
DEVELOPMENT OF A CONTROL SOFTWARE FOR A PLANETARY
EXPLORATION ROBOT WITH ESROCOS

Malte Wirkus*, Moritz Schilling*, and Benjamin Kisliuk**

*Robotics Innovation Center, DFKI, Germany
**Forschungsgruppe Planbasierte Robotersteuerung, DFKI, Germany

ABSTRACT

ESROCOS is a H2020 research project and the name
of an open-source software system for the develop-
ment of robotics software, which was created dur-
ing the project. It provides a model-driving develop-
ment workflow targeting especially the space robotics
domain by focusing on the creation of applications
with stringent Reliability, Availability, Maintainabil-
ity and Safety (RAMS) requirements. ESROCOS
comprises of different tools with TASTE as the core
technology. To validate the project results, a one-
week test campaign has been carried out in Septem-
ber 2018. During the test campaign, a control ap-
plication for a planetary exploration rover was inte-
grated on a space rover prototype. In this paper,
we explain the control application and the features
of ESROCOS relevant for its realization. From the
experience of the validation test, we discuss the suit-
ability and usability of the ESROCOS tools for the
given task with the motivation to provide ideas for
further improvement.

1. INTRODUCTION

While robotic systems already proved to be an ad-
equate tool for supporting humanity in the explo-
ration of space, additional functionalities and more
autonomy are required to fully leverage the poten-
tial of robotic systems [2]. However, additional ca-
pabilities for robotic systems come at the price of in-
creased software complexity. Especially in the case
of the space domain, high requirements for Relia-
bility, Availability and Safety (RAMS) are imposed
on hard- and software, resulting in high efforts and
costs for developing and validating software. The
research oriented robotics community faces the in-
creasing complexity with an open source approach:
Robot software development frameworks managed to
establish a large collection of tools and re-usable soft-
ware components for robots in the academic world.
These software components are usually supposed to
mature over time due to massive testing instead of a

verification process as in space applications. In ad-
dition, parts of the frameworks internal code already
do not apply to the RAMS requirements for space,
such that for space robotics a similar collection of
re-usable software components is missing.

The European project European Space Robotics
Control and Operating System (ESROCOS)1 [1]
aims to provide an open-source framework to assist
in the development of flight software for space robots
with space-grade RAMS properties. The resulting
ESROCOS software system [6] comprises of different
mature and novel tools with the TASTE software [7]
at its core. TASTE allows the specification and gen-
eration of correct-by-construction software for het-
erogeneous embedded system. ESROCOS aims to
establish a standard workflow and infrastructure for
robot software development in the European space
industry and – in the longer run – a pool of state-
of-the-art software solutions for common algorithms,
driver and tools needed in space robotic software ap-
plications.

To validate the project results, a one-week test cam-
paign has been carried out in September 2018. In
this test campaign, a control application for a plane-
tary exploration rover was integrated on the robotic
system Bridget (cf. figure 2). We give details about
the test campaign in section 4 after introducing dif-
ferent robotics framework and ESROCOS in section
2 and 3. With the intention to identify demand for
certain functionalities and provide ideas for further
improvement, a subjective evaluation of the suitabil-
ity and usability of the ESROCOS tools that have
been used during the test campaign is given in sec-
tion 5. With section 6 we conclude the paper with a
some closing remarks.

2. STATE OF THE ART

In the robotics community, the use of software com-
ponent systems has gained a lot of interest in recent
years. The idea of having standardized interfaces

1ESROCOS Website: http://www.h2020-esrocos.eu

http://www.h2020-esrocos.eu

and data types to enable the development of com-
patible off-the-shelf software components is not new
and was first introduced back in 1968 [5]. Nowadays,
there exists a wide variety of frameworks to choose
from. To just name a few, there are Orocos-RTT,
ROS or ROCK, which will be introduced in the fol-
lowing paragraphs.

