Correct Modification of Complex Plans !
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Abstract. We present a general approach to flexible plan
modification based on a deductive framework that enables a
planner to correctly modify complex plans containing control
structures like conditionals and iterations.

1 Introduction

Work on plan reuse and modification is motivated by expected
gains in flexibility and efficiency when planners are provided
with the ability to modify and reuse plans. The need to modify
existing plans occurs when execution fails, where a plan has
to be revised in the light of new information, and when a plan
specification is changed, i.e.; a plan has to be adapted to new
requirements.

While there exist frameworks extending STRIPS-based plan-
ners, e.g., the PRIAR system [10] and the SPA system [7], there
are no approaches which study plan reuse and modification
in the context of deductive planning[6, 14, 2, 15].

Following a logical approach, plan modification leads to
modified plans which are provably correct. Furthermore, since
plan modification is done deductively, a semantic comparison
of planning problems is possible instead of a syntactic match.
A general formalism with clearly defined semantics is obtained
and the formal view facilitates the investigation of theoreti-
cal properties [16, 17]. While current approaches are limited
to the modification of sequential plans containing no control
structures, this approach enables a system to automatically
modify sequential, conditional, and iterative plans.

2 Formalization of Plan Modification

In deductive planning systems, planning problems are given
as formal plan specifications, i.e., formulae in the underlying
logic. Plan generation is done by a constructive proof of a
specification formula Specold leading to a plan Plangqg that
is sufficient for the specification. A plan Plan,,; is a solution
for another specification Spec__  if Spec_,, entails Spec
i.e., each solution for Spec_,, is a solution for Spec, . :

new’

Specold |: Specnew

If this relationship holds, then Spec,_, is a logical instance
of Spec_,, and thus, solving Spec_,, is sufficient for solving
Specnew. An instance of the reused plan Plan,;q will therefore
also solve the current planning problem.
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A deductive proof attempt is suitable to show this rela-
tionship between the two plan specifications: in general, plan
specifications comprise a description of the preconditions, pre,
which hold in the initial state and a description of the goals,
goal, the plan has to achieve. Therefore, we show Spec_,, =
Spec,,.,, by attempting to prove that

Prénew — preoig and  goalog — goalpew

hold. If both subproofs succeed we know that firstly, the
current preconditions prene, are sufficient for the precondi-
tions preoq the reused plan Plan,q requires and that second-
ly, the goals goalsq achieved by Plangy are sufficient for the
currently required goals goalye.,. This means the reused plan
is applicable in the current initial state and it achieves at least
all of the currently required goals.

The proof attempt enables a planner to compare plan-
ning problems deductively in order to find out whether the
reuse candidate is “sufficiently similar” to the current plan-
ning problem, i.e., whether their preconditions and goals are
to a large extent common. The comparison requires us to per-
form unification operations during the proof, i.e., we apply
substitutions such that variables from Spec_,, are instantiat-
ed with terms from Spec__ . Furthermore, different variables
must be mapped to different terms, i.e., the substitutions
must be injective. Injectivity may not always be required but
it is a save condition ensuring that a proper instance of the
reuse candidate is computed during the proof.

Based on this formal framework, plan modification pro-
ceeds in two phases:

1. Plan Interpretation: The relation between the precondi-
tions (precondition proof) and goals (goal proof) is proved.
During the proof, knowledge about regularities of the appli-
cation domain that is represented in the form of deduction
rules can be applied. If the proof succeeds, an instance of
Plangiq is computed satisfying Specnew, otherwise refitting
information is extracted from the failed proof.

2. Plan Refitting: Plan refitting tries to modify the reuse
candidate in accordance with the result of the interpreta-
tion phase, i.e., it constructs a plan skeleton that the plan-
ner can exploit in generating a solution. The plan skeleton
is extended to a correct plan by wverifying reused subplans
and by generating new subplans for open subgoals. Thus,
plan refitting constrains the current planning process by
providing the planner with reusable “pieces of information”
in the form of action instances and control structures.
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3 Deductive Plan Modification in MRL

The formal framework presented in the previous section pro-
vides the basis for the reuse component MRL [13, 11] that
has been developed as an integrated part of the deductive
planner PHI [4, 1]. The underlying planning formalism is the
modal temporal logic LLP that possesses an interval-based
semantics [3].

