representations capture features that are as informative as providing entity type
and grammatical role information. This is also suggested by the work of Peters et al. [2018],
who show that a language model captures syntactic and semantic information useful for a
variety of natural language processing tasks such as part-of-speech tagging and word sense
disambiguation.

5.3 Effect of Entity Masking

Entity masking, as described in Section 3.3, can be used to limit the information about
entity mentions available to our model and it is valuable in multiple ways. It can be used to
simulate different scenarios, such as the presence of unseen entities, to prevent overfitting
to specific entity mentions, and to focus more on context. Table 8 shows F1 scores on the
TACRED validation dataset for different entity masking strategies. As we saw previously,
masking with entity and grammatical role information yields the best overall performance,
yielding a F1 score of 68.0. We find that using different masking strategies mostly impacts
the recall, while precision tends to remain high, with the exception of the UNK masking
strategy.

When applying the UNK masking strategy, which does not provide any information
about the entity mention, the F1 score drops to 51.0. Using grammatical role information
considerably increases performance to an F1 score of 56.1. This suggests that either the
semantic role type is a very helpful feature, or its importance lies in the fact that it provides
robust information on where each argument entity is positioned in the input sentence. When
using NE masking, we observe a significant increase in recall, which intuitively suggests a
better generalization ability of the model. Combining NE masking with grammatical role
information yields only a minor gain in recall, which increases from 65.3% to 67.2%, while
precision stays at 68.8%.

Entity Masking Precision Recall F1

None 69.5 58.1 63.3
UNK 56.9 46.3 51.0
GR 63.8 50.1 56.1
NE 68.8 65.3 67.0
NE + GR 68.8 67.2 68.0

Table 8: TACRED validation F1 scores for TACRED with different entity masking strate-
gies.

5.4 Sample Efficiency

We expect a pre-trained language model to allow for a more sample efficient fine-tuning
on the relation extraction task. To assess our model’s sample efficiency, we used stratified
subsampling splits of the TACRED training set with sampling ratios from 10% to 100%. We
trained the previously presented model variants on each split, and evaluated them on the
complete validation set using micro-averaged F1 scores, averaging the scores over 5 runs.
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Figure 2: Micro-averaged F1 score on the validation set over increasing sampling ratios of
the training set

The results are shown in Figure 2. The best performing model uses a pre-trained
language model combined with NE+GR masking, and performs consistently better than
the other models. There is a steep performance increase in the first part of the curve, when
only a small subset of the training examples is used. The model reaches an F1 score of more
than 60 with only 20% of the training data, and continues to improve with more training
data.

The next best models are the TRE model without a pre-trained language model, and
the TRE model without NE+GR masking. They perform very similar, which aligns well
with our previous observations. The PCNN baseline performs well when masking is applied,
but slightly drops in performance compared to the TRE models after 30% of training data,
slowly approaching a performance plateau of around 61 F1 score. The PCNN baseline
without masking performs worse, but improves steadily due to its low base score. The TRE
model without a language model seems to overfit early and diminishes in performance with
more than 70% training data. Interestingly, the performance of several models drops or
stagnates after about 80% of the training data, which might indicate that these examples
do not increase the models’ regularization capabilities.
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6. Related Work

Relation Extraction Providing explicit linguistic features to inform the relation classi-
fication is a common approach in relation extraction. Initial work used statistical classifiers
or kernel based methods in combination with discrete syntactic features [Zelenko et al.,
2003, Mintz et al., 2009, Hendrickx et al., 2010], such as part-of-speech and named entities
tags, morphological features, and WordNet hypernyms. More recently, these methods have
been superseded by neural networks, applied on a sequence of input tokens to classify the
relation between two entities. Sequence based methods include recurrent [Socher et al.,
2012, Zhang and Wang, 2015] and convolutional [Zeng et al., 2014, 2015] neural networks.
With neural models, discrete features have been superseded by distributed representations
of words and syntactic features [Turian et al., 2010, Pennington et al., 2014]. Xu et al.
[2015a,b] integrated shortest dependency path (SDP) information into a LSTM-based rela-
tion classification model. Considering the SDP is useful for relation classification, because
it focuses on the action and agents in a sentence [Bunescu and Mooney, 2005, Socher et al.,
2014]. Zhang et al. [2018] established a new state-of-the-art for relation extraction on the
TACRED dataset by applying a combination of pruning and graph convolutions to the de-
pendency tree. Recently, Verga et al. [2018] extended the Transformer architecture [Vaswani
et al., 2017] by a custom architecture for biomedical named entity and relation extraction.
In comparison, our approach uses pre-trained language representations and no architectural
modifications between pre-training and task fine-tuning.

Language Representations and Transfer Learning Deep language representations
have shown to be a very effective form of unsupervised pre-training. [Peters et al., 2018]
introduced embeddings from language models (ELMo), an approach to learn contextualized
word representations by training a bidirectional LSTM to optimize a language model objec-
tive. Peters et al. [2018] results show that replacing static pre-trained word vectors [Mikolov
et al., 2013, Pennington et al., 2014] with contextualized word representations significantly
improves performance on various natural language processing tasks, such as semantic simi-
larity, coreference resolution, and semantic role labeling. Howard and Ruder [2018] showed
language representations learned by unsupervised language modeling to significantly im-
prove text classification performance, to prevent overfitting, and to also increase sample
efficiency. [Radford et al., 2018] demonstrated that general-domain pre-training and task-
specific fine-tuning, which our model is based on, achieves state-of-the-art results on several
question answering, text classification, textual entailment, and semantic similarity tasks.

