
A Framework for On-line Learning of Underwater Vehicles Dynamic
Models

Bilal Wehbe, Marc Hildebrandt and Frank Kirchner

Abstract— Learning the dynamics of robots from data can
help achieve more accurate tracking controllers, or aid their
navigation algorithms. However, when the actual dynamics of
the robots change due to external conditions, on-line adaptation
of their models is required to maintain high fidelity perfor-
mance. In this work, a framework for on-line learning of robot
dynamics is developed to adapt to such changes. The proposed
framework employs an incremental support vector regression
method to learn the model sequentially from data streams.
In combination with the incremental learning, strategies for
including and forgetting data are developed to obtain better
generalization over the whole state space. The framework is
tested in simulation and real experimental scenarios demon-
strating its adaptation capabilities to changes in the robot’s
dynamics.

I. INTRODUCTION

Accurate modelling of robot dynamics is a critical aspect
for most of control algorithms, navigation, path planing and
robot simulation. At its core, a model describes the relation
between the robot’s states of motion, the actuation input and
the dynamic forces and torques in play. Typically, models are
manually engineered and fined-tuned to fit a specific robot
design or application. In practice, this involves computing
the inertia of the robot, Coriolis and centripetal forces, and
external forces such as damping and gravity. Well tuned
models would serve the control purpose given that the robotic
system is mechanically stationary and no external distur-
bances are to be expected. Nevertheless, a well-engineered
but fixed model will naturally have limited usability when
the mechanical structure of the system changes, or when
the operating environment is non-static. This situation arises
commonly in marine robotic applications, where changing a
sensor or payload on the robot will result in a completely new
hydrodynamic behaviour, not to mention the environmental
disturbances such as bio-fouling or density fluctuations that
can influence the model’s integrity.

Model learning is a technique that could avoid the manual
crafting of the dynamic models, where the dynamic relations
between the robot’s actions and states can be directly inferred
from the data collected during operation [1]. In the context
of non-stationary dynamics, on-line adaptation is a beneficial
perk for any control or navigation algorithm, since the
changes in the system’s dynamics can be captured [2].

This paper addresses the problem of on-line learning of
robot dynamic models, where we use an autonomous under-
water vehicle (AUV) named ”Dagon” as our test subject.

All authors are with DFKI - Robotic Innovation Center, and the Depart-
ment of Mathematics and Informatics, University of Bremen, Germany.
{name}.{lastname}@dfki.de

(a) Configuration 1: default configuration (b) Configuration 1 (per-
spective view)

(c) Configuration 2: with a sonar attached (d) Configuration 2 (rear
view)

(e) Configuration 3: with sonar, no front
hull.

(f) Configuration 3 (front
view)

Fig. 1. The AUV Dagon used as a platform in our experiments. Fig. 1a &
1b show the default configuration of the vehicle. Fig. 1c & 1d show dagon
equiped with a sonar. Fig. 1e & 1f show dagon equiped with a sonar but
with the front hull removed.

This vehicle was developed in the CUSLAM project [3]
and has been extensively modified and used in a number
of subsequent research activities [4], [5]. This included
the addition of a hydrodynamic hull around the pressure
compartments, as well as the implementation of multiple
additional sensor systems. This lead to a number of severe
changes in the vehicle’s hydrodynamic properties, some of
which are shown in Fig. 1. Where, the top figures (1a & 1b)
show the current default configuration of Dagon by which it
can be used for regular survey missions. The middle figures
(1c & 1d) show Dagon when equipped with an imaging sonar
as payload, whereas the bottom figures (1e & 1f) show a third
configuration that represents an accidental partial loss of the
vehicle’s hydrodynamic hull during operation.

Building upon our previous findings in [6], [7], we develop
a general framework for on-line learning of AUV dynamics.
Specifically, we use an incremental support vector regression
(IncSVR) algorithm to model the fully coupled non-linear
dynamics of the robot. To support the on-line adaptation, a
forgetting strategy is implemented using density estimation
technique to regulate pruning of the weights associated to
data samples from different model contexts. Additionally,
a node for including new data samples is used to prevent

the accumulation of redundant data, and an outlier rejection
node which is responsible for pruning faulty measurements.
The proposed framework is validated on a dataset collected
from a simulation, as well as a real dataset collected from
experimentation with Dagon given the configurations listed
above.