Since its release in 2009 Robot Operating System
(ROS) [8] managed to gather a large user and de-
veloper community and became the presently most
prominent framework for robot software develop-
ment. By now, it provides a plentiful reposi-
tory of ready-to-use software components and a
rich development environment. ROS provides a
publisher/subscriber middleware, to which so-called
nodes publish their topics and/or subscribe to top-
ics they expect to retrieve data from. The topics
of a node are advertised by the nodes at runtime
at a central name service, but otherwise are hid-
den in the implementation code. ROS provides a
mechanism for renaming topic of a node without
changing its code to allow constructing composite
software systems from components, which were de-
veloped individually of each other. ROS does not
provide a model description of node interfaces or be-
havior. The knowledge about the provided topics
must be retrieved from documentation or by running
them and using framework tools that retrieve a list
of advertised topics. This practice is unfavorable for
the space domain, since it impedes the possibility of
constructing, analyzing and validating of component
networks offline.

The software framework Robot Construction Kit
(ROCK) [4] improves on this situation by provid-
ing a model-based component development workflow.
Each component has a model assigned, which de-
scribes typed input and output ports, as well as
properties, functions and different runtime states
of the component. Consistency between the model
and the actual implementation of a component is
ensured by using the component model already in
the development process for the auto-generation of
framework-specific code. The underlying runtime
and communication infrastructure in ROCK is the
Orocos Real-Time Toolkit (RTT), a software sys-
tem for component based real-time applications with
support for standard and real-time Linux distribu-
tions and different communication schemes such as
direct memory access, POSIX message queues or
CORBA. Like ROS, ROCK provides support for let-
ting software components communicate via network,
but does not provide means for defining the systems
network topology as part of the deployment process.

The development of The Assert Set of Tools for En-
gineering (TASTE) [7] dates back to 2008 and its
development is steadily driven forwards under the
coordination of ESA since then. It is designed as
a development environment for distributed embed-
ded real-time systems that facilitates established and

mature technologies such as Architecture Analysis
& Design Language (AADL), Abstract Syntax No-
tation One (ASN.1) and Specification and Descrip-
tion Language (SDL). Originally designed for satel-
lite systems, an initiative called SARGON started in
2016 to use TASTE for the development of robotic
applications for the first time. In contrast to the
other frameworks mentioned before, TASTE pro-
vides a hardware model of the robotic system to
account for glue code generation, compilation and
validation. The hardware model allows specifying
multiple execution units and their communication
(e.g. buses) between each other. Combined with
the assignment of the software components to their
execution units, different checks, e.g. for worst-case
execution time or schedulability are possible.

In the next section, we describe TASTE and the ex-
tensions that have been added with the ESROCOS
framework in more detail.

3. ESROCOS AND TASTE

TASTE comprises of tools for modeling, analyzing
and compiling applications composed from multiple
software components. A key feature of TASTE is the
support of interactions of components on distributed
and heterogeneous hardware platforms. Hence, con-
trol over data type modeling and serialization and
cross compiling capabilities in the build process are
provided for a selection of hardware platforms rele-
vant for the space domain. For modeling data types,
the ASN.1 format is used. Component networks and
hardware are modeled with a visual editor for AADL
models. For the communication between the compo-
nents, TASTE uses the middleware PolyORB-Hi-C.

TASTE used to follow a bottom-up procedure allow-
ing modeling and implementing data types and com-
ponents from scratch, with no means for software
re-use. With ESROCOS, component re-use capabil-
ities were added by extending TASTE with features
to im- and export component interfaces and source
code. To allow for compatibility of software com-
ponents that are developed independent from each
other, a set of common data types for robotics appli-
cations (base types) were defined and are part of the
ESROCOS framework. To support developers with
distributing their software components, a mechanism
for registering new software packages in the ESRO-
COS system and their automated retrieval from pub-
lic source code repositories was added.

Much of the data robots produce and process is
framed by the geometric coordinate space it is ex-
pressed in. Thus, to combine data samples they have
to be transformed into a mutual coordinate system.
ESROCOS provides the transformer library to con-
figure a graph with named geometric frames as nodes
and frame transformations generated by user code as

edges. Transforms between arbitrary frames within
the specified graph can be queried and the Trans-
former resolves the geometric operations required for
calculating the requested transform. Similar func-
tionality is provided within ROCK with the trans-
former and in ROS with the tf mechanism. The im-
plementation used in ESROCOS is free of dynamic
memory allocations to account for space software de-
velopment standards.