LLP provides the modal operators O (next), & (sometimes),
O (always) and the binary modal operator ; (chop) which
expresses the sequential composition of formulae. The only
“fluents” available in LLP are local variables, i.e., changes
of states are reflected in changed values of these variables.
Plans are represented by a certain class of LLP formulae.
They may contain basic actions which are expressed by the
execute predicate ex and control structures like conditionals
(if-then-else) and iteration (while).

Plan generation is done deductively by performing con-
structive proofs of plan specifications in a sequent calculus
which was developed for LLP. Plan specifications are LLP
formulae of the form [Plan A precondition] — goal, i.e., if the
Plan is carried out in a state where the preconditionholds then
a state will be achieved satisfying the goal. During the proof,
the planvariable Plan is replaced by a plan formula satisfying
the specification. The proofs are guided by tactics which can
be described in a tactic language [3] provided by the system,
an idea which was borrowed from the field of tactical theorem
proving [5, 8, 18].

The application domain of PHI is the UNIX mail domain
where objects like messages and mailbozes are manipulated by
actions like read, delete, and save. The atomic actions avail-
able to the planner are the elementary commands of the UNIX
mail system. For example, the axiomatization of the save-
command reads

open_flag(m) = T A delete_flag(msg(z, m)) = FA
ex(save(z, f,m))
— O [file(msg(x,m)) = f A save_flag(msg(x, m)) =T

The state of a mailbox may change from state to state, i.e.,
mailboxes are represented as local variables. As a precondi-
tion, the save-command requires that the mailbox m is open,
ie., its open_flag yields the value érue (T') and that the mes-
sage = has not yet been deleted, i.e., its delete_flag yields the
value false (F'). As an effect, the message r from the mailbox
m is saved in a file f and its save_flag is set to the value true
in the next state.

In the following, we discuss an example in which an it-
erative plan is modified. Assume that the current planning
problem Spec, . is specified as

w

Plan A open_flag(mb) = T' A
V mail [ sender(msg(mail, mb)) = Joe
— delete_flag(msg(mail, mb)) = F]
— & Vmail [ sender(msg(mail, mb)) = Joe (1)
— read_flag(msg(mail, mb)) = T A
save_flag(msg(mail, mb)) = T A
delete_flag(msg(mail, mb)) = T']

The specification describes the goal “Read, save and delete
all messages from sender Joe” under the precondition that the
mailbox is open and no message from Joe has yet been deleted.
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Assume that furthermore, the search in the plan library as
described in [11] has retrieved the reuse candidate Spec_,

Plan Aopen_flag(m) =T A
Vz[sender(msg(z,m)) = s
— delete_flag(msg(z, m)) = F]
— Olscreendisplay = select_msgs(s, m) A (2)
OV [sender(msg(z, m)) = s
— read_flag(msg(z,m)) =T A
file(msg(z,m)) = f]]

which achieves a subset of the current goals under the same
preconditions by executing the plan Plangg

ex(from(s,m));n:=1;
while n < length(m) do
if sender(msg(n,m)) = s
then ex(type(n,m));ex(save(n, m))
else ex(empty_action);
n:=n-+1od

In the example, an iterative plan has to be modified, in
which a case analysis occurs. The plan specifications con-
tain universally quantified conjunctive goals, disjunctive and
negated atomic preconditions and goals as well as the speci-
fication of temporary subgoal states with the help of nested
sometimes operators.3

3.1 Plan Interpretation

The plan interpretation phase performs the two subproofs
Prénew — preocig and goaloig — goalpew.