A. Related Work

Robotic model learning has been an active topic of re-
search during the last decade. There has been an extensive
work in the domain of humanoid and manipulator arms
dynamics, but not excluding any other domain of robotics.
A general survey on model learning for robot control can be
found in [1], as well a survey on on-line regression methods
for robot model learning is found in [2]. An infinite mixture
of linear experts approach was used in [8] to model the
dynamic contexts of a manipulator arm carrying different
weights. One drawback of this method is that all training
samples need to be stored in the memory. Since linear experts
model the dynamics only locally, the number of experts
increases quickly when modelling a more complex system.
The authors of [8] show that 60 experts where needed to
model only two contexts of the dynamics. A mixture of
Gaussian process (GP) experts with a support vector machine
(SVM) classifier was used to learn different contact models
of a manipulator arm in [9]. This method nevertheless did
not show any on-line adaptation rather the models were
trained offline. In [10], mixture of GPs was used to model
different dynamics of a wheeled robot loaded with different
weights. Benefiting from the Bayesian properties of GPs, a
Dirichlet process (DP) was used instead as an unsupervised
classifier. Two drawbacks of this method can be pointed
out. Although GPs are commonly used for modelling robot
dynamics, their cubic computational complexity O(n3) is a
major issue when used for on-line learning [11]. Secondly,
the Dirichlet process classifier is dependent on the density
distribution of the data, i.e. two datasets from the same model
but having different density distributions will be classified
as two different models. The authors of [12], [13] proposed
an online sparsification method by using an independency
measure to control the sample pruning. This method never-
theless suffers from high computational demand and memory
overhead since for a dictionary of saved data points of size
n, a matrix of size (n−1) has to be saved for every sample.

In the field of marine robotics, [14] used locally weighted
projection regression to compensate the mismatch between
the physics based model and the sensors reading of the AUV
Nessie. Auto-regressive networks augmented with a genetic
algorithm as a gating network were used to identify the
model of a simulated AUV with variable mass. In a previous
work [7], an on-line adaptation method was proposed to
model the change in the damping forces resulting from a
structural change of an AUVs mechanical structure. The
algorithm showed good adaptation capability but was only
limited to modelling the damping effect of an AUV model. In
this work we build upon our the results of [6], [7] to provide a
general framework for on-line learning of AUV fully coupled

nonlinear dynamics, and validating the proposed approach on
simulated data as well as real robot data.

II. ONLINE LEARNING OF AUV DYNAMICS

In this section, we introduce the main framework for on-
line learning of an AUV dynamic model. First, the dynamics
of an AUV are briefly introduced. Next, we introduce the
incremental support vector regression as the core learning
algorithm, followed by the strategies for including, forgetting
samples and outlier rejection.

A. AUV Dynamics

The standard dynamics of submersed vehicles are ex-
pressed as the combination of Newtonian rigid-body dy-
namics and radiation-induced forces and moments [15].
Radiation-induced forces and moments are expressed as
three components: (1) added mass due to the inertia of the
surrounding fluid, (2) potential damping, and (3) restoring
forces due to Archimedes. In addition to potential damping,
friction due to fluid viscosity and votrex shedding define the
total hydrodynamic damping [15]. Given η as the pose of
the body in a fixed reference coordinate frame, and ν as the
velocity in body-fixed coordinates, the full dynamics of the
body can be expressed as

ν̇ = M−1 (τ + ζ(η,ν, τ)− C(ν)ν − d(ν)− g(η)) , (1)

where M , C(ν)ν, d(ν), g(η), τ and ζ(η,ν, τ) are re-
spectively the combined rigid-body and added mass inertia
matrix, the Coriolis and centripetal effect, the hydrodynamic
damping effect, the restoring forces and moments, the exter-
nal forces applied to the body and the unmodelled effects.
A compact form of the dynamic model can be written as

ν̇ = F(η,ν, τ) . (2)

In this work, we model the thruster dynamics directly with
the vehicle model, thus we eq. (2) can be written as

ν̇ = F∗(η,ν,n) . (3)

where n is a vector representing the rotational velocities of
each thruster.

