
Plan Reuse versus Plan Generation:A Theoretical and Empirical Analysis�yTo appear in Arti�cial Intelligence (Special Issue on Planning and Scheduling)Bernhard NebelUniversit�at UlmFakult�at f�ur InformatikD-89069 UlmGermanynebel@informatik.uni-ulm.de Jana KoehlerGerman Research Centerfor Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3D-66123 Saarbr�ucken, Germanykoehler@dfki.uni-sb.deMarch 9, 1995AbstractThe ability of a planner to reuse parts of old plans is hypothesized to be a valuable tool forimproving e�ciency of planning by avoiding the repetition of the same planning e�ort. We testthis hypothesis from an analytical and empirical point of view. A comparative worst-case complex-ity analysis of generation and reuse under di�erent assumptions reveals that it is not possible toachieve a provable e�ciency gain of reuse over generation. Further, assuming \conservative" planmodi�cation, plan reuse can actually be strictly more di�cult than plan generation. While theseresults do not imply that there won't be an e�ciency gain in some situations, retrieval of a goodplan may present a serious bottleneck for plan reuse systems, as we will show. Finally, we presentthe results of an empirical study of two di�erent plan reuse systems, pointing out possible pitfallsone should be aware of when attempting to employ reuse methods.1 IntroductionPlan generation in complex domains is normally a resource and time consuming process. One wayto improve the e�ciency of planning systems is to avoid the repetition of planning e�ort wheneverpossible. For instance, in situations when the goal speci�cation is changed during plan execution orwhen execution time failures happen, it seems more reasonable to modify the existing plan than to planfrom scratch again. In the extreme, one might go as far as basing the entire planning process on planmodi�cation, a method that could be called planning from second principles.Instead of generating a plan from scratch, that method tries to exploit knowledge stored in previouslygenerated plans. The current problem instance is used to �nd a plan in a plan library that|perhaps aftersome modi�cations|can be (re-)used to solve the problem instance at hand. Current approaches try tointegrate methods from analogical or case-based reasoning to achieve a higher e�ciency [18, 33], integratedomain-dependent heuristics [21] or investigate reuse in the general context of deductive planning [3, 5].Some experiments give evidence that planning based on second principles might indeed be more e�cientthan planning from scratch [19, 20, 23, 25, 33]. However, it is by no means clear how far these resultsgeneralize. Addressing this problem, we analyze the computational problems of plan modi�cation froman analytical and empirical point of view in order to identify possible pitfalls one should be aware ofwhen employing reuse techniques.Using a propositional planning framework, we show that modifying a plan is not easier than planningfrom scratch. Moreover, there exist special cases when modifying a plan conservatively [25, p. 196] canbe harder than generating a plan from scratch, even if we assume that the old and the new instance�This work was supported by the German Ministry for Research and Technology (BMFT) under contracts ITW 8901 8and ITW 9000 8 as part of the WIP project and the PHI project.yThis is a substantially revised and extended version of a paper published in Proceedings of the 13th InternationalJoint Conference on Arti�cial Intelligence, Chambery, France, September 1993.1



are similar. From that we conclude that conservative plan modi�cation|which is in fact an extremelydogmatic view of plan reuse|runs counter to the idea of increasing e�ciency by plan reuse. For thisreason, a conservative modi�cation strategy should only be employed in a replanning context|when itis crucial to retain as many steps as possible|but not in a plan reuse context. In fact, all existing planreuse system do not use a conservative modi�cation strategy. Instead, plan modi�cation is consideredas a heuristic technique, which recycles as much of the old plan as the particular planning algorithmcan probably use.Although it is impossible to prove that reusing plans leads to a speedup in terms of worst-case complexity,it seems intuitively plausible that in some situations plan reuse is more e�cient than planning fromscratch. However, �nding a good reuse candidate in a plan library may be already very expensive,leading to more computational costs than can be saved by reusing the candidate. We show that theproblem of matching planning instances is NP-hard in the general case. We also consider some specialcases that lead to a simpli�cation of this problem.Finally, we present empirical results on the performance of two di�erent plan-reuse systems, namely,spa [19, 20] and mrl [29]. The aim of this analysis is to identify factors in
uencing the e�ciency gainsof plan-reuse techniques. Although we used only a very narrow class of test cases, the experimentsprovide nevertheless a qualitative indication of the performance of reuse techniques and an idea of howdi�erent factors can in
uence the relative e�ciency of reuse techniques.The paper is organized as follows. In Section 2, we de�ne the notion of propositional STRIPS planningfollowing Bylander [6] and introduce a formal model of plan modi�cation following Kambhampati andHendler [25]. In Section 3, we analyze the computational complexity of di�erent modi�cation problemsrelative to their corresponding planning problems. In Section 4, we consider one of the possible bottle-necks of plan-reuse techniques, namely, the retrieval and matching problem. Finally, in Section 5, wepresent our empirical �ndings and relate them to our analytical results.2 Plan Modi�cation in a Propositional FrameworkThe computational complexity of di�erent forms of planning has been recently analyzed by a number ofauthors [1, 2, 6, 10, 11, 14, 15, 17]. However, the computational complexity of plan modi�cation has notbeen investigated yet. We will analyze this problem in the formal framework of propositional STRIPSplanning as de�ned by Bylander [6]. As Bylander [6] notes, this model of planning is \impoverishedcompared to working planners" and is only intended to be a \tool for theoretical analysis." However,since we are mainly interested in comparing plan generation with plan modi�cation from a complexity-theoretic perspective, this framework is appropriate for our purposes.2.1 Propositional STRIPS PlanningLike Bylander [6], we de�ne an instance of propositional planning as a tuple � = hP;O; I;Gi, where:� P is a �nite set of ground atomic formulae, the conditions,� O is a �nite set of operators, where each operator o 2 O has the form o+; o� ) o+; o�, where{ o+ � P are the positive preconditions,{ o� � P are the negative preconditions,{ o+ � P are the positive postconditions (add list), and{ o� � P are the negative postconditions (delete list).� I � P is the initial state, and� G = hG+;G�i is the goal speci�cation with G+ � P the positive goals and G� � P the negativegoals.P is the set of relevant conditions. A state is either unde�ned, written ?, or a subset S � P with theintended meaning that p 2 P is true in state S if p 2 S, false otherwise. O is the set of operators thatcan change states. I is the initial state, and G is the goal state speci�cation, with the intended meaningthat all conditions p 2 G+ must be true and all conditions p 2 G� must be false. A plan � is a �nite2



