
Figure 1: Overview of a human translator
interacting with a variety of AI-based sup-
port tools.
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ABSTRACT
Current advances in machine translation increase the need for translators to switch from traditional
translation to post-editing of machine-translated text, a process that saves time and improves quality.
Human and artificial intelligence need to be integrated in an efficient way to leverage the advantages
of both for the translation task. This paper outlines approaches at this boundary of AI and HCI and
discusses open research questions to further advance the field.
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INTRODUCTION
As machine translation (MT) has been making substantial improvements in recent years, more and
more professional translators are integrating the technology into their translation workflows [10].
The process of using a pre-translated text as a basis and improving it to the final translation is
called post-editing (PE). It combines the advantages of both artificial intelligence (AI) and human
intelligence: while the AI is good at quickly proposing draft translations of nowadays often high
quality, a human with high proficiency in source and target language is needed to ensure that the
meaning is identical, to analyze lexical and semantical nuances, and to understand the segment of
text in a large (con)text, including the target audience, their cultural background etc. Apart from
providing an initial translation, several AI-powered tools support this PE process and are integrated
into so-called computer-aided translation (CAT) tools. While older research showed a strong dislike
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of translators towards PE [4], a more recent study [2] demonstrated that translators strongly prefer
PE and argues that “users might have dated perceptions of MT quality”. It has been shown that PE
can not only yield productivity gains of 36% [9], but that it also increases the quality [2]. This paper
discusses how human and artificial intelligence can be combined for efficient language translations,
which tools already exist and which open challenges remain (see Figure 1).

HARNESSING SYNERGIES BETWEEN AIS AND HUMANS
Draft Proposal
The PE process starts with an initial draft that is proposed by the AI and which the human uses as
a basis. There are two main sources for this proposal: a machine translation (MT) and a translation
memory (TM). Simply put, TMs are large databases containing already completed human translations
which are matched (using fuzzy or exact matches) against the sentence to be translated to provide
a starting point for PE. Machines can easily generate a variety of probable translations from (a
combination of) MT and TM instead of only a single one; however, proposing too many and maybe
even highly similar translations could overwhelm the human. The question of how to find a good set
of translation suggestions to facilitate the overall translation process remains an open challenge.

Quickly Finding and Correcting Errors
The human’s job now is to quickly find mistakes in the MT or TM outputs. So far, different support
tools have been suggested for this task: Quality Estimation (QE) tools estimate the quality of an
automatic translation without access to a reference translation [8], alignments between source and
MT help quickly comparing the individual parts of complex sentences and their translations [7], and
color coding is used to show the similarity between input sentences and TMmatches [5]. Furthermore,
term bases and consistency checkers ensure consistency throughout documents, and concordance
search provides ideas on how to best use words from a large corpus. This raises the question which
other tools could well support humans in finding and correcting errors within a machine-generated
translation proposal. Further work should ensure that these tools do not wrongly bias the human, e.g.
that s/he does not miss errors when the QE assumes the quality to be good.

Intelligent Adaptations to Human Corrections
Instead of only providing the best translation, MT can also be used to dynamically provide the
human with alternatives for the remainder of the sentence when clicking on a word. More generally,
interactive MT (IMT) tries to guess which output translation the human is going to produce given
both MT input and manual changes to the input. Are there more appropriate visualizations than just
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showing the impact of changing a single word on the remainder of the sentence? Could visualizing a
“change-tree” support the process further, or would it confuse and overload the human translator?

Usable and Efficient Interfaces
When comparing traditional translation to PE using all of the above support tools, one notices that
the task changes considerably from mostly text production to comparing and adapting MT and TM
proposals with the help of AI-powered support tools. Nevertheless, CAT interfaces still look very
similar to interfaces used for translation from scratch and simply added those tools as additional
features. When looking at PE interaction patterns, however, one can see that there is a significantly
reduced amount of mouse and keyboard events [2]. One should therefore also explore modalities
other than mouse and keyboard which could facilitate these new operations [3].

Avoiding Repetitive Mistakes
Even if a human translator can efficiently translate using all the above tools and improved interfaces,
s/he still does not want to correct repetitive mistakes of a MT again and again. A single corrected
output added to the training data is very unlikely to sway a big model and there is no guarantee that
the updated model is able to avoid the mistake in future. One approach to tackle this issue is to use
Automatic Post-Editing (APE) [6] to incrementally adapt MT to post-edits. APE can be seen as a 2nd
stage MT system, that takes the source, the first stage MT output, and the human post-edits and
learns a function mapping source and MT to these post-edits. Thus, no full re-training of the large
first stage MT system is required, while the corrections and individual stylistic preferences of the
translator can be considered with a faster-to-train second stage model.

Considering Human Physiology and Behavior
Especially the PE task has the potential of inducing high cognitive load (CL) on the translator: it
involves continuous scanning of texts, including source, the incrementally evolving final translation
output and possible error-prone MT output for mistakes, (sub-) strings that can be reused, text that
has been translated, text that still needs to be translated, etc. An interesting direction for future
research, with only few publications so far, is therefore to use measures proposed in HCI that allow
estimating a human’s CL [1] while post-editing. For example, one could integrate measures based on
e.g. gaze data, heart measure, or skin resistance to detect parts that are tough to read and then to
automatically propose alternatives and use this feedback to better train MT systems for the future.

Correct Bias of MT Models
Another interesting direction of future research is to develop tools that help humans in detecting social
bias in MT models. A frequently used example for such bias is the translation from the gender-neutral
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form “o” in Turkish to English, which results in translations like “he is a doctor” or “she is a nurse”.
While avoiding bias in AIs is being researched from the AI side, tools that help human translators to
identify and correct such bias still require further research and are of the utmost importance to avoid
the creation of even more biased translations that are used to train future MT systems.

CONCLUSION
To conclude, it will probably take a long time until machines are able to solve translation for every
possible domain and every language pair without the help of humans. Therefore, researching better
synergies between human and AI translators remains an important topic. The combination of AI
and human intelligence leads to faster translation of higher quality. This paper outlined a variety of
existing approaches to facilitate synergies and showed future directions of research.
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