B. Model Learning with Incremental SVR

The goal of model learning is to estimate the function F∗
in equation (3), by having access to its inputs and outputs.
For such purpose, we use a method know as Support vector
regression (SVR) [16]. One of the advantages of this method
is that the model is represented by a smaller subset of the
training data known as the support vectors SV , which we
will make use of in the including and forgetting strategies
explained in details later. Another advantage is the lighter
computational cost O(n2) of this method, as compared to
Gaussian process regression.

SVR is a supervised learning method which takes in input-
output pairs as training data and learns the relation between
the input and the output. The goal is thus to fit a function
f(x) = Φ(x)Tw onto a training data set D = {(xi, yi)|i =
1, ..., n}, where Φ(x) is a mapping from the input space onto

a higher dimension, and w is an associated weight vector.
The weight vector can be expressed as a linear combination
of the input features w =

∑i=1
n ωiΦ(xi), thus the regression

function can be written as

f(x) =

i=1∑
n

ωi〈Φ(xi),Φ(x)〉 =

i=1∑
n

ωiκ(xi, x) , (4)

where κ is a kernel function and ωi are the linear weights to
be estimated. SVR uses the ε-insensitive function defined in
[16] as a loss function, which penalizes the residual of the
predicted output f(x) and its training value y only beyond a
margin ε. As opposed to GPR which estimates the weights
ωi by matrix inversion, SVR solves the problem by using the
Lagrangian multipliers optimization method. This transforms
the optimization into a convex problem as follows (a more
detailed explanation can be found in [16]) :

min
α,β

1

2

n∑
i,j=1

(αi − βi)(αj − βj)κ(xi, xj)

+ ε

n∑
i=1

(αi + βi)−
n∑
i=1

yi(αi − βi)
,

s.t. 0 ≤ αi, βi ≤ C ∀i : 1 ≤ i ≤ n ,
n∑
i=1

(αi − βi) = 0.

(5)

Where αi, β are the Lagrangian multipliers, C is a constant
that compromises between having a more generalizing model
with low weights or having too large deviations, and κ(x, z)
the kernel function. To solve (5), the sequential minimal
optimization method, as implemented in [17] was used,
resulting in the final regression function

f(x) =

m∑
i=1

(αi − βi)κ(xi, x) . (6)

As kernel we use the squared exponential defined as

κ(x, x′) = exp
(
−(x− x′)TS−1(x− x′)

)
(7)

where S = Σ/γ is a matrix proportional to the covariance
of the training data.

One advantage of SVRs is the ε-insensitive loss function
where all samples with a residual below the threshold ε are
assigned a zero weight; thus, the set of samples left are
used for producing predictions. These samples are called
the set of support vectors SV . Another beneficial aspect
of solving for the weights as an optimization problem is
the quadratic computational complexity O(n2) in contrast to
matrix inversion which is of cubic complexity O(n3).

However, for on-line learning continuous updates of the
estimated weights is required as the data arrives sequentially.
Starting from a set of support vectors with their correspond-
ing weights, as a new sample arrives it is added on top
of the existing samples and thus the new set is passed
to the optimization algorithm. The weights of the already
existing samples are kept as a starting point for the next
optimization step which results in a much faster conversion

since we start from a more optimal solution. Nevertheless,
having a stream of continuously arriving data will lead to
an unlimited growth of the set of support samples causing
the memory to increase boundlessly. To obey the memory
and computational constraints, we limit the set of support
samples to a fixed buffer. Therefore as new samples get in,
older samples has to be removed to keep a fixed size of
the buffer. The straight-forward way is to first remove the
oldest samples in the buffer, or what is commonly known as
first-in-first-out (FIFO), since assumingly they are the most
outdated samples. However, this approach could lead to a
dangerous situation where the model will lose information
about certain regions of the model space, if for a certain
reason the new coming samples get concentrated in a local
region. For example, if the mission requirements demands
the robot to operate in low speeds for a prolonged time, the
information about the dynamics in higher speeds can be lost
over time. To cope with such shortcoming we propose the
following strategies to control the adding and removal of data
samples form the SVR buffer.