sequence ho1; : : : ; oni of plan steps oi 2 O. An operator may occur more than once in a plan. A plan �solves an instance � of the planning problem i� the result of the application of � to I leads to a stateS that satis�es the goal speci�cation G, where the result of applying � = ho1; : : : ; oni to a state S isde�ned by the following function:Result : (2P [?)� O� ! 2P [?Result(S; hi) = SResult(S; hoi) = � (S [ o+)� o� if o+ � S ^ o� \ S = ;? otherwiseResult(S; ho1; o2; : : : ; oni) = Result(Result(S; ho1i); ho2; : : : ; oni)In other words, if the precondition of an operator is satis�ed by a state, the positive postconditions areadded and the negative postconditions are deleted. Otherwise, the state becomes unde�ned, denoted by?.1As usual, we consider decision problems in order to analyze the computational complexity of planning.This move is justi�ed by the fact that all decision problems are at least as hard as the correspondingsearch problems, i.e, the problem of generating a plan.2PLANSAT is de�ned to be the decision problem of determining whether an instance � = hP;O; I;Gi ofpropositional STRIPS planning has a solution, i.e., whether there exists a plan � such that Result(I;�)satis�es the goal speci�cation. PLANMIN [8] is de�ned to be the problem of determining whether thereexists a solution of length n or less, i.e., it is the decision problem corresponding to the search problemof generating plans with minimal length.Based on this framework, Bylander [6, 8] analyzed the computational complexity of the general propo-sitional planning problem and a number of generalizations and restricted problems. In its most generalform, both PLANSAT and PLANMIN are PSPACE-complete. Severe restrictions on the form of theoperators are necessary to guarantee polynomial time or even NP-completeness.2.2 Plan Reuse and Modi�cationAs described in the Introduction, planning from second principles consists of two steps:1. Identifying an appropriate reuse candidate from a plan library.2. Modifying this plan candidate so that it solves the new problem instance.Assuming that the identi�cation of a candidate is based on a (polynomial-time) heuristic evaluationfunction, the modi�cation problem clearly determines the complexity. However, even if we assume thatthe plan retrieval process is supposed to identify the optimal candidate, this optimal candidate can befound easily. One can tentatively modify each plan in the library and select the plan that can be modi�edoptimally. Since this amounts to \only" linearly many plan modi�cation operations in the number ofplans stored in the library, the computational complexity of modi�cation determines the complexity ofreuse. Note, however, that this does not hold any longer if we also consider (possibly exponentiallymany) mappings between propositions of the new problem instance and of the reuse candidate, asdescribed by Kambhampati and Hendler [23, 25] and Hanks and Weld [19, 20]. In this case, which weconsider in Section 4, the costs of reuse may also be in
uenced by the retrieval problem.Kambhampati and Hendler [25, p. 196] de�ne the plan modi�cation problem as follows (adapted to ourframework of propositional STRIPS planning):Given an instance of the planning problem �0 = hP;O; I0;G0i and a plan � that solves theinstance � = hP;O; I;Gi, produce a plan �0 that solves �0 by minimally modifying �.We will call this problem MODGEN.By \minimal modi�cation of a plan" Kambhampati and Hendler [25, p. 195] mean to \salvage as muchof the old plan as possible." Other authors are less explicit about what they mean by modifying a plan,but the idea to use as much of the old plan as possible for solving the new problem instance seems to1This is a slight deviation from Bylander's [6] de�nition that does not a�ect the complexity of planning. This deviationis necessary, however, to allow for a meaningful de�nition of the plan modi�cation problem.2We assume that the reader is familiar with the basic notions of complexity theory as presented, for instance, by Gareyand Johnson [16]. 3



be customary [33, p. 133]. The reason for this conservative approach to modi�cation is twofold [25,p. 194{195]. Firstly, in a plan-reuse context, it is expected that the additional planning e�ort necessaryto generate the new plan is minimized if the reused part of the old plan is maximized. Secondly, in areplanning context, i.e., when a plan has to be modi�ed because of user-initiated speci�cation changesor execution failures, one may want to respect as many previous commitments as possible.Turning the above speci�ed search problem into a decision problem leads to what we will call theMODSAT problem:An instance of the MODSAT problem is given by �0 = hP;O; I0;G0i, a plan � that solves� = hP;O; I;Gi, and an integer k � j�j. The question is whether there exists a plan �0that solves �0 and contains a subplan of � of at least length k?In order to fully specify MODSAT, we have to de�ne the meaning of the phrase \�0 contains a subplanof � of length k." For this purpose, we de�ne the notion of a plan skeleton, a sequence of operatorsand \wildcards," denoted by \�." The length of a plan skeleton is the number of operators, i.e., weignore the wildcards. A plan skeleton can be derived from a plan according to a modi�cation strategyM by deleting and rearranging plan steps and adding wildcards. A plan skeleton can be extended to aplan by replacing each wildcard by a possibly empty sequence of operators. Now we say that plan �0contains a subplan of � of length k according to a modi�cation strategy M i� a skeleton � of length kcan be derived from � according to M and � can be extended to �0. In general, we will consider onlypolynomial-time modi�cation strategies, i.e., strategies such that verifying that the skeleton � can bederived from the plan � is a polynomial-time problem. In the following, we will consider three di�erentplan modi�cation strategies that satisfy this constraint.The �rst alternative we consider is to allow for deletions in the original plan and additions before andafter the original plan. Supposing the plan� = ho1; : : : ; oi; oi+1; : : : ; oj�1; oj; : : : ; oni;the following plan skeleton could be derived from �, for instance:� = h�; o1; : : : ; oi; oj; : : : ; on; �i;where � has length i+ n� j + 1. The corresponding modi�cation problem will be called MODDEL.The second alternative is to allow for deletion of plan steps in the old plan and additions before, after,and in the middle of the old plan. Assuming the same plan � as above, the following skeleton plan oflength i+ n� j + 1 could be derived:� = h�; o1; : : : ; oi; �; oj; : : : ; on; �i:The corresponding modi�cation problem is called MODDELINS.The �nal alternative is to count the number of plan steps in the plan skeleton � that also appear inthe old plan � without considering the order. In other words, we view � and � as multisets and takethe cardinality of the intersection as the number of old plan steps that appear in the new plan. Thecorresponding modi�cation problem is called MODMIX. Although this model of modi�cation may seemto give away too much of the structure of the old plan, \changing step order" is considered to be areasonable modi�cation operation (see, e.g., [19, p. 96]).Finally, it should be noted that although the framework we have de�ned above deals only with total-order plans, it can be easily modi�ed to apply to partial-order planning, as well. Furthermore, allhardness results will apply to partial-order planning since total-order plans are simply special cases ofpartial-order ones.3 The Complexity of Plan Modi�cationFirst of all, there is the question of whether modifying a plan can lead to a provable e�ciency gain overgeneration in terms of computational complexity. Not very surprisingly, this is not the case when thereare no restrictions on the original instance. However, it does not seem to be impossible to achieve ane�ciency gain if we require the old and new problem instance to be similar.4



Second, one may ask the question whether plan modi�cation is always as easy as planning from scratch.This question comes up because of the minimality requirement in the de�nition of the plan modi�cationproblem. This requirement makes plan modi�cation very similar to the belief revision problem, i.e.,the problem of changing a logical theory minimally in order to accommodate a new information. As iswell-known, most revision schemata (but not all) turn out to be computationally harder than deduction[12, 31].3 A similar result [32, 13] holds for abduction, which may be viewed as \minimally modifyingthe assumptions in a proof."In the following, we provide answers to both questions, addressing �rst the problem of modifying plansconservatively, for arbitrary and similar planning instances. After that, we consider the possible e�-ciency gain of less restricted modi�cation strategies.3.1 Modifying Arbitrary Plans ConservativelyOne almost immediate consequence of the de�nitions above is that plan modi�cation cannot be easierthan plan generation. This even holds for all restrictions of the PLANSAT problem (concerning, e.g., theform of the operators [8] or more global properties [2]). If PLANSAT� is a restricted planning problem,then MODSAT� shall denote the corresponding modi�cation problem with the same restrictions.Proposition 1 PLANSAT� transforms polynomially to MODSAT� for all restrictions �.4However, plan modi�cation is also not harder than plan generation in the general case.Proposition 2 MODSAT is PSPACE-complete.This proposition could be taken as evidence that plan modi�cation is not harder than plan generation.However, it should be noted that the proposition is only about the general problem. So, it may be thecase that there exist special cases such that plan modi�cation is harder than generation. Such a casewill not be found among the PSPACE- and NP-complete planning problems, however.Theorem 3 If PLANSAT� is PSPACE-complete or NP-complete, then MODSAT� is a PSPACE-complete or NP-complete problem, respectively.The converse of the above theorem does not hold, however. There exist cases when plan generation isa polynomial time problem while plan modi�cation is NP-complete.Theorem 4 There exists a polynomial-time PLANSAT� problem such that the correspondingMODDEL� and MODDELINS� problems are NP-complete.5This means that it can be harder to modify a plan than generating it from scratch. The reason for thisfact is that the conservativity requirement introduces an additional source of computational complexity.This source of complexity is not visible when planning is NP-hard, because it requires simply anothernondeterministic choice. However, it shows up in the case when planning itself is easy. Hence, theexpectation that conservatism leads to increased e�ciency does not seem to be justi�ed.3.2 Modifying Plans Conservatively When the Planning Instances are Sim-ilarThe results above could be considered as being not relevant for plan modi�cation in real applicationsbecause we made no assumption about the similarity between old and new planning instances. Thee�ciency gain expected from plan reuse, on the other hand, is based on the assumption that the newinstance is su�ciently close to the old one|which supposedly permits an easy adaptation of the old planto the new situation. Besides the fact that this looks like a good heuristic guidance, there is the questionwhether small di�erences between the old and the new instance lead to a provable e�ciency gain in3More precisely, revision is in most cases �p2-complete. Assuming, as is customary, that the polynomial hierarchy doesnot collapse (see, e.g., [16, 22]), this implies that revising a propositional theory is harder than deduction, which is �p1- orco-NP-complete.4Proofs of theorems and propositions can be found in the appendix.5We were not able to identify a polynomial planning problem PLANSAT� such that the corresponding MODMIX�problem becomes NP-complete. 5



terms of computational complexity. So it might be perhaps the case that modi�cation is easier thanplanning if the goal speci�cations di�er only on a constant or logarithmic number of atoms. Althoughthis seems to be possible, there is the con
icting intuition that small changes in the planning instancecould lead to drastic (and hard to compute) changes in the plans.As it turns out, restricting the number of di�ering atoms does not lead to a di�erent picture than theone presented in the previous subsection. First of all, Theorem 4 still holds for the restricted versionsof the modi�cation problems MODDEL and MODDELINS, where we require the old and new initialstates to be identical and the old and new goal speci�cation to di�er only on one atom. We call theserestricted versions of the modi�cation problem MODDEL1G and MODDELINS1G, respectively.Theorem 5 There exists a polynomial-time PLANSAT� problem such that the correspondingMODDEL1G� and MODDELINS1G� problems are NP-complete.Although this theorem con�rms the intuition that small changes in the goal speci�cation can lead todrastic changes in the plan, it does not rule out the possibility that there are some hard planning prob-lems such that the corresponding modi�cation problems are easy if the goal speci�cation is only changedmarginally. In order to rule out this possibility, we would need something similar to Proposition 1. How-ever, there appears to be no general way to reduce PLANSAT� problems to MODSAT1G� problems.For this reason, we will settle for something slightly less general. We will show that generating a plan bymodifying a plan for a similar goal speci�cation is at least as hard as the corresponding PLANSAT prob-lem. Hence, instead of the decision problemMODSAT1G, we consider the search problemMODGEN1G.Further, in order to allow for a \fair" comparison between PLANSAT and MODGEN1G, we measurethe resource restrictions of MODGEN1G in terms of the size of the planning problem instance|andignore the size of the plan to be modi�ed.6 Under these assumptions, it is possible to specify a Turingreduction from PLANSAT� to MODGEN1G�.Theorem 6 If PLANSAT� is PSPACE-hard or NP-hard, then the corresponding MODGEN1G� problemis PSPACE-hard or NP-hard, respectively, in the size of the planning problem instance.It should be noted that the above theorems apply also to the modi�cation problems that are restrictedto have a one-atom-di�erence between the initial states.3.3 Conservative versus Arbitrary Modi�cationsThe hope that recycling maximal subplans increases the e�ciency of plan reuse turns out to be unfound-ed, as the above results demonstrate. Our results imply that conservative plan modi�cation introducesadditional complexity into the planning and reuse process. In particular, as a Corollary of Proposition 2,it follows that is not possible to determine e�ciently (i.e., in polynomial time) a maximal reusable planskeleton before plan generation starts to extend the skeleton.Corollary 7 It is PSPACE-hard to compute a maximal plan skeleton for MODSAT instances.In other words, plan generation and plan modi�cation cannot be separated. For this reason, the planningprocess becomes actually more involved when recycling as much of the old plan as possible. Instead ofsearching for an arbitrary solution, a plan that contains a maximal subplan of the old plan has to besought.Having a closer look at Kambhampati and Hendler's priar framework (which is described as addressingthe plan modi�cation problem by minimally modifying plans) reveals that plan skeletons are derived inpolynomial time [25, p. 197] by a process called \annotation veri�cation." Hence, by Corollary 7, thisprocess cannot by any means derive maximal applicable plan skeletons. Further, the authors do notgive any arguments that they approximate such skeletons. In fact, the skeletons derived by priar arenot even guaranteed to be applicable. So, priar does not seem to address the problem of \minimallymodifying plans," contrary to what the authors claim.In fact, maximal reuse of an old plan only seems to make sense in a replanning context if costs arecharged for not executing already planned steps. So, it seems to be the case that the two motivationsfor plan modi�cation, namely, replanning and reuse may not be as similar as one might think. While in6This is necessary to rule out such pathological situations as the one where modifying an exponentially long planappears to be polynomial while generating it is exponential.6



plan reuse the e�ciency of the planning process is the most important factor, in replanning the minimaldisturbance of the old plan may be more important, leading to a more involved planning process.7Plan modi�cation in the priar framework|and in other plan-reuse systems|seems not to be a com-putational problem that has to be addressed, but rather a solution, a heuristic technique. The \planskeleton" that is reused is not the maximal applicable one, but the one that the particular planningalgorithm perhaps can exploit in generating a solution. In other words, the old plan is used as an \entrypoint" into the search space of possible plans, as made explicit by Hanks and Weld [19].While this seems to be indeed a reasonable way to go, it is (of course) not a guaranteed cure forintractability. As the proof of Theorem 6 indicates, modifying a plan cannot be easier than generatingone, even if we allow for arbitrary modi�cation strategies.Theorem 8 If PLANSAT� is PSPACE-hard or NP-hard, then the corresponding MODGEN1G� problemis PSPACE-hard or NP-hard, respectively, in the size of the planning problem instance, even if we donot require to reuse a maximal subplan.As demonstrated by Theorem 8, we cannot hope for a provable speedup by plan-reuse techniques interms of computational complexity. Nevertheless, one would expect a speedup in some cases. In fact,Bylander [7] shows that plan