Much of the capabilities of intelligent systems de-
rives from the combination and fusion of the avail-
able data. However as sensors and sensing methods
vary quite a lot the sensory data varies in size, fre-
quency and effort to process. The more distributed
a robotic system is, the more important it gets to
be able to process the produced data in an orderly
manner to get meaningful results. The stream aligner
supports developers with the processing of multiple
asynchronous data streams by buffering and align-
ing the data streams. Matching tuples of samples
for a given time point can thus be retrieved from the
stream aligner.

Data Logging is a crucial capability when develop-
ing robotic applications that rely on sensor data pro-
cessing for autonomous tasks. Not only do log files
prove invaluable during the engineering and debug-
ging process of the software, but they also allow for
the documentation of experiments. A software li-
brary for performant data logging is provided with
ESROCOS.

A feature unique to TASTE compared to other com-
ponent development frameworks is the possibility to
analyze the real-time behavior and resource utiliza-
tion of the software. ESROCOS complements these
capabilities with including the Behavior, Interaction,
Priority (BIP) tool [3]. BIP offers additional possi-
bilities to analyze the software and verify proper-
ties at a behavioral level, and can be used to gener-
ate correct-by-construction software components by
modeling their behavior as automata and translating
them to executable code.

In the test application presented in the next section,
all of the above features are put to test in order
to identify strengths and weaknesses of the ESRO-
COS system. It is to note, that ESROCOS provides
more interesting features for software development
for space robots. The interested reader is invited to
read [6] for a complete overview of the ESROCOS
system.

4. VALIDATION TEST SCENARIO AND
APPLICATION

To assess the functionality of the ESROCOS system,
the selected test scenario and application should be
suitable to test specific features of the framework

rather than solving a particular robotics tasks. For
the validation test campaign, we implemented a tele-
operation application with additional functionality
for data processing, actuator control, visualization
and logging. The application was designed to val-
idate in particular the following aspects of the ES-
ROCOS system: a) Feasibility to develop a robot
control system. b) Compatibility of the software
packages stream aligner and transformer with space
representative hardware. c) Actuator control from
space representative hardware via Controller Area
Network (CAN) protocol. d) Feasibility to develop
a sensor-processing pipeline including camera image
processing, geometric transformations and visualiza-
tion. e) Possibility to incorporate BIP-modeled fault
detection routines. f) Transmission and reception
of telemetry data and commands between a remote
computer and a robot. g) Ability to record log data
and use data from log files as data source within a
control application.

Figure 1 shows the application, which is divided into
seven separate subsystems that in some cases are re-
alized by multiple software components. The soft-
ware components are distributed over different exe-
cution hardware present in the target hardware sys-
tem comprising the rover Bridget with a few mod-
ifications and an external computer (cf. figure 2).
Figure 1 shows two versions of a similar control sys-
tem. The difference is that in the version on the
right the joystick control subsystem is replaced by a
log file replay subsystem. The remaining function-
ality is the same. The following subsections explain
the software and hardware setup in more detail.

4.1. Software subsystems

All colored blocks in figure 1 refer to subsystems im-
plemented using the ESROCOS tools and commu-
nicating using the TASTE middleware. The gray
blocks refer to hardware devices not modeled within
TASTE.

The joypad control and rover control subsystems in
figure 1 (left) realize a tele-operation application us-
ing a gamepad. The application provides three dif-
ferent kind of control: 1. Generation of rover mo-
tion (driving velocities and steering) by using the
left analogue stick. 2. Generation of joint velocities
for the pan/tilt unit of the rover using the right ana-
logue stick of the gamepad. 3. Mapping of individual
button press events to toggling rover configurations
(switch on/off lights, toggle point turn or Ackerman
drive mode).

The joystick control subsystem is separated into a
gamepad driver component that reads the USB con-
nected device and outputs a structure containing the
raw values read (such as axis values, button states).
The raw data is processed by individual components

joypad control

logging visualization

Remote Control PC

COTS OBC GR740

Joypad

rover control can driver
CAN
Device

Rover

marker
detection

marker
processing

Camera

replay

visualization

Remote Control PC

COTS OBC GR740

rover control can driver
CAN
Device

Rover API

marker
detection

marker
processing

Camera

Figure 1. Coarse overview about the software distributed among the hardware platforms with schematic data
flow. Left side shows for manual control and data logging. Right side for log data replay.