1) Forgetting strategy: Given a limited buffer size, the
main idea of the forgetting strategy is to keep a balanced
global distribution of support vectors over the model’s sam-
ple space , as well as keeping the support samples inside the
buffer up-to-date. However, there must be a trade-off between
the density distribution of a sample inside the buffer and its
queue time. The higher the density and the older a sample
is, the more likely this sample will be removed. We define
thus the following metric

φ =
d√
ts + k

, (8)

where d, ts and k are respectively the density of a sample,
the time stamp when the sample was recorded, and a constant
weighting the importance of the age of the sample over its
density. We use the square root of the timestamp to avoid
very high values which would lead the forgetting score φ
to approach zero. Eventually, the samples with the highest
scores will be removed from the buffer until the maximum
allowed size is reached.

To estimate the density of the samples we use multivariate
kernel density estimation (KDE), where we average the
correlation of a sample with respect to its neighbouring
observations. The kernel function a measure of the corre-
lation between two samples, therefore a higher weight is
given if the samples are closer to each other whereas the
weight vanishes as the samples get more distant. The general
equation of a KDE can be written as

d(x) =
1

n

n∑
i=1

1

det(H)
κ
(
H−1(x− xi)

)
, (9)

where H is a nonsingular bandwidth matrix which need
to be tuned carefully. A cross-validation optimization is
quite costly with more variables in the input features vector.
To avoid computational power, we can reduce the cross-
validation optimization to tuning only one parameter by

Sample

collector
Data stream

Including

node
SVR learner

Forgetting

node

Outlier

rejection node

Fig. 2. Flow diagram of the on-line training framework.

choosing a bandwidth matrix that is proportional to the
covariance of the input data [18].

2) Including strategy: As the stream of data is fed into
the SVR learner, every sample is passed first through a
filtering gate to determine if it will be used by the learner or
discarded from the training step. The main motivation behind
this approach is to save memory and computational power
and as well prevent redundancy in the set of support vectors
learned by the model. In practice, new samples that fall in
a very close proximity of already existing support samples,
or the residual of the target and the prediction is less than
the threshold ε will not have any significant influence on
the regression function. Additionally we make benefit from
the kernel function to measure the proximity of a newly
arriving sample with respect to the support vectors. Thus,
a new sample (xi, yi) is discarded from training if for any
support vector (xsv, ysv) one of the following is true

κ(xi, xsv) > ξ and |f(xi)− yi| < ε (10)

κ(xi, xsv) > a and |yi − ysv| < b (11)

where ξ, a and b are constant thresholds that can be selected
through cross validation.

3) Outlier rejection: The last node of the framework is
to deal with outliers in the training data due to faulty sensor
measurements. Although most outliers will be filtered out
in the including node due to equation (11), a sample that
is not lying in the vicinity of any support sample would
still be considered as a novelty and admitted in for training.
Therefore, the outlier filter is applied on the set of support
samples after each training step. To satisfy on-line training
restraints, we keep a computationally low-cost approach for
filtering outliers. We compute the residue of each support
sample and its corresponding prediction

ressv = f(xsv)− ysv. (12)

The interquarile range (IQR) of the residuals are then com-
puted and all samples with their corresponding residuals
falling outside side of the range of

IQR = [q1− 1.5(q3− q1), q3 + 1.5(q3− q1)] (13)

are flagged as outliers. Here, q1 and q3 represent the limits
of the first and last quartile [19].

Finally, the overall framework can be viewed as five main
nodes as shown in Fig. 2. Data samples will be received
from the stream into the including node first, then passed

Algorithm 1 On-line Learning Framework
Input: new data sample (xi, yi)
Including:
for (xsv, ysv) in SV do

if eq. (10) or (11) are true then
delete (xi, yi)

Sample collector:
if (xi, yi) is not empty then

concatenate (xi, yi) and SV
Training:
solve eq. (5): compute αi and βi

Outlier rejection:
for (xsv, ysv) in SV do

compute ressv = f(xsv)− ysv
calculate IQR using eq. (13)
delete (xsv, ysv) with the corresponding res is outside IQR

Forgetting:
for (xsv, ysv) in SV do

compute φ using eq. (8) and (9)
while size of SV > buffer size do

delete (xsv, ysv) with the highest φ

into the sample collector where they are merged with the
processed buffer of support samples from the previous step.
The stack of new training samples and older support samples
are then fed into the training node. The resulting new set of
support vectors are then processed by the outlier rejection
and forgetting nodes and made ready for the next iteration.
A pseudocode of the overall framework can be found in
Algorithm 1. We note here that although our framework uses
SVR, which unlike GPR, does not estimate a true confidence
interval on prediction, using the kernel density estimation can
provide a measure of uncertainty of a prediction.