modi�cation for similar planning instances is in some sense more e�cientin the average case. The distributional assumptions Bylander makes are questionable, however. Heassumes a number of operators that is exponential in the average size of the pre- and postconditions.While this appears to be an unrealistic assumption, Bylander's result is some indication on the analyticalside that plan modi�cation could be sometimes more e�cient than planning from scratch.One of the interesting and challenging problems in the research on plan reuse seems to be the identi�-cation of conditions under which plan reuse leads to a provable speedup. A possible candidate has beenpointed out to us by one of the anonymous reviewers. Variant process planning [9], which is used incommercial manufacturing industries for generating process plans for a given product design, is basedon (manual) modi�cation of plans for similar product designs. Since in this case a similar design impliesa similar plan, reusing old plans leads indeed to signi�cant e�ciency gains.4 Plan Retrieval and MatchingExperiments in the blocks-world domain [19, 20, 23, 25] demonstrate that reusing a plan that solves aninstance similar to the one under consideration leads indeed to an e�ciency gain in many cases (see alsoSection 5). It should be noted, however, that in those experiments, the reuse candidate was suppliedmanually. In order to apply the reuse technique in the general case, it is necessary to provide a planlibrary from which a \su�ciently similar" reuse candidate can be chosen. \Su�ciently similar" could inthis case mean that the reuse candidate has a large number of goal atoms and atoms in the initial statein common with the new instance. However, one may also want to consider reuse candidates that aresimilar to the new instance after the atoms in the reuse candidate have been systematically renamed. Asa matter of fact, every plan reuse systems contains a matching component that tries to �nd a mappingbetween the objects of the reuse candidate and the objects of the new instance such that the numberof common goal atoms is maximized and the additional planning e�ort to achieve the initial state ofthe library plan is minimized (see also Section 5). In the following, we will have a closer look at thismatching problem.4.1 Matching Planning InstancesIn order to analyze the matching problem, we assume that the set of conditions P has some particularstructure. Let O be a set of constants ci, with the understanding that distinct constants denote distinctobjects, and let P be a set of predicate symbols Pnj of arity n, then P(O;P) is the set of all groundatomic formulae over this signature. In domains, where there are di�erent types of constants, it can beuseful to employ a many-sorted logic instead of the unsorted logic we consider here. However, we willabstract from this issue and consider only problems such that all constants have the same type. As an7Kambhampati makes the same distinction in a later paper [24]. Based on arguments concerning the search processof a planner, he also argues that guaranteeing that every step that could be reused is reused could be computationallyexpensive|a conjecture con�rmed by Theorem 4. 7



example for such a domain, where an unsorted logic is su�cient, consider the blocks-world where wehave only blocks (of the same size) and the predicates are universally applicable to all of these blocks.We assume further that the operators are closed under substitution of constants by constants, i.e., werequire that if there exists an operator ok mentioning the constants fc1; : : : ; cng � O, then there existsalso an operator ol over the arbitrary set of constants fd1; : : : ; dng � O such that ol becomes identicalto ok if the di's are replaced by ci's. In other words, we assume that the operators could be representedas ordinary STRIPS operators using variables.If there are two instances � = hP(O;P);O; I;Gi�0 = hP(O0;P0);O0; I0;G0isuch that (without loss of generality) O � O0P = P0O � O0;then a mapping � from � to �0 is an injective function8�: O ! O0:Although injectivity might not always be required, it is a safe condition. It guarantees that distinctconstants are mapped to distinct constants. The mapping � is extended to ground atomic formulae andsets of such formulae in the canonical way, i.e.,�(Pni (c1; : : : ; cn)) = Pni (�(c1); : : : ; �(cn))�(fP1(: : :); : : : ; Pm(: : :)g) = f�(P1(: : :)); : : : ; �(Pm(: : :))g:If there exists a bijective9 mapping � from � to �0 such that all goal and initial-state atoms are matched,then it is obvious that a plan � for � can be directly reused for solving �0 since �0 and � are identicalto within a renaming of constant symbols, i.e., �(�) solves �0. In the case that � is not a bijection ordoes not match all goal and initial-state atoms, �(�) can still be used as a starting point for searchingfor a plan that solves �0.Following Hanks and Weld [20] and Kambhampati and Hendler [23, 25], we de�ne a match of a reusecandidate � with a new instance �0 as a mapping � from � to �0 that maximizes �rst the cardinalityof (�(G+) \ G0+) [ (�(G�) \ G0�) and second the cardinality of �(I) \ I 0. It should be noted that in spaand priar the conditions for the initial-state match are slightly more complicated. In spa, the numberof \open conditions" is minimized, i.e., violations of preconditions in the library plan are minimized. Inpriar, the number of \inconsistencies in the validation structure" of the library plan is minimized. Sincethe absence of one atom in the initial state may lead to several \open conditions" or \inconsistenciesin the validation structure," our measure is slightly di�erent from the ones used in spa and priar.Nevertheless, it is certainly also a reasonable approximation of \the amount of planning work necessaryto get the input initial world state to the state expected by the library plan" [20, p. 25]. While ourpurely syntactic criterion is certainly inferior in predictive power, it is probably easier to compute thanthe measures used in spa and priar because in our case it is not necessary to consider the structure ofthe library plan.The optimization problem de�ned above corresponds to the following decision problem, which we callPMATCH:Given two planning instances, � and �', and two natural numbers k and n, decide whetherthere exists a mapping � from � to �0 such that j(�(G+) \ G0+) [ (�(G�) \ G0�)j = k,j�(I)\ I0j � n and there is no mapping �0 with j(�0(G+) \ G0+) [ (�0(G�) \ G0�)j > k.It should be noted that in order to select an optimal reuse candidate from the plan library, this matchingproblem has to be solved for each potentially relevant candidate in the plan library. Of course, one8A function f is injective if it is \invertible," i.e., if x 6= y implies f(x) 6= f(y) for all x and y in the domain of f .9A function is bijective if it is injective and onto. 8



may use structuring and indexing techniques in order to avoid considering all plans in the library.Nevertheless, it seems unavoidable to solve this problem a considerable number of times before anappropriate reuse candidate is identi�ed. For this reason, the e�ciency of the matching component ismost probably crucial for the overall system performance. Unfortunately, the matching problem is anNP-hard problem.Theorem 9 PMATCH is NP-hard, even if the initial states are empty.It should be noted that NP-hardness of PMATCH holds even if we do not require an optimal match ofthe initial state. Hence, the hardness result applies immediately to the matching criterion used in spaand priar.This NP-hardness result implies that matching may be indeed a bottleneck for plan reuse systems. Infact, it seems to be the case that planning instances with complex goal or initial-state descriptions maynot bene�t from plan-reuse techniques because matching and retrieval is too expensive.One promising avenue of further research may be to look for good polynomial approximation algorithmsfor the matching problem [28]. Another way out may be to characterize those planning instances forwhich matching can be performed in reasonable time. For instance, one way to reduce the matchingcosts is to introduce sorts in order to limit the number of possible matches.In the following we will have a closer look at the matching problem in the blocks-world domain. Thisdomain is interesting for two reasons. First, the instances are relatively simple, and may thus permite�cient