Pan/Tilt Unit with
Cameras and Lights

Actuator with CAN
Interface.

Space Representative
On-Board Computer

(GR740)

WiFi Access Point

COTS On-Board
Computer

USB camera mounted
on actuator

Frontal USB camera

(a) (b)

Figure 2. The Mars rover test system Bridget in the Mars Yard (a) and control room (b).

that translate the data into ESROCOS base types
to represent reference driving motion commands for
the rover or joint commands for its pan tilt unit.

The motion commands from the gamepad control
subsystem serves as input to the rover control subsys-
tem, which contains a driver component for the Brid-
get rover and a BIP-modelled watchdog component.
The rover driver is realized by a TASTE component
wrapping a C++-API for the Bridget rover. With
the API telemetry data, including joint state and lo-
calization information is received from the rover’s in-
ternal software and commands for the rover’s devices
are issued. The wrapper component exposes dedi-
cated API functions to the TASTE modeling envi-
ronment for interfacing with other components. The
watchdog component monitors the incoming rover
motion control commands and forwards them to the
rover driver, or sends a stop command if no new com-
mands have been received for some time.

The two different versions of the software system il-

lustrated in figure 1 were used in conjunction to test
logging of data and the use of log data for online con-
trol. The logging subsystem in the version on the left
receives a copy of the rover motion command, pro-
vided by the joystick control subsystem, and writes
the samples to a file using the logging library pro-
vided with ESROCOS. In the version on the right,
this log file is read and the samples from the log file
are fed into the rover control subsystem, effectively
replacing the tele-operation.

The marker detection and marker processing subsys-
tems implement an image-processing pipeline with
3D pose reconstruction and further processing of
the resulting geometric transformations. For object
detection and pose reconstruction, the ArUco fidu-
cial marker recognition system2 (marker detection) is
used to determine the 6D poses of printed markers,
which are hidden in the scene.

2Available as OpenSource at https://www.uco.es/
investiga/grupos/ava/node/26

https://www.uco.es/investiga/grupos/ava/node/26
https://www.uco.es/investiga/grupos/ava/node/26

The poses of the marker detection are expressed in
the camera frame and fed into the marker process-
ing subsystem. This subsystem also receives self-
localization information of the rover expressed in
the rover’s world origin frame that is placed at the
location where the rover was started. The sam-
ples of both data sources are processed by stream
aligner and transformer components that calculate
the global pose of the marker. The global pose of
the marker is displayed alongside with the localiza-
tion data of the rover by the visualization subsystem
on the operator’s screen. The visualization subsys-
tem therefor uses the Vizkit3D software, which is
integrated into ESROCOS.

Decoupled from the remaining subsystems, the can
driver subsystem consists of a motion pattern gener-
ating component and a component wrapping a CAN
API shipped with RTEMS called GRCAN. To re-
ceive telemetry, the can driver sends a Telemetry
Request frame to the device, which is formatted as
presented in table 1. The actuator in turn responds
with the current state encoded in a Telemetry Re-
sponse frame. A new reference is given to the motor
controller by sending a Tele-Command frame.

In addition to the mentioned subsystems, a cam-
era stream was established to provide a live image
data feed using the software FFMPEG3. Data from
a camera in Bridget’s sensor head is streamed to the
operator’s remote control computer to provide direct
visual feedback to the operator controlling the robot.

4.2. Target Hardware

The software system was implemented on the Mars
rover breadboard Bridget, which was provided by
Airbus Defence & Space in Stevenage, UK through
the OG6-Facilitators project4. For the ESROCOS
validation tests, the rover was equipped with addi-
tional cameras, a space-representative GR740 board
hosting a LEON4 processor, as well as a normal
Linux computer (cf. figure 2 (a)).

The tests have been conducted in the Mars Yard fa-
cility of Airbus DS, a laboratory consisting of a large
sand box with several stones and slopes, with con-
trollable lighing conditions. Using the Wi-Fi access
point on the rover and another one in the control
room (cf. figure 2 (b)) of the Mars Yard, a wireless
network communication between the control room
and the rover was created.