III. EVALUATION AND RESULTS

In this section, we present the evaluation procedure of our
approach, where we test its performance on two datasets,
one acquired from simulation and one from an actual ex-
perimental trial with the robot. Dagon is a hovering type
AUV equipped with two vertical thrusters for depth and
pitch stabilization (roll is passively stable), and three lateral
thrusters that are used differentially to control the vehicle in
the surge, sway and yaw directions. Stabilizing the vehicle in
depth and pitch will help us to reduce the dimensionality of
the problem, where the regression problem is then formulated
as a mapping between an input feature vector composed
of the vehicle’s surge, sway and yaw velocities and the
lateral thrusters’ rotational speed, and an output target vector
defined as the the vehicle’s acceleration in surge sway and
yaw.

test configuration 1 test configuration 2 test configuration 3
0.0

0.2

0.4

0.6

0.8

1.0

C
o
e
ff

ic
ie

n
t

o
f

D
e
te

rm
in

a
ti

o
n
 (

R
2
)

baseline 1 - Sim

baseline 2 - Sim

baseline 3 - Sim

baseline 1 - Real

baseline 2 - Real

baseline 3 - Real

Fig. 3. Validation results of the offline trained models. Every model is
trained with data from one configuration at a time, and then tested against
the validation data of all three configurations. The validation results of each
model shows a high score when trained and tested on data from a single
configuration whereas a lower score is observed when testing with other
configurations.

A. Data Acquisition

1) Simulation Setup: As a first evaluation step of our on-
line learning framework, we design a simulation environment
for Dagon that allows us to easily induce changes into the
dynamics. For the dynamics simulation we use the under-
water dynamics plugin1 [20] for the Gazebo simulator [21].
A dataset is collected for three different configurations of
the vehicle’s dynamics, where the first simulates the default
configuration of the robot, the second represents a damage in
one of its thrusters, and the third represents a change in the
damping effect due to a mechanical change in the vehicle’s
structure. Actuation inputs are given to the later thrusters in
the form of a sinusoidal signal of varying frequencies in order
to cover a bigger range of the model’s state space. Every
thruster is given a different sine wave with a period that
changes randomly between 20 and 70 seconds. We sample
the simulation at a frequency of 1 Hz, generating a dataset
of 30,000 samples in total, divided equally between the three
mentioned configurations.

2) Experimental Setup: A set of experiments were carried
out with Dagon in a salty water basin with a static water
volume and no induced currents. The vehicle was controlled
in a similar fashion as in the simulation, where we stabilize
pitch and depth and let it run freely in a horizontal plane by
using its lateral thruster. Dagon is equipped with a number of
navigation sensors from which we will use a doppler velocity
log (DVL) to measure the linear velocities and a fiber-optics-
gyroscope to measure the angular velocities. All thrusters
are also equipped with Hall effect sensors to measure their
rotational speeds. Similar to the simulation runs, the thrusters
receive a separate sinusoidal command with randomly shift-
ing periods. A separate trial was conducted for each of the
configurations shown in Fig. 1, resulting in a dataset with
31300 samples, split as 11567, 10050 and 9683 samples
respectively for configurations 1, 2 and 3.