The relation between preconditions and goals could also be
checked by syntactically comparing the state descriptions as
in most plan reuse systems. Performing a proof of the formu-
lae can be viewed as a semantic comparison. During a proof,
knowledge concerning regularities in the planning domain is
applied that can be extracted, e.g., from the action axiom
schemata available to the planner. For example, from the ax-
iomatization of the save-command we can derive the rules

save_flag(msg(z,m)) =T
— file(msg(z,m)) = f (3)
file(msg(z,m)) = f — (4)

save_flag(msg(z,m)) =T

reflecting the relationship between the atomic effects of this
command, i.e., whenever the save_flag of a message has been
set to T' then there must be a file in which the message has
been saved and vice versa.

The validity of the relation between the preconditions prenew
and preoiq is obvious. The proof of the relation between the
goals requires the following sequent in the LLP sequent cal-
culus to be proved:

3 Observe that A — B is equivalent to “AVB, i.e., a goal containing
an implication can be considered as a disjunctive goal.
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Olscreendisplay = select_msgs(s, m) A
OV [sender(msg(z, m)) = s
— read_flag(msg(z,m)) =T A
file(msg(z,m)) = f]]
= (5)
OV mail [ sender(msg(mail, mb)) = Joe
— read_flag(msg(mail, mb)) = T A
save_flag(msg(mail, mb)) = T A
delete_flag(msg(mail, mb)) = T']

A special-purpose proof tactic guides the proof attempt in
the LLP sequent calculus. The use of tactics supports the
declarative representation of control knowledge. The search
space considered during the proof can be kept to a manageable
size and only those deduction steps which appear to be the
most promising are performed, i.e., we give up completeness
in order to achieve efficiency [16]. Figure 1 sketches a part of
the tactic goal_tac that is used in the example.

goal_tac(goal_seq, Axioms):-
apply_rule_strict(left_sometimes,goal_seq,seql ),
iterate_rule(left_and, seql,seq2),
or_else(call_tac(close_leaves,seq2, Azioms),
call_tac(goal_tac,seq2, Azioms)).

close_leaves(seq2, Axioms):-
apply_rule_strict(right_sometimes,seq2,seq3),
call_tac(derive_azioms,seq3, Azioms).

Figure 1. Sketch of the goal-proof Tactic

The tactic specifies a well defined ordering of deduction rule
applications. It is composed of tacticals [3] like iterate_rule,
apply_rule_strict, and call_tac. Each tactical specifies a spe-
cific mode of rule or tactic applications. The tactical ap-
ply_rule_strict applies the rule specified in its first argument
to a sequent specified in its second argument and returns as a
result the sequent specified in its third argument. The tacti-
cal iterate_rule repeats a rule application as long as possible,
while the tactical call_tac calls another tactic. The following
sequent rules are applied by the tactic goal_tac:

IAB= A
o ———————— lefteand (IN)
T,AAB = A
I's AA I's B,A
. right_and (rA)
I'= AAB,A
I A= A* , \
o ———————— left_sometimes (1)
IOA= A
I's AA ) .
o ——————— right_sometimes (r{)
= ¢4 A

The proof tactic is designed in such a way that it always ter-
minates. In addition, it is considered as a decision procedure:
if the tactic does not construct a proof tree, it is assumed that

4 With T* and A*: T* £ {0B|OB € T} and A* £ {6B[OB € A}.
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no proof is possible and that a falsifying valuation for some
of the leaves in the deduction tree has been obtained.

The tactic proceeds recursively over the sometimes oper-
ators in both goal specifications in order to compare every
temporary subgoal state specified in goaloq with each of the
temporary subgoal states from goalnew.

In the example, the tactic is called with sequent 5 as input
argument. In a first step, it has to apply rule [ and rule IA
to sequent 5 which lead to sequent 6:

‘ screen_display = select_msgs(s,m) ‘,

OV [sender(msg(z, m)) = s
— read_flag(msg(z,m)) =T A
file(msg(z,m)) = f]
= (6)
OV mail [ sender(msg(mail, mb)) = Joe
— read_flag(msg(mail, mb)) = T A
save_flag(msg(mail, mb)) = T A
delete_flag(msg(mail, mb)) = T']

With the framed formula, the first temporary subgoal from
goaloqg has been isolated. In the example, the specification of
goalye,, contains only one temporary subgoal. The goal tactic
calls now the tactic close_leaves that tries to prove a subgoal
from goalse. in using the isolated subgoal from goal,q. Ob-
viously, this is impossible and such the tactic terminates with
a failure. As close_leaves failed, the goal tactic is recursively
called with sequent 6 as input argument. Applying the rule
[ to sequent 6 again leads to sequent 7. Note that rule IA
cannot be applied and thus leaves the sequent unchanged.