The Remote Control Computer in the control room
was used as a terminal for the operator to the rover
and therefore equipped with I/O devices such as a
display, mouse, keyboard and a gamepad. This com-
puter served as the source of control commands ei-

3Online available at https://www.ffmpeg.org/
4Project website: https://www.h2020-facilitators.eu/

ther originating from the gamepad or log file. The
on-board Linux computer hosted the component
wrapping the C++API for Bridget, the watchdog
component as well as the marker detection compo-
nent. On the GR740 the can driver subsystem as
well as the transformer and stream aligner compo-
nents were executed.

TASTE distinguishes between the system used for
software development and the systems that executes
the resulting software. In a graphical AADL editor,
the deployment targets are specified on the develop-
ment system (in our case a Virtual Machine that is
used to distribute TASTE). TASTE then uses cross-
compiling to generate the binaries for the respective
target systems. For the case of a Linux target, the
resulting executable binary contains the polyorb-HI-
C middleware to establish communication with the
other subsystems, the data type serialization / de-
serialization methods and the application itself. For
the case of the GR740, TASTE generates a binary
that in addition also includes the RTEMS operating
system to handle memory and process management.
For executing a TASTE application each generated
executable file needs to be distributed to the corre-
sponding execution hardware, where the executable
files then have to be started manually.

5. EXPERIENCES AND RESULTS

In this section, we want to elaborate on a few aspects
we have experienced during developing the applica-
tion and conducting the test campaign.

While using TASTE and the ESROCOS extensions
for implementing the application described in the
previous section, we were confronted with certain is-
sues impeding the development process. This section
now details these issues following no particular order
and explains how we dealt with them. Both, TASTE
and ESROCOS are work-in-progress, and will receive
further maintenance and extensions in future. While
TASTE was in the past years already steadily ex-
tended and maintained, and to our knowledge will
be continued to be similarly maintained, further de-
velopment of the ESROCOS system will continue
in research projects subsequent to ESROCOS that
recently have started. Therefore this section can
be understood as feedback on the current state of
the system and, where applicable, ideas for further
improvements. The experiences reported here have
been made with TASTE 9.1 64 Bit version released as
Debian Image and ESROCOS packages in a version
that later became the ESROCOS_FP_1.0 reposi-
tory tag.

Accessibility General information about the re-
search project ESROCOS can be retrieved from the

https://www.ffmpeg.org/
https://www.h2020-facilitators.eu/

Message CAN identifier RTR Bit Length Data
Telemetry Request 0x7C0 1 0 -

Telemetry Response 0x1A0 0 6 τ0 τ1 p0 p1 v0 v1
Tele-Command 0x182 0 3 m v0 v1

Table 1. Format of the CAN messages. τ denotes motor torque, p and v joint positions and speeds. The control
mode identifier m can be used to switch between position, velocity or torque control mode.

official project website5, where also a link to more
technical information is placed. The technical infor-
mation is presented as a Wiki on a GitHub page6.
The documentation provides a few tutorials and in-
structions such as installation instructions, but the
content provided there does not yet cover all fea-
tures of ESROCOS. The user will not be able to re-
trieve information on how to use certain features of
ESROCOS. For example, instructions for installing
and using BIP or the mixed criticality systems ap-
proach are not giving here. Further information can
be retrieved from the project deliverable D4.4-RCOS
APIs and Tools7, but this document is difficult to
find, as it is not properly advertised as source of doc-
umentation. This effectively hides strong features of
ESROCOS from the user and could easily be over-
come by migrating information from the PDF to the
online reference and in addition by providing simple
use-case examples. For in-depth information about
the individual tools, references to the documentation
resources of the particular software could be placed.

For TASTE there are multiple ways to retrieve
a working environment: It could be installed via
Docker, Virtual Box image or from source code. The
ESROCOS installation instructions refer to the in-
stallation by downloading the Virtual Box image.
This is an uncommon method for software distribu-
tion, but it provides a very easy way to retrieve a
working development environment. For TASTE this
kind of distribution is feasible, since unlike other
robotic software development frameworks, with its
cross-compiling capabilities, TASTE makes a real
distinction between the system which is used for soft-
ware development and the target system for execu-
tion. For installing ESROCOS on top of the Virtual
Box image, a few simple steps are documented in the
Wiki. While the steps are easy to execute it might
be more convenient if ESROCOS came already pre-
installed with the Virtual Box image.