B. Offline Learning

For each of the two test scenarios; simulation and real data;
80% of the data is used for training and 20% for validation.
The splits are done in a stratified manner, which means for

1github.com/rock-gazebo/simulation-gazebo underwater

TABLE I
RESULTS OF HYPERPARAMETER OPTIMIZATION

Hyperparameter Surge Sway Yaw
ε 0.1 0.001 0.1
C 10 10 10
γ 100 40 20

buffer size 900 900 900
k 10 10 1
a 0.99 0.99 0.99
b 10−2 10−2 10−2

ξ 0.99 0.99 0.99

each different configuration, 20% of the data is left out for
validation and the rest is used for training. As a goodness-
of-fit scoring metric, we use the coefficient of determination:

R2 = 1−
∑n
i=1(ypredictedi − ytruei)2∑n

i=1(ȳ − ytruei)2
, (14)

where ȳ is the mean of ytrue. For each of the two datasets, we
train three separate models as baselines for our evaluation.
This means, a separate SVR is trained with the data corre-
sponding to each configuration. Thus, the notation ”Baseline
1 - Real” means a model is trained with the data from
configuration 1 of the real dataset, ”Baseline 2 - Sim” would
indicate a model is trained with the second configuration of
the simulation data, and so forth. Each baseline model is a
supervised SVR by itself that has been cross-validated with
the validation data to ensure the highest performance that
could achieved. In Fig. 3 we report the validation scores of
all six models tested with the validation sets of every config-
uration separately. The blue, orange and green bars represent
the scores of the baselines trained with configurations 1, 2
and 3 of the simulation data respectively, whereas the red,
purple and brown bars correspond to the baselines of the real
data. It can be observed in both scenarios, that every model
achieves a high validation score when it is trained and tested
on data from the same configuration, whereas lower scores
are reported when tested on data from other configurations.
These results are not very surprising as they demonstrate
that any static model trained with one configuration of
dynamics cannot describe accurately other configurations,
which emphasizes the need of on-line adaptation.

C. On-line Learning with Changing Dynamics

In this section we demonstrate the capability of the
proposed algorithm of on-line learning and adapting to the
changes in dynamics. We use the same splits of the data
as of the offline scenario, but this time the data is provided
sequentially to the learner. The evaluation scheme used is
described as the following. (1) We continuously evaluate the
performance by testing on the validation data after every
training step, as the training data stream is fed in. (2) We
evaluate always on the validation data that corresponds to
the training data seen by the learner, i.e., if training data
from the first configuration is observed by the learner, then
evaluation is done on the validation data from the first
configuration as well. First, the hyper-parameters for the
SVR as well as the additional parameters due to the including

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0.2

0.0

0.2

0.4

0.6

0.8

1.0
C

o
e
ff

ic
ie

n
t

o
f

D
e
te

rm
in

a
ti

o
n
 (

R
2
)

Configuration 1:
default shape

Transition to Configuration 2:
Sonar attached

Transition to Configuration 3:
Sonar attached + no front hull

Fig. 4. This figure shows the evolution of the performance score (R2) on the validation data as the training data is fed in to the estimator. The interval
(0-3000s) represents the default configuration of Dagon, where one can notice the prediction on the validation data gets more and more accurate as the
data flows in. The second interval (3000-5700s) corresponds to the data from the second configuration. Here the validation data is changed also the second
configuration, which explains the drop in the performance. The accuracy then increases gradually as the model adapts to the newly arriving data, reaching
a score equivalent to the offline baseline. The last interval (5700-8300s) shows the adaptation to the third configuration of the robot.

0 5000 10000 15000 20000 25000
Time (s)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
o
e
ff

ic
ie

n
t

o
f

D
e
te

rm
in

a
ti

o
n
 (

R
2
)

with including and forgetting nodes

FIFO approach

SOSVR

(a) Simulation data

0 2000 4000 6000 8000
Time (s)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
o
e
ff

ic
ie

n
t

o
f

D
e
te

rm
in

a
ti

o
n
 (

R
2
)

with including and forgetting nodes

FIFO approach

SOSVR

(b) Real data

Fig. 5. Comparison between the proposed framework, SOSVR and the FIFO approach. (a) shows the results from the simulation data whereas (b)
shows the results of the real data. The blue line in both cases represents the R2 score of the proposed framework the including and forgetting strategies,
whereas the orange line shows the performance with a FIFO approach, and the SOSVR in green. In both scenarios the FIFO approach reports an unstable
performance since only the oldest samples are removed from the buffer without taking into account the distribution of support samples across the sample
space.

and forgetting nodes were optimized using only the data from
the first configuration, and fixed for the rest. The values of
the hyper-parameters chosen via cross-validation are reported
in TABLE I.