matching. Second, the blocks-world domain has been used extensively to illustrate the bene�tsof plan reuse.4.2 Matching Blocks-World Planning InstancesIn general, a blocks-world planning instance consists of� a set of blocks O = fb1; : : : ; bng,� the set of predicates P = fontable(�); clear(�); on(�; �)g,� operators Move(x; y; z) (move block x from y to z), Stack(x; y) (pick up block x from the tableand stack it on block y), and Unstack(x; y) (unstack x from y),� the initial state that should be complete (i.e., mention every true atomic ground formula corre-sponding to the initial physical con�guration of blocks) and consistent (i.e, describing one possiblephysical con�guration of the blocks), and� the goal state that speci�es a set of ground atomic formulae to be achieved.Provided, the goal state is also a complete description of a physical con�guration, it is possible tovisualize the initial state and goal state as in Figure 1.Most of the planning instances that have been used to demonstrate the bene�ts of plan reuse techniquesall have a particular simple structure. The goal state is always one stack of blocks. As is easy to see,the matching problem for such instances can be solved in polynomial time. In order to maximize goalmatching, the blocks in the smaller stack must be mapped to the blocks in the larger stack respectingthe order of the blocks. Obviously, there are only linearly many such mappings. In fact, if the goaldescription also contains atoms of the form ontable(�) and clear(�), then there are at most two map-pings with a maximal number of goal atoms in common. It is then easy to identify the mapping thatmaximizes the match between the initial states.Proposition 10 PMATCH restricted to blocks-world planning instances, where the goal is a completedescription of one stack, is a polynomial-time problem.However, this positive result does not generalize. If we drop the restriction that the goal is one stack,the matching problem becomes again NP-hard.Theorem 11 PMATCH restricted to blocks-world planning instances, where the goal is a completedescription of a set of stacks, is NP-hard. 9
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Goal StateInitial State         Figure 1: A Blocks-World ExampleWhile this hardness result does not directly apply to the matching strategies of spa and priar|these systems do not maximize matching of initial-state atoms but minimize \open conditions" or\inconsistencies in the validation structure," respectively|Theorem 11 is nevertheless an indicationthat matching incurs considerable computational costs, even for moderately simple goal structures. Infact, the problem-independent matching strategy implemented in spa runs in time exponential in thenumber of objects since it simply evaluates all possible mappings. As we will see in the next section, theruntime for matching one candidate to a planning instance is signi�cant, even for moderately complexplanning instance containing only eight blocks.Interestingly, (non-optimal) planning in the blocks-world is polynomial, even if there are many goalstacks [17]. In other words, in case of a special-purpose blocks-world planning system one better does notuse a retrieval algorithm that identi�es the optimal reuse candidate, but one that also accepts candidatesthat are less than perfect. Otherwise retrieval may become more expensive than plan generation.5 Empirical ResultsIn order to complement our analytical results on the relationship between plan reuse and plan generation,we conducted some experiments to gain insight into the performance of reuse techniques under varyingconditions. We were particularly interested in how the following conditions in
uence the e�ciency gainsof plan-reuse techniques:� similarity between the planning instances: the e�ort spent on matching and plan modi�cationdepends supposedly at least partially on the structural similarity between the reuse candidate andthe new instance;� the planning domain: properties of the planning domain can probably render matching and mod-i�cation more or less di�cult.5.1 Plan-Reuse SystemsIn our experiments, we used the plan-reuse systems spa [19, 20] and mrl [27, 29].spa is based on a lifted version of McAllester and Rosenblitt's [30] systematic partial-order planningalgorithm. In this framework, the planning process is viewed as a search through a tree of partial plans.Plan generation starts at the root of the tree (corresponding to the empty plan) and adds plan stepsand constraints, while plan modi�cation starts at an arbitrary place in the tree and can either add(going down in the tree) or delete constraints and steps (going up in the tree). Plan modi�cation in spahas three di�erent phases. In the �rst phase, a reuse candidate is matched against the new planninginstance. In the second phase, which is called �tting, a plan skeleton is computed. In the third phase,called adaptation, the skeleton is used to �nd a plan to solve the new instance.10



As described in the preceding section, plan matching in spa is based on �nding a mapping between theobjects of the reuse candidate and the new planning instance that maximizes the number of commongoal atoms. If several mappings lead to a best match, the initial preconditions from the reuse candidateand the current plan speci�cation are matched against each other and a mapping that leads to a minimalnumber of unsatis�ed preconditions of operators in the reuse candidate is chosen.Plan �tting modi�es the reuse candidate in order to create a plan skeleton by removing super
uouscausal dependencies and marking all unsatis�ed conditions. Finally, the plan adaptation process triesto �nd a solution for the new planning instance by extending the skeleton, i.e., adding new constraintsor plan steps, and reduction, i.e., removing constraints or plan steps.The other plan reuse system we consider is mrl, which is based on the deductive (total-order) plannerphi [3, 5]. The underlying logic of this planning system is the interval-based modal logic llp [4]. Itshould be noted that in using this logic in a planning system it becomes possible to specify intermediategoals, i.e., goals that have to be achieved at some point and not necessarily in the end { somethingwhich could not be done in the usual strips or tweak type planning systems (see also [26]).Plan generation in phi is performed by constructing proofs for plan speci�cations in a sequent calculus.During the proof, a plan (formula) is constructed satisfying the formal plan speci�cation. The proofs areguided by tactics, which support the declarative representation of control knowledge and make deductiveplanning quite e�cient. The search space considered during the proof can be kept to a manageable sizeand only those deduction steps are performed which seem to be promising. Contrary to spa, phi isnot a \complete" planner in the sense that it will (eventually) �nd a plan if one exists. However, thecurrently implemented tactics are su�cient for generating all \easy to �nd\ plans. As a matter of fact,it was possible to adapt the blocks-world planning instances without changing or adding tactics. Whilethe \incompleteness" of phi may seem to be a disadvantage, the guarantee that a \complete" plannerwill eventually �nd a plan if one exists is only of limited value, since �nding this plan may simply taketoo much time { because systematic planners usually require exponential time.Plan reuse by the mrl system is based on a logical formalization of the reuse process including themodi�cation, representation and retrieval of plans. The system is able to automatically reuse andmodify sequential, conditional, and iterative plans.Plan modi�cation in mrl proceeds in two phases: During the plan interpretation phase the currentplanning instance and the speci�cation of the reuse candidate are semantically compared. This processis implemented as a theorem proving attempt. The result of the plan interpretation phase is a proofstating that the plan belonging to the reuse candidate can be reused without modi�cation, or a failedproof from which re�tting information can be extracted. Plan re�tting starts with constructing a planskeleton from the reused plan according to the result of the proof attempt using the modi�cationstrategy MODDELINS. The plan skeleton is extended to a correct plan by a constructive proof of theplan speci�cation formula which was instantiated with this skeleton.The systems use di�erent planning formalisms, are implemented in di�erent programming languages,and run on di�erent machines. Therefore, a runtime performance comparison between the systems doesnot appear to be meaningful. Instead, we are interested in the relative e�ciency caused by plan reusewhen the above mentioned conditioned are varied. Although, we used only a quite narrow class of testcases, we still believe that our results provide at least a qualitative indication of the relative e�ciencyof plan-reuse techniques under varying conditions.5.2 Test CasesFor our experiments, we considered test cases from two di�erent domains. The �rst domain is a particularsubset of blocks-world planning instances that has been used to explore the performance of priar andspa [23, 25, 20].The blocks-world planning instances we used can be roughly categorized as falling into two classes named\nbs" and \nbs1," where n is an integer parameter denoting the number of blocks which are involved:� nbs instances have an initial state in which all blocks are clear and on the table and a goal statewith one stack that contains all blocks mentioned in the description of the initial state.