ESROCOS uses the software package management
and compilation system Autoproj8. The sys-
tem allows the retrieval and installation of indi-
vidual software packages with simple commands
such as aup tutorial/cam_capture and amake
tutorial/cam_capture. The tools allows to give
the user access to a potentially large pool of re-usable

5https://www.h2020-esrocos.eu/
6https://github.com/ESROCOS/esrocos.github.io/wiki
7PDF online available at https://www.h2020-esrocos.eu/

wp-content/uploads/ESROCOS_D4.4_RcosApisAndTools_V1.
2.pdf

8https://www.rock-robotics.org/documentation/
autoproj/

software components, but currently the pool of avail-
able components is very limited. In addition, some
of the ESROCOS tools are not yet integrated into
Autoproj.

Data Types TASTE uses ASN.1 for modeling
data types that can be used on component inter-
faces. The ASN.1 types are then converted into
structures in the target programming language. New
developers might be confused that the name of the
type in the target language is different from the
model, e.g. in the case of C++ they are prefixed
with asn1Scc. Also, the experience working with
the ASN.1-generated types can be frustrating, since
the generated structures are very low-level and cum-
bersome to work with. In practice, we were using
the ASN.1 types only for the external component in-
terfaces and convert them inside the user code of a
component to a more programmer-friendly represen-
tation. For that purpose, ESROCOS provides the
base-support package, a software library that allows
converting between ASN.1-generated types and cor-
responding C++ data types used in ROCK.

Another problem regarding data types is that large
data structures cannot be transmitted by the middle-
ware. This problem came apparent for us when want-
ing to transmit camera images. In the case of marker
detection, we overcame the problem by embedding
the camera driver into the marker detection compo-
nent such that no transfer of an image is necessary.
In the case of providing the operator an overview
from the rover’s perspective, with the camera stream
realized with FFMPEG, we chose a solution indepen-
dent from ESROCOS. To realize transport of images
using TASTE, ESROCOS provides a specific pair of
components (imagetransfer) that splits camera im-
ages into transferable 32kB chunks and re-assembles
them after the transfer. A solution for transferring
larger structures should be found within TASTE to
overcome the need for such workarounds.

A problem hindering the growth of a larger set of
reusable components and compatible components is
the way in which array structures are treated in
TASTE. Dynamically sized structures are not sup-
ported since they are forbidden in safety critical
space applications. Instead, TASTE allows the spec-
ification of fixed sized arrays with ASN.1. ESRO-
COS proposes to split the type specification into
two parts: a) the re-usable base-types with a size-
variable as a placeholder for the dimensionality of
array-types, and b) an additional ASN.1 file contain-

https://www.h2020-esrocos.eu/
https://github.com/ESROCOS/esrocos.github.io/wiki
https://www.h2020-esrocos.eu/wp-content/uploads/ESROCOS_D4.4_RcosApisAndTools_V1.2.pdf
https://www.h2020-esrocos.eu/wp-content/uploads/ESROCOS_D4.4_RcosApisAndTools_V1.2.pdf
https://www.h2020-esrocos.eu/wp-content/uploads/ESROCOS_D4.4_RcosApisAndTools_V1.2.pdf
https://www.rock-robotics.org/documentation/autoproj/
https://www.rock-robotics.org/documentation/autoproj/

ing the size-variable specifications. While the base-
types are supposed to remain untouched by the user,
the size-variable file is edited in a user project. The
problem with this approach is that it is only possible
to give only one size per type. This results in a waste
of resources and the need for workarounds to express
the amount of used elements in an array structure,
what in turn is a potential source of mistakes.