V& [sender(msg(z, m)) = s
— read_flag(msg(z,m)) =T A
file(msg(z,m)) = f]
=
OV mail [ sender(msg(mail, mb)) = Joe
— read_flag(msg(mail, mb)) = T A
save_flag(msg(mail, mb)) = T A
delete_flag(msg(mail, mb)) = T']

Now, the tactic close_leaves applies the rule r<{ leading to
sequent 8:

V& [sender(msg(z, m)) = s
— read_flag(msg(z,m)) =T A
file(msg(z,m)) = f]
=
V mail [ sender(msg(mail, mb)) = Joe
— read_flag(msg(mail, mb)) =
save_flag(msg(mail, mb)) =
delete_flag(msg(mail, mb)) = T]

The tactic derive_axioms calls a specialized tactic dealing
with universally quantified goals. This tactic aims at isolat-
ing and comparing each of the atomic subgoals occurring in
goaloig and goalpe,,. Consequently, the atomic subformulae
must be separated by further sequent rule applications. The
tactic applies the rules rV, [V followed by the rules + — and
{ — as shown below.

I, Ale/z] = A
IVeA= A

v
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I'=> A, Ala/z]
NNV
I's AA B=A
I''A—B=A
[,A= BA
= A— B, A

r —

universal_goal_tac(subgoal, Azioms):-
apply_rule_strict(rV subgoal, seq1),
apply_rule_strict(IV,seql ,seq2)
apply_rule_strict(r — seq2,seq3)
apply_rule_strict(l — seq3,seq})
iterate_rule(IN, seq,seq5),
iterate_rule(r A, seq5, outseq),
call_tac(find_axioms,outseq, Axioms).

Figure 2. Sketch of the universal-goal Tactic

The tactic as shown in Figure 2 computes the sequents
(A1) to (A3). They lead to axioms under the substitution
{z/mail,m/mb,s/Joe}. In order to obtain an axiom from
(A3), the knowledge represented in rule 4 is additionally ap-
plied.

(A1) sender(msg(mail, mb)) = Joe
= sender(msg(z, m)) = s

(A2) read_flag(msg(x,m)) =T
= read_flag msg( ail, m

(
(A3) file(msg(z,m))=f
= save_flag(msg(mail, mb)) =T

b)) =T

Observe that there is no axiom containing the current atom-
ic subgoal delete_flag(msg(mail, mb)) = T. Therefore, the
tactic failed in proving that goaloiq — goalnew holds. The
plan does not achieve all of the required goals and thus plan
refitting must begin.

3.2 Plan Refitting

Plan refitting starts with an analysis of the plan interpreta-
tion phase. The proof of the relation between the old and
current preconditions preney, — precaq has been successfully
completed, 1.e., the reuse candidate is applicable in the cur-
rent initial state. In order to analyze the goal proof, entries
are computed which record the result of the proof attempt by
relating atomic goals from goaloq and from goalyne., to each
other; cf. Figure 3. This information is now analyzed under
the following assumptions:

e An atomic subgoal from goal,q that occurs not in an axiom
indicates that the reuse candidate may contain superfluous
actions. The subgoal was not necessary to derive axioms,

e., plan refitting concludes that this subgoal is not re-
quired in the current goal specification goalse.,. Therefore,
actions achieving this old subgoal are removed from the
candidate plan.
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e An atomic subgoal from goaloq that occurs in an axiom
indicates reusable actions. All actions achieving these sub-
goals are preserved because they achieve subgoals required
in the current goal specification.

e An atomic subgoal from goal,c., that occurs not in an ax-
iom indicates an open current subgoal not achieved by the
reuse candidate. Plan refitting marks a failure of plan in-
terpretation and starts with constructing a plan skeleton.