In Fig. 4, the propagation of the R2 score of the real
data is plotted, as the training takes place. This score results
from testing against the validation data after every training
step. The training is started from scratch without any prior
knowledge of the model. We start by feeding in the training
data from the first configuration of the robot, at this point the
validation data correspond to the first configuration as well.
At the early stages, a very low performance can be observed
since the model has not gained enough information about the
full dynamics. As time passes by, the learner experiences
more training data, which shows a gradual increase in the
performance until it reaches a comparable value to the offline
baseline (”Baseline 1 - Real”). At this point, a general
description of the dynamics of the first configuration is
learned. At around 3000 seconds, a transition to the second
configuration of the robot starts. From this point on, the vali-
dation is switched to the second configuration as well, where
a drop in the performance can be noticed since the memory
of the learner is still populated with information about the
old configuration. As time progresses, the evaluation score
increases again as the model adapts to the new configuration.

A similar behaviour can also be observed from 5700 seconds
on, where the data from the third configuration flows in. It
can be noticed that the proposed on-line method adapts well
to new configurations of the dynamic, as well as being able
to reach, in every configuration, a performance comparable
to the corresponding offline baselines. After every training
set is finished, the prediction results over the corresponding
test set are shown in Fig. 6.

D. Discussion

In this section we demonstrate the necessity of the includ-
ing and forgetting strategies as we compare the performance
of the proposed framework with the FIFO approach as well
as the sparse-online-SVR (SOSVR) presented in [12]. For the
FIFO model, we use the same incremental SVR approach
with a fixed buffer, but with removing the oldest samples
first as new samples are included. A grid search is used to
optimize the hyperparameters of the SOSVR. Fig. 5 shows a
comparison between all three methods for the simulation and
the real test scenarios. The scores of the method presented in
this paper are showed in blue whereas the FIFO method is
plotted in orange and the SOSVR in green. In the early stages
of training, it can be observed that all methods report similar
validation scores. As the training continues, our approach
shows a consistent performance in both cases, where the

0.1

0.0

0.1

u
(m

/s
2
)

Test set 1 Test set 2 Test set 3

0.05

0.00

0.05

v
(m

/s
2
)

0 200 400 600

0.25

0.00

0.25

r
(r

d
/s

2
)

0 200 400 600
Time (s)

real

prediction

0 200 400 600

Fig. 6. Prediction results computed at the end of every training set just
before switching to a new configuration. Note that all test sets are separate
data that the online model did not see at training time.

performance converges to a stable and accurate state. On
the other hand, as the buffer of the FIFO method gets fully
occupied, removing only the oldest samples in the buffer
results in an unstable and jittery performance. The fluctuation
of the validation score of the FIFO method can be observed
throughout the whole training process. This behaviour can
be interpreted by the uncontrolled pruning of data, which
results in loss of important information in some regions of the
model’s state space. Alternatively, incorporating the density
of the support samples into the pruning procedure, helps
keeping a balanced distribution, yet up-to-date samples in
the learning buffer. On the other hand, the SOSVR method
shows consistent adaptation with changing dynamics but a
significant lower accuracy compared to the method proposed
in this work.

IV. CONCLUSIONS

In this work we presented a framework for learning on-line
the model of a robot and adapting to changes in its dynamics.
An including and forgetting strategies were developed to con-
trol the pruning of old data data, without losing information
about the global state space of the model. The proposed
framework was validated in two test scenarios, a simulation
and real experimental data from an AUV with different
configurations, which showed its adaptation capabilities to
the new dynamics.

As future work, we aim extend this method to include a
database where the learned models can be stored and reused
by the robot if a similar situation is encountered again.

ACKNOWLEDGMENT

This work was supported by the Mare-IT (grant No.
O1lS17029A) and EurEx-SiLaNa (grant No. 50NA1704)
projects which are funded by the German Federal Ministry
of Economics and Technology (BMWi).

REFERENCES

[1] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey,” Cognitive processing, vol. 12, no. 4, pp. 319–340, 2011.

[2] O. Sigaud, C. Salaün, and V. Padois, “On-line regression algorithms
for learning mechanical models of robots: a survey,” Robotics and
Autonomous Systems, vol. 59, no. 12, pp. 1115–1129, 2011.