Application Modeling Modeling an application
with TASTE works very well in general. While read-
ability for large software systems could be improved
TASTE’s graphical user interface already does a
great job in abstracting technical details to simplify
software modeling. In particular, we were impressed
how well the development of programs for the GR740
went. Since we have never worked with such a system
before, we expected more problems here. The only
hurdles we had to take were that by default TASTE
configures very small stack sizes for each processing
unit and we had to increase these values in Concur-
rency View of TASTE, and that not all properties
used in TASTE are reflected by the user interface.
Some properties are handled by so-called TASTE-
directives, a piece of text following a formatting con-
vention, which is then evaluated in the build process.
In our case, we had to set some compiler options
for the RTEMS compiler via TASTE-directives. The
presence and the need of the compiler flags need to
be known by the user. This kind of expert knowledge
could be better reflected by the GUI.

In our test application, we were confronted with the
fact that we wanted to have multiple provided in-
terface (PI, callable interface of a component) be-
ing connected to a single requesting interface (RI,
calling interface). The GUI prevents this as it only
allows one-to-one connections. In our case, one-to-
many connections would have made a lot of sense
since we were building a data flow system, where
having multiple consumers of the same data sample
is a common pattern. We overcame the problem by
adding dedicated dispatcher components that receive
a sample and forward it to multiple RI’s. Our test
application already contains three dispatcher compo-
nents for three different types. In our opinion there
should not be a strict rule to forbid one-to-many con-
nections and the dispatching should be automatized.

The mechanism for component re-use currently im-
plemented in TASTE does not support multiple in-
stances of the same component in an application.
This is a problematic issue for numerous applica-
tions, for instance with redundant hardware where
the same driver component with different configura-
tion is supposed to be reused. A workaround is the
creation of copies or symbolic links of the compo-
nent’s source code files.

To use the data logging library in TASTE for re-
play, is wrapped by a TASTE component, where the

call of a periodic PI is mapped to reading the next
sample from the file. The frequency of data reading
from the log-file is controlled by the triggering rate
of the PI. To replicate the original data it must be
taken care, that the triggering is configured to the
same frequency as the original data was produced.
Thus, only data from source of a fixed frequency can
currently replicated. An improvement would be if
the log-file replay component would be send samples
based on the timestamps present in the log-files.

Build System Programs in TASTE are compiled
by executing an automatically generated shell script
that triggers a number of processes such as type con-
version, glue code generation and compilation. The
overall process is rather slow. For a new project con-
sisting of a single C++ component with no user code
and a single periodic interface, that is compiled for a
Linux target the first call of the build-script already
takes 21 seconds (Virtual Box with default settings
hosted on a notebook with i7-6600U CPU). In a sec-
ond call of the build script where the project did not
change in the meantime, the execution time drops
to 12 seconds. These are values that are still okay
to work with, but with multiple components and de-
ployments compilation easily gets displeasingly slow.
A project with 15 trivial C++ components that are
distributed to five Linux executables takes already
about 2 minutes of compilation time, or 1 minute in
second run respectively.

The main part of the compilation time comes from
the overhead introduced by the framework rather
than the user code. Especially for the case, where a
user wants to compile and debug his/her code, faster
compilation times are essential to avoid user frustra-
tion. Improved mechanisms to identify which parts
of the system have actually changed (user code vs.
deployment specification vs. component interfaces)
could help skipping a number of compilation actions
and thus improve on the compilation times.

Extentability During preparing the validation
test application, we found interest in the idea of ex-
tending TASTE in two directions. One was to create
a tool that can connect and configure certain soft-
ware components automatically. The other was to
extend the bus systems known by TASTE by an ad-
ditional one. We had to abandon both ideas due
to difficulties identifying how to integrate features
that are on the level of processing AADL models in
TASTE. For the automated component wiring, we
would have needed to parse, process and emit AADL
and then pass a modified version of the AADL file to
TASTE. Already finding a AADL parser/emitter li-
brary was problematic since the web does not reveal
much information about processing AADL models.

We have found a documented feature in Ocarina9
for converting AADL to a XML file representation,
but for us it was not working with TASTE Interface-
Views. Similarly was the case for the extension with
a new bus system. It was easy to identify where to
place the AADL files that model the new system but
about the software integration we found no informa-
tion. These examples give us the impression, that
there is a lot of potential of the TASTE infrastruc-
ture still unused by setting the entrance barrier to
work with the model-based back-end too high. Due
to the sound design of many parts of the system our
impression is, that by putting more focus on hands-
on tutorials and on tooling, users of the system could
already be put in the situation to integrate the hard-
ware or modeling features they need. This could have
a big effect on the growth of the systems community
and application domains.