� nbs1 instances have the same goal state as nbs instances, but in the initial state some of the blocksare stacked on others.Figure 2 gives as an example the con�guration of blocks in the 8bs1 blocks-world planning instance.11
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Initial State Goal StateFigure 2: The 8bs1 ExampleConsidering the 8bs1 instance in more detail, it becomes obvious that there are no \deadlocks" [17]during plan generation. In other words, one can easily generate an optimal plan by simply building upthe goal stack starting at the bottom block and it is never necessary to put a block temporarily on thetable before moving it to its �nal position. Further, this property holds for all nbs1 instances containedin priar's test case collection. Most probably, this property simpli�es the generation and modi�cationof plans. For this reason and because of the fact that optimal plans can be found in polynomial time forall blocks-world problem instances containing only one stack in their goal description [17], we believethat the claim [25, p. 198] that \experiments in the blocks-world certainly bear out the 
exibility ande�ciency of the incremental plan modi�cation : : :over a variety of speci�cation changes" is at leastarguable. Nevertheless, this set of test cases appears to be useful for getting an idea how the relativee�ciency di�ers, because these test cases have been used in evaluating di�erent plan-reuse systems.In order to analyze the e�ect di�erent domains can have on the e�ciency of the plan-reuse process,we considered also another domain. The second domain is the unix mail domain, which we used onlyin connection with the mrl system. In the mail domain, objects of di�erent sort like messages andmailboxes are manipulated by actions like read, delete, and save. This domain di�ers from the blocks-world mainly in that the objects are all of di�erent type.5.3 Experimental ResultsWe ran di�erent test samples on the two plan-reuse systems in order to get an idea how the performanceof the reuse system vary under di�erent conditions.In
uence of Similarity of Planning InstancesIn the �rst experiment, we investigate how the structural similarity of the reuse candidate with the newplanning instance in
uences the performance of the plan modi�cation process. In order to study thisin
uence, we tested the spa system on nbs ! kbs, nbs ! kbs1, and nbs1 ! kbs1 modi�cation tasksthat are prede�ned in the plan library of spa. Since the deviation in the initial state increases and thenumber of \open conditions" to be resolved during plan adaptation increases, we expected that planadaptation becomes more di�cult moving from the �rst kind of tasks to the latter kind of tasks.In Figure 3,10 we give the results of the experiments described above for the case k = 8. We alsoperformed the same experiments with k = 7 and k = 12, which led to a similar picture.10Each data point represents the average of 20 runs on a freshly initialized system. The deviation of a single run neverexceeded 10%. 12



In all examples, matching shows an exponential run time behavior for the domain-independent matchingalgorithm we used.11 As a matter of fact, even for a moderately sized domain containing only eightblocks, the matching costs are already signi�cant. For the 9bs ! 8bs1 example, the time of matchingis already signi�cantly higher than the plan modi�cation time.Figure 3a gives the performance data for the easiest modi�cation problem, where the initial and thegoal states di�er only by the number of blocks used, in which case the total modi�cation e�ort neverexceeds the plan generation e�ort. If a linear matching algorithm would be used, the modi�cation e�ortwould linearly decrease as the reused plan becomes more and more similar to the desired solution.
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c) spa: nbs1 ! 8bs1Figure 3: Matching and modi�cation costs in spa. The horizontal bar gives the time for generating aplan for 8bs or 8bs1 from scratch. The dashed line plots the time for plan modi�cation and the dottedline plots the time for matching using a problem-independent strategy. The solid line plots the resultingtime for matching and modi�cation.When the modi�cation tasks become more di�cult, since the reuse candidate and the new planninginstance are structurally less similar, the savings of plan modi�cation become less predictable. Inparticular, it happened that the modi�cation and matching e�ort is higher than the e�ort of generatinga plan from scratch.12 For the reuse of nbs1 problems to solve the 8bs1 problem, the performanceof plan modi�cation becomes worse. There are more cases when plan reuse is less e�cient than plangeneration and plan modi�cation can take more than 5 times as much time as generation.Comparing these results with the empirical data on the performance of the priar plan-reuse systemreported by Kambhampati and Hendler [25], one notes that instead of a speedup in all cases, there area number of cases when plan modi�cation is actually more expensive. The reasons for these resultsare manifold. First of all, we did not employ the domain-dependent control functions spa o�ers forthe blocks-world domain.13 Secondly, as already noted by Hanks and Weld [20], priar's generativeperformance degrades much more quickly than its modi�cation performance, leading to impressivesavings for large instances.All in all, the experiments indicate that there is a certain danger that the modi�cation e�ort may bein fact higher than the generation e�ort if the reuse candidate is not structurally similar to the newproblem instance. Hence, we have an interesting tradeo� for the plan retrieval component. If we tryto retrieve the reuse candidate with a best match, we may have a good chance that the plan can beeasily modi�ed, but the retrieval itself can be costly. On the other hand, if the retrieval componentonly performs an approximate match, matching might be inexpensive, but the modi�cation e�ort canbe quite high.In
uence of Planning DomainWith our second experiment, we want to highlight the in
uence of the application domain on theperformance of plan-reuse techniques. In the experiment, we considered in addition to the blocks-world11spa also provides an application-dependentmatching algorithmwhich is linear but restricted to blocks-world instanceswith one goal stack. Instead of this more e�cient method, we used the general matching algorithm in order to get an ideaabout the matching costs in spa in the general case12The observed runtime behavior correlates linearly with the number of considered partial plans. In other words, theruntime peaks are not caused by any machine-dependent features but by the plan-modi�cation process.13The reader should note that the use of control functions leads to a much better performance of the system as reportedin [20]. 13



the unix mail domain, which is quite di�erent from the blocks-world. Typical planning instances in theblocks-world incorporate a large number of objects of the same type (blocks) but only a small numberof di�erent operators. Typical planning instances in the mail domain involve few objects which are ofdi�erent type (e.g., mails and mailboxes) but a large number of di�erent operators (e.g., open or closea mailbox, read, save, and delete messages).