old (screen_display = select_msgs(s, m), no
new | —) Axiom

old (read_flag(msg(z,m)) =T,

new read_flag(msg(mazl mb)) =1T) Axiom
old (file(msg(z,m)) =
new save_flag(msg(mazl mb)) T) Axiom

old (-, no
new | delete_flag(msg(mail, mb)) =T

Axiom

Figure 3. Result of the Plan Interpretation Phase

Figure 4 shows the algorithm that analyzes the information
represented in Figure 3.

for i =1 to n» do /* all goals goalpew,; */
if entry (goalnewl,goaloldj> exists
then reuse subplan achieving goaloldj
/* goalpew, is achieved by reuse candidate */
else plan has to be modified
/* generate new subplan for goalnew,*/
endfor

for j =1 to k do /* all goals goaloia, */
if entry (goalnewl,goaloldj> exists
then reuse subplan achieving goaloldj
else attempt to optimize plan
/* remove superfluous subplan for goaloia, */
endfor

Figure 4. Analysis of the Plan Interpretation Phase

Note that we have no information obtained from the failed
proof attempt that is sufficient for constructing the “right”
plan skeleton, i.e., a plan skeleton that can be extended to
a correct plan. Therefore, plan refitting and plan generation
cannot be separated and plan generation becomes involved in
the process of plan-skeleton construction.

Plan refitting also relies on information from the plan li-
brary that is stored together with the reuse candidate: an
analysis of the plan generation process that has led to the
reused plan reveals which action from Plan,;q achieves which
atomic effect in goaloq. In the example, the following rela-
tions between actions and atomic goals are stored in the plan
library:

o cx(type(n, m)) achieves read_flag(msg(z, m)) =T
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o ex(save(n,m)) achieves file(msg(z,m)) = f
o ez(from(s,m)) achieves
screen_display = select_msgs(s, m)

Consequently, the action ez(from(s,m)) is removed from
the skeleton, while ex(type(n, m)) and ez (save(n, m)) are pre-
served after proper instantiation with the substitution com-
puted during the proof attempt. Furthermore, a plan for the
missing subgoal delete_flag(msg(mail, mb)) = T has to be
generated and inserted into the plan skeleton. In order to de-
termine the position in the skeleton where this plan has to be
added, the current goal specification goaly,.., is analyzed with
the help of the underlying planning system, as described in
[13]. Finally, control structures must be verified and eventu-
ally modified during the refitting process. A special-purpose
tactic for second-principles planning implements verification
and generation as deductive processes. In the example, the
tactic identifies the universally quantified goal in a first step
and thus calls the tactic for the generation of an iterative plan
by introducing a while construct which coincides with the iter-
ative control structure in the skeleton. The proof that has led
to this while construct is replayed. During the replay process
the tactic has to construct the conditional plan occurring in
the body of the iteration by introducing a case analysis. This
process requires us to address the conjunctive goal containing
the three atomic subgoals. After ordering the subgoals with
the help of a tactic dealing with conjunctive goals [3], a plan
for each of the subgoals is generated. This leads to a reuse of
the subplan ex(type(n,mb));ex(save(n, mb)) from the skele-
ton, while the action ex(delete(n, mb)) has to be generated
from scratch.

As a result, the following plan solving Spec,,_, is obtained:

n:=1;
while n < length(mb) do
if sender(msg(n, mb)) = Joe
then ex(type(n, mb));
ex(save(n, mb));
‘ ex(delete(n, mb)) ‘
else ex(empty_action);
n:=n-+1od

4 Conclusion

We have presented a deductive approach to plan modification
which yields provably correct plans. Apart from sequential
plans, this approach enables a planner to modify plans con-
taining control structures like conditionals and iterations. The
theoretical model is independent of any particular planning
formalism and makes no restrictive assumptions on the nature
of plans.

The approach is the basis for the implemented system MRL.
As a main advantage, the system possesses a clearly defined
semantics which allows formal properties of plan modification
to be proved. Furthermore, an empirical evaluation of the sys-
tem has led to very satisfactory results [13, 12].
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