6. CONCLUSIONS & FUTURE WORK

We have shown that ESROCOS and TASTE are
principally suited to setup a working robot control
application deployed to heterogeneous distributed
execution hardware. Due to the mature visual mod-
eling tools of TASTE, the software system was com-
parably easy to set up and built.

During the development, some issues have come up
that where described in the previous section. Some
of them point to a lack of documentation, demand
an improved degree of integration, or missing con-
venience features. We believe that these things can
easily improve with further maintenance. Others are
of technical nature and here we want to stress three
critical issues with the potential to impede the appli-
cability of the ESROCOS system to more complex
robotics applications and therefore should be dealt
with in particular: 1. Multiple instances of compo-
nents should be possible. 2. The current situation
how array-like data structures and their dimensions
are handled are not satisfactory. 3. Transfer of large
data structures should be supported by the frame-
work.

With the named issues solved and the further matur-
ing of the framework tools and workflow, ESROCOS
could become an even more valuable tool for the de-
velopment of robotics applications. Since the evolu-
tion of ESROCOS continues in the second phase of
the Space Robotics Technologies SRC, we are opti-
mistic for the future of the system.

9Distributed with TASTE and also available online at
https://github.com/OpenAADL/ocarina

ACKNOWLEDGEMENTS

The authors would like to thank all team mem-
bers for their contribution to the development of the
RCOS and the demonstration application. For their
support and guidance in the H2020 ESROCOS activ-
ity, we would like to thank the European Commis-
sion / Research Executive Agency and the members
of the PERASPERA Programme Support Activity
(ESA as coordinator, ASI, CDTI, CNES, DLR and
UKSA). The project has received funding from the
European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 730080
and 821858.

REFERENCES

[1] M. M. Arancón and G. Montano et. al. ESROCOS: A
Robotic Operating System for Space and Terrestrial
Applications. In Proceedings of the 14th Symposium
on Advanced Space Technologies in Robotics and Au-
tomation (ASTRA 20017), number 1, 2017.

[2] M. Bajracharya and M. W. Maimone et. al. Au-
tonomy for Mars Rovers: Past, present, and future.
Computer, 41(12):44–50, 2008.

[3] A. Basu and S. Bensalem et. al. Rigorous System
Design Using the BIP Framework. IEEE Software,
pages 41–48, 2011.

[4] S. Joyeux, J. Schwendner, and T. M. Roehr. Modu-
lar Software for an Autonomous Space Rover. In Pro-
ceedings of the 12th International Symposium on Arti-
ficial Intelligence, Robotics and Automation in Space
(i-SAIRAS 2014), Montreal, Québec, Canada, 2014.

[5] D. McIlroy. Mass Produced Software Components. In
P. Naur and B. Randell, editors, Software Engineer-
ing, Report on a conference sponsored by the NATO
Science Committee, Garmisch, 1968. Scientific Affairs
Division, NATO.

[6] M. Munoz Aracon, M. Wirkus, K. Hoeflinger,
N. Tsiogkas, S. Bensalem, O. Rantanen, D. Silveira,
J. Hugues, M. Shilton, and H. Bruyninckx. ES-
ROCOS: Development and Validation of a Space
Robotics Framework (in press). In Proceedings of the
15th Symposium on Advanced Space Technologies in
Robotics and Automation (ASTRA 20019), 2019.

[7] M. Perrotin and E. Conquet et. al. The TASTE
Toolset: turning human designed heterogeneous sys-
tems into computer built homogeneous software. Eu-
ropean Congress on Embedded Real-Time Software
(ERTS 2010), pages 1–10, 2010.

[8] M. Quigley and B. Gerkey et. al. ROS: an open-
source Robot Operating System. In In Proc. of IEEE
International Conference on Robotics and Automa-
tion (ICRA), 2009.

https://github.com/OpenAADL/ocarina

	Introduction
	State of the Art
	ESROCOS and TASTE
	Validation Test Scenario and Application
	Software subsystems
	Target Hardware

	Experiences and Results
	Conclusions & Future Work