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In fact, in plan-reuse systems, plan modi�cation is not attacked as a problem but considered as aheuristic technique. This means that instead of using as much of the old plan as possible these systemsrecycle as much of the old plan as the particular planning algorithm will perhaps be able to use in solvingthe new problem instance. Hence, adopting the principle of conservatism in plan modi�cation only seemsto make sense in a replanning context where one wants to minimize the perturbation of the originalplan.Although plan modi�cation does not lead to a provable e�ciency gain in terms of computational com-plexity, it seems intuitively plausible that reusing old plans can sometimes (perhaps in a signi�cantnumber of cases) lead to an improvement in e�ciency. However, in order to exploit plan-reuse tech-niques in the general case, it is necessary to select an appropriate reuse candidate from a plan library.The bottleneck in retrieving such a candidate from the library seems to be that the matching problem,the problem of matching the objects of the reuse candidate to the objects of the new planning situa-tion, is already quite di�cult. As we show, this problem is NP-hard in general. This holds even formoderately simple blocks-world planning instances. Only in the case that there is exactly one stack inthe goal description, the matching problem is solvable in polynomial time.The identi�cation of sources of computational complexity raises the question of how implemented sys-tems cope with the combinatorial cli�s. This motivated experiments with existing plan-reuse systemsin order to identify possible pitfalls for reuse techniques. Summarizing our empirical results, we notedthat� if the underlying planning system is already very e�cient (for a given domain), the costs formatching and modi�cation can easily be higher than the costs for generating a plan from scratch;� if the reuse candidate is not structurally similar to the new instance, the modi�cation e�ort canbe much higher as in the case when the candidate is similar;� if a domain-independent optimalmatch between candidate and new instance is sought, the retrievalcosts can be quite high;� if the planning domain is heterogeneous (i.e., di�erent objects have di�erent types), matchingbecomes much more e�cient.Our future research will concentrate on further theoretical and empirical investigations of plan-reusetechniques. We are particularly interested in identifying conditions under which plan reuse is provablymore e�cient than plan generation. Further, we plan to analyze the empirical performance of di�erentplan-reuse systems on more complex real-world domains in order to characterize the range of applicabilityof particular reuse techniques.AcknowledgementsWe would like to thank Christer B�ackstr�om, Tom Bylander, Subbarao Kambhampati, and the twoanonymous referees, who provided helpful comments and suggestions on an earlier version of this paper.In particular, Tom's remarks and questions heavily in
uenced the paper. We would also like to thankSteven Hanks and Daniel Weld, who made their spa system available to us and answered our questionspatiently.A ProofsProposition 1 PLANSAT� transforms polynomially to MODSAT� for all restrictions �.Proof. The restriction of MODSAT� to empty old plans and k = 0 is identical to PLANSAT�.Proposition 2 MODSAT is PSPACE-complete.Proof. Because of Proposition 1 and the fact that PLANSAT is PSPACE-complete [6, Theorem 1],MODSAT is PSPACE-hard.MODSAT is in NPSPACE because (1) guessing a skeleton � of length k and verifying that it can bederived from the old plan � and (2) guessing step by step (with a maximum of 2jPj steps) a new plan�0 and verifying that it solves the instance �0 and extends � can be obviously done in polynomial space.Since NPSPACE = PSPACE, it follows that MODSAT 2 PSPACE.15



Theorem 3 If PLANSAT� is PSPACE-complete or NP-complete, then MODSAT� is a PSPACE-complete or NP-complete problem, respectively.Proof. PSPACE-hardness and NP-hardness, respectively, are obvious because of Proposition 1. Member-ship follows in case of PSPACE by Proposition 2. In case of NP, we initially guess (1) n (0 � n � j�j+2)possibly empty plans �i such that j�ij � j�j, (2) 2n states S1; : : : ; S2n, and (3) n polynomially boundedproofs that there exists plans from each state S2i to state S2i+1 for 1 � i � n� 1. Since PLANSAT� isin NP, such proofs exist (in most cases, these proofs will be plans). Then we verify in polynomial time(1) that S1 = I and S2n satis�es the goal speci�cation G, (2) that Result(S2i�1;�i) = S2i, (3) that theplan existence proofs are correct, and (4) that h�1; �;�2; �; : : : ;�n�1; �;�ni is a skeleton of length kthat can be derived from �. This is obviously a nondeterministic algorithm that runs in polynomialtime.Theorem 4 There exists a polynomial-time PLANSAT� problem such that the correspondingMODDEL� and MODDELINS� problems are NP-complete.Proof. The planning problem PLANSAT+1 de�ned by restricting operators to have only positive precon-ditions and only one postcondition can be solved in polynomial time [6, Theorem 7]. Let PLANSAT+;post1be the planning problem de�ned by restricting operators to have (1) only one postcondition p, (2) thenegated condition p as a precondition, and (3) any number of additional positive preconditions. Fromthe speci�cation of the algorithm Bylander [6] gives for PLANSAT+1 , it is evident that PLANSAT+;post1can also be solved in polynomial time (see also [2]). We will show that the corresponding modi�cationproblems MODDEL+;post1 and MODDELINS+;post1 are NP-complete.For the hardness part we use a reduction from SAT, the problem of satisfying a boolean formula inconjunctive normal form. Let V = fv1; : : : ; vmg be the set of boolean variables and let C = fc1; : : : ; cngbe the set of clauses. Now we construct a MODDEL+;post1 problem that can be satis�ed i� there existsa satisfying truth assignment for the SAT problem.The set of conditions P contains the following ground atoms:Ti; 1 � i � m; vi = true has been selectedFi; 1 � i � m; vi = false has been selectedSi; 1 � i � m; the truth value for vi has been selectedEi; 0 � i � m; enable evaluationCj; 1 � j � n; cj evaluates to true.Further, we assume the following set of operators O:o+; o� ) o+; o�ti � fTig; ; ) ;; fTigfi � fFig; ; ) ;; fFigsti � fTi; E0; : : : ; Emg; fSig ) fSig; ;sfi � fFi; E0; : : : ; Emg; fSig ) fSig; ;ei � ;; fEig ) fEig; ;posi;j � fTi; E0; : : : ; Emg; fCjg ) fCjg; ; if vi 2 cjneg i;j � fFi; E0; : : : ; Emg; fCjg ) fCjg; ; if vi 2 cj:Assume the following initial and goal state:I = fT1; : : : ; Tm; F1; : : : ; FmgG+ = fE0; : : : ; EmgG� = fT1; : : : ; Tm; F1; : : : ; Fmg:The instance � = hP;O; I;Gi is, for example, solved by the following plan �:� = ht1; : : : ; tm; f1; : : : ; fm; e0; : : : ; emi:Now consider the instance �0 = hP;O; I0;G0i such thatI0 = IG0+ = fE0; : : : ; Em; S1; : : : ; Sm; C1; : : : ; CngG0� = ;: 16