7. Conclusion

We proposed TRE, a Transformer based relation extraction method that replaces explicit
linguistic features, required by previous methods, with implicit features captured in pre-
trained language representations. We showed that our model outperformes the state-of-
the-art on two popular relation extraction datasets, TACRED and SemEval 2010 Task 8.
We also found that pre-trained language representations drastically improve the sample
efficiency of our approach. In our experiments we observed language representations to
capture features very informative to the relation extraction task.
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While our results are strong, important future work is to further investigate the linguis-
tic features that are captured by TRE. One question of interest is the extent of syntactic
structure that is captured in language representations, compared to information provided
by dependency parsing. Furthermore, our generic architecture enables us to integrate ad-
ditional contextual information and background knowledge about entities, which could be
used to further improve performance.
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Alt, Hübner, & Hennig

Sebastian Riedel, Limin Yao, and Andrew McCallum. Modeling relations and their mentions
without labeled text. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 148–163, 2010.

Bryan Rink and Sanda Harabagiu. Utd: Classifying semantic relations by combining lexical
and semantic resources. In Proceedings of the 5th International Workshop on Semantic
Evaluation, pages 256–259. Association for Computational Linguistics, 2010. URL http:

//aclweb.org/anthology/S10-1057.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725. Association
for Computational Linguistics, 2016. URL http://aclweb.org/anthology/P16-1162.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. Semantic
compositionality through recursive matrix-vector spaces. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pages 1201–1211. Association for Computational Linguistics,
2012. URL http://aclweb.org/anthology/D12-1110.

Richard Socher, Andrej Karpathy, Quoc V. Le, Christopher D. Manning, and Andrew Y.
Ng. Grounded compositional semantics for finding and describing images with sentences.
Transactions of the Association for Computational Linguistics, 2:207–218, 2014. URL
http://aclweb.org/anthology/Q14-1017.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. Word representations: A simple
and general method for semi-supervised learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 384–394. Association for
Computational Linguistics, 2010. URL http://aclweb.org/anthology/P10-1040.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Ad-
vances in Neural Information Processing Systems, pages 5998–6008, 2017. URL https:

//papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Patrick Verga, Emma Strubell, and Andrew McCallum. Simultaneously self-attending
to all mentions for full-abstract biological relation extraction. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 872–884.
Association for Computational Linguistics, 2018. doi: 10.18653/v1/N18-1080. URL
http://aclweb.org/anthology/N18-1080.

Kun Xu, Yansong Feng, Songfang Huang, and Dongyan Zhao. Semantic relation clas-
sification via convolutional neural networks with simple negative sampling. In Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language Process-
ing, pages 536–540. Association for Computational Linguistics, 2015a. URL http:

//aclweb.org/anthology/D15-1062.

16

http://aclweb.org/anthology/S10-1057
http://aclweb.org/anthology/S10-1057
http://aclweb.org/anthology/P16-1162
http://aclweb.org/anthology/D12-1110
http://aclweb.org/anthology/Q14-1017
http://aclweb.org/anthology/P10-1040
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://aclweb.org/anthology/N18-1080
http://aclweb.org/anthology/D15-1062
http://aclweb.org/anthology/D15-1062


Improving Relation Extraction by Pre-trained Language Representations

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng, and Zhi Jin. Classifying relations via
long short term memory networks along shortest dependency paths. In Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1785–
1794. Association for Computational Linguistics, 2015b. doi: 10.18653/v1/D15-1206.
URL http://aclweb.org/anthology/D15-1206.

Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu, and Zhi Jin. Improved
relation classification by deep recurrent neural networks with data augmentation. In
Proceedings of COLING 2016, the 26th International Conference on Computational Lin-
guistics: Technical Papers, pages 1461–1470. The COLING 2016 Organizing Committee,
2016. URL http://aclweb.org/anthology/C16-1138.

Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. Improved neural relation detection for knowledge base question answering. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 571–581. Association for Computational Linguistics,
2017. doi: 10.18653/v1/P17-1053. URL http://aclweb.org/anthology/P17-1053.

Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. Kernel Methods for Relation
Extraction. J. Mach. Learn. Res., 3:1083–1106, 2003. ISSN 1532-4435. URL http:

//dl.acm.org/citation.cfm?id=944919.944964.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. Relation classifica-
tion via convolutional deep neural network. In Proceedings of COLING 2014, the 25th
International Conference on Computational Linguistics: Technical Papers, pages 2335–
2344. Dublin City University and Association for Computational Linguistics, 2014. URL
http://aclweb.org/anthology/C14-1220.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. Distant supervision for relation extrac-
tion via piecewise convolutional neural networks. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 1753–1762. Association for
Computational Linguistics, 2015. URL http://aclweb.org/anthology/D15-1203.

Dongxu Zhang and Dong Wang. Relation classification via recurrent neural network. arXiv
preprint arXiv:1508.01006, 2015.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D. Manning.
Position-aware attention and supervised data improve slot filling. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, pages 35–45.
Association for Computational Linguistics, 2017. URL http://aclweb.org/anthology/

D17-1004.

Yuhao Zhang, Peng Qi, and Christopher D. Manning. Graph convolution over pruned
dependency trees improves relation extraction. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 2205–2215. Association for
Computational Linguistics, 2018. URL http://aclweb.org/anthology/D18-1244.

17

http://aclweb.org/anthology/D15-1206
http://aclweb.org/anthology/C16-1138
http://aclweb.org/anthology/P17-1053
http://dl.acm.org/citation.cfm?id=944919.944964
http://dl.acm.org/citation.cfm?id=944919.944964
http://aclweb.org/anthology/C14-1220
http://aclweb.org/anthology/D15-1203
http://aclweb.org/anthology/D17-1004
http://aclweb.org/anthology/D17-1004
http://aclweb.org/anthology/D18-1244
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