[3] M. Hildebrandt and J. Hilljegerdes, “Design of a versatile auv for
high precision visual mapping and algorithm evaluation,” in 2010
IEEE/OES Autonomous Underwater Vehicles, Sept 2010, pp. 1–6.

[4] M. Hildebrandt, C. Gaudig, L. Christensen, S. Natarajan, P. Paranhos,
and J. Albiez, “Two years of experiments with the auv dagon - a
versatile vehicle for high precision visual mapping and algorithm eval-
uation,” Proceedings of the 2012 IEEE/OES Autonomous Underwater
Vehicles (AUV), Southampton, UK, pp. 24–27, 2012.

[5] B. Wehbe, M. Hildebrandt, and F. Kirchner, “Experimental evaluation
of various machine learning regression methods for model identifica-
tion of autonomous underwater vehicles,” in Robotics and Automation
(ICRA), 2017 IEEE International Conference on. IEEE, 2017, pp.
4885–4890.

[6] B. Wehbe and M. M. Krell, “Learning coupled dynamic models of
underwater vehicles using support vector regression,” in OCEANS
2017 - Aberdeen, June 2017, pp. 1–7.

[7] B. Wehbe, A. Fabisch, and M. M. Krell, “Online model identifi-
cation for underwater vehicles through incremental support vector
regression,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sept 2017, pp. 4173–4180.

[8] L. Jamone, B. Damas, and J. Santos-Victor, “Incremental learning
of context-dependent dynamic internal models for robot control,” in
Intelligent Control (ISIC), 2014 IEEE International Symposium on.
IEEE, 2014, pp. 1336–1341.

[9] R. Calandra, S. Ivaldi, M. P. Deisenroth, E. Rueckert, and J. Peters,
“Learning inverse dynamics models with contacts,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), May
2015, pp. 3186–3191.

[10] C. D. McKinnon and A. P. Schoellig, “Learning multimodal models for
robot dynamics online with a mixture of gaussian process experts,” in
Robotics and Automation (ICRA), 2017 IEEE International Conference
on. IEEE, 2017, pp. 322–328.

[11] E. Rueckert, M. Nakatenus, S. Tosatto, and J. Peters, “Learning inverse
dynamics models in o (n) time with lstm networks,” in Proceedings of
the International Conference on Humanoid Robots (HUMANOIDS),
2017.

[12] D. Nguyen-Tuong, B. Schölkopf, and J. Peters, “Sparse online model
learning for robot control with support vector regression,” in 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2009, pp. 3121–3126.

[13] D. Nguyen-Tuong and J. Peters, “Incremental online sparsification for
model learning in real-time robot control,” Neurocomputing, vol. 74,
no. 11, pp. 1859–1867, 2011.

[14] G. Fagogenis, D. Flynn, and D. M. Lane, “Improving underwater
vehicle navigation state estimation using locally weighted projection
regression,” in Robotics and Automation (ICRA), 2014 IEEE Interna-
tional Conference on. IEEE, 2014, pp. 6549–6554.

[15] T. I. Fossen, Marine control systems: guidance, navigation and control
of ships, rigs and underwater vehicles, 2002.

[16] A. J. Smola and B. Schölkopf, “A tutorial on support vector regres-
sion,” Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

[17] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 27:1–27:27, 2011, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[18] W. K. Härdle, M. Müller, S. Sperlich, and A. Werwatz, Nonparametric
and semiparametric models. Springer Science & Business Media,
2012.

[19] P. J. Rousseeuw and C. Croux, “Alternatives to the median absolute
deviation,” J. Amer. Statist. Assoc., vol. 88, no. 424, pp. 1273–1283,
1993.

[20] J. Britto, A. Conceio, S. Joyeux, and J. Albiez, “Improvements in
dynamics simulation for underwater vehicles deployed in gazebo,” in
OCEANS 2017 - Anchorage, Sept 2017, pp. 1–6.

[21] N. P. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator.” in IROS, vol. 4. Citeseer,
2004, pp. 2149–2154.

[22] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Model learning with
local gaussian process regression,” Advanced Robotics, vol. 23, no. 15,
pp. 2015–2034, 2009.