We claim that the SAT formula is satis�able if, and only if, the plan � can be modi�ed by deletingat most m operators and adding some operators before and after the resulting skeleton � in order toachieve a new plan �0 that solves �0.First, the operators sti and sfi can only be added after the original plan because there are m + 1operators ei at the end of � that produce the preconditions for the above operators. Second, in orderto achieve the part of the goal speci�cation that requires Si to hold for each i means that from eachpair fti; fig one operator in � must be deleted.Now assume that the SAT formula is satis�able. In this case, we can delete m of the ti and fi operatorssuch that the Tis and Fis correspond to a satisfying truth assignment. Then it is trivial to construct asequence of pos i;js and neg i;js that can be added in the end in order to achieve the goal speci�cationrequiring Cj , for all 1 � j � n, to hold. Conversely, if such a sequence can be found, then the values ofTi and Fi give a satisfying truth assignment for the SAT formula.Since st i; sfi; posi;j, and neg i;j cannot be added before any of the ei operators, the reduction applies toMODDELINS+;post1 , as well.Membership in NP follows since PLANSAT+;post1 is in NP. Using the same algorithm as described inthe proof of Theorem 3 leads to a nondeterministic polynomial-time algorithm for MODDEL+;post1 andMODDELINS+;post1 .Theorem 5 There exists a polynomial-time PLANSAT� problem such that the correspondingMODDEL1G� and MODDELINS1G� problems are NP-complete.Proof. The transformation used in the proof of Theorem 4 is modi�ed as follows. A new atom B isadded, which is assumed to be false in the initial state I and not mentioned in the old goal speci�cationG. The new goal speci�cation G0 is: G0+ = G+ [ fBgG0� = G�:Finally, the following operator is added:fE0; : : : ; Em; S1; : : : ; Sm; C1; : : : ; Cng; fBg ) ;; fBgThe MODDEL� and MODDELINS� problems generated by this modi�ed transformation obviouslysatisfy the constraint that the goal speci�cations di�er only on one atom. Further, the modi�ed trans-formation has obviously the same property as the original one, i.e., the generated MODSAT problemscan be used to solve the satis�ability problem.Membership in NP is again obvious.Theorem 6 If PLANSAT� is PSPACE-hard or NP-hard, then the corresponding MODGEN1G� problemis PSPACE-hard or NP-hard, respectively, in the size of the planning problem instance.Proof. Using an oracle for MODGEN1G�, we can generate a plan by modifying it iteratively, startingwith the empty plan and empty goal speci�cation and continuing by adding step by step one goal atom.Since the size of the goal speci�cation is linearly bounded by the problem instance, we would need onlylinearly many calls. Supposing that the theorem does not hold would imply that generating a planunder restrictions � is easier than PLANSAT�, which is impossible by de�nition.Theorem 8 If PLANSAT� is PSPACE-hard or NP-hard, then the corresponding MODGEN1G� problemis PSPACE-hard or NP-hard, respectively, in the size of the planning problem instance, even if we donot require to reuse a maximal subplan.Proof. In the reduction used in the proof of Theorem 6, we did not rely on any particular property ofthe MODGEN1G� oracle. In particular, we did not make the assumption that the oracle has to recyclea maximal reusable plan skeleton. Hence, the result holds for arbitrary modi�cation strategies, eventhose that are not required to use a maximal subplan.Theorem 9 PMATCH is NP-hard, even if the initial states are empty.17



Proof. NP-hardness is proved by a polynomial transformation from the subgraph isomorphism problemfor directed graphs [16, p. 202], which is NP-complete. This problem is de�ned as follows:Given two digraphs G = (V1; A1);H = (V2; A2), does G contain a subgraph isomorphic to H,i.e., do there exist subsets V � V1 and A � A1 such that jV j = jV2j and jAj = jA2j, and thereexists a one-to-one function f :V2 ! V satisfying (u; v) 2 A2 if and only if (f(u); f(v)) 2 A?Given an instance of the subgraph isomorphism problem, we construct an instance of PMATCH asfollows. O = O0 = V1 [ V2P = P0 = fPgI = I0 = ;G� = G0� = ;G+ = fP (v; w)j (v; w) 2 A2gG0+ = fP (v; w)j (v; w) 2 A1g:Now it is obvious that G contains a subgraph isomorphic to H i� there exists a mapping � such thatj�(G+) \ G0+j = jA2j.Theorem 11 PMATCH restricted to blocks-world planning instances, where the goal is a completedescription of a set of stacks, is NP-hard.Proof. In order to prove NP-hardness, we use a polynomial transformation from the NP-completeproblem of 3-dimensional matching (3DM), which is de�ned as follows [16, p. 221]:Given a set M �W �X�Y , where W , X, and Y are disjoint sets having the same number qof elements, decide whether M contains a matching, i.e., a subset N � M such that jN j = qand no two elements of N agree in any coordinate.For convenience, we assume that there exists a function g that assigns a unique index to all elements inW [X [ Y such that 1 � g(w) � q for all w 2W;1 + q � g(x) � 2q for all x 2 X;1 + 2q � g(y) � 3q for all y 2 Y:Given an instance of 3DM, we construct two planning instances� = hP(O;P);O; I;Gi�0 = hP(O0;P0);O0; I0;G0iin the following way (see also Figure 5):1. For each triple hmi;1;mi;2;mi;3i 2 M , 1 � i � jM j, we set up a stack of three blocks bi;1, bi;2,bi;3 in the goal description G0, i.e., we add the ground atomic formulae ontable(bi;1), on(bi;2; bi;1),on(bi;3; bi;2), clear(bi;3) to G0+.2. For each block bi;j appearing in the goal state G0, we add a stack of g(mi;j)+1 blocks to the initialstate description I 0, where bi;j is the top block of this stack.3. We set up q stacks of three blocks xj;1; xj;2; xj;3, 1 � j � q, in the goal state G, where xj;1 is thebottom block and xj;3 is the top block.4. For each block xj;k appearing in the goal state description G, a stack of height 1 consisting of theblock xj;k is added to the initial state description I.5. For each set Sh of stacks with the same height h in the initial state description I 0, we add jShj�1stacks of height h to the initial state I.Now it is obvious that there exists a mapping � from � to �0 that matches jG+j goal atoms and jIj�3qinitial-state atoms i� there exists a 3-dimensional matching.18
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