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ABSTRACT

To enable the physically correct simulation of the interaction of
a 3D character with its environment the internal joint forces of
a physical model of the character need to be estimated. Recently,
derivative-free sampling-based optimization methods, which treat
the objective function as a black box, have shown great results for
finding control signals for articulated figures in physics simulations.
We present a novel sampling-based approach for the reconstruction
of control signals for a rigid body model based on motion capture
data that combines ideas of previous approaches. The algorithm
optimizes control trajectories along a sliding window using the
Covariance Matrix Adaption Evolution Strategy. The sampling dis-
tribution is represented as a mixture model with a dynamically
selected number of clusters based on the variation detected in the
samples. During the optimization we keep track of multiple states
which enables the exploration of multiple paths. We evaluate the
algorithm for the task of motion capture following using figures
that were automatically generated from 3D character models.
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1 INTRODUCTION

Interactive applications involving human characters often require
the believable interaction with the environment based on physics
simulations. However, controlling the underactuated articulated
human body model in a simulation is a difficult problem. Recently,
derivative-free optimization methods based on the evaluation of
trajectories sampled from a distribution have been successfully
applied to this problem by Rajaméki and Hamaldinen [2017]. These
methods iteratively use previous examples to guide the exploration
in the sample space to find optimal parameters for the model.

The problem of controlling a figure can be simplified by using
motion capture data of natural motion as a reference. The sampling
algorithm introduced by Liu et al. [2015] using Covariance Matrix
Adaption Evolution Strategy (CMA-ES) [Hansen 2006] in combina-
tion with a sliding window has shown good results for the problem
of reconstructing the control signals for an articulated figure model
in a physics simulation based on motion capture data. CMA-ES
is a randomized black box optimization algorithm for non-linear
functions. In each iteration, actions are sampled from a Gaussian
distribution and scored based on a cost function. The best parame-
ters are then used as the parents of the next generation by updating
the mean and covariance of the distribution. However, solution
spaces which have a complex and asymmetric shape cannot be
approximated by a single Gaussian [Calinon et al. 2012]. Further-
more, keeping only a single state when moving the sliding window
forward can more likely trap the distribution into a local minimum.
Additionally, the method presented by Liu et al. [2015] works based
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on Proportional Derivative (PD) controllers which require addi-
tional tweaking of parameters. Furthermore, PD-controllers require
high simulation update rates to run smoothly. On the other hand,
the method introduced by Rajamiki and Hamaéldinen [2017] based
on Monte Carlo Tree Search uses angular velocity constraints of
the physics engine to control arbitrary articulated figures. Angular
velocity constraints that are solved as part of the other constraints
of the physics engine enable lower update rates and need less pa-
rameters to be tweaked for different figures (cf. [Tsai et al. 2010]).

We simplify the method of Liu et al. [2015] for open loop control
reconstruction of a physical model based on a sample represen-
tation as trajectories of angular velocities as used by [Rajaméki
and Hamaldinen 2017]. This enables the control of different figure
models also at a low simulation update rate without parameter
tuning. Additionally, we model the sampling distribution using a
Gaussian mixture trajectory model that we optimize along a slid-
ing window using CMA-ES. The algorithm keeps a separate state
for each cluster to prevent ending up in a local minimum. In each
update we prune and split clusters of the distribution based on the
number of elite samples they have produced. The resulting tree
structure enables the backtracking of the best leaf to the root.

We give a brief review of related work on physics-based motion
synthesis with focus on sampling-based methods in Section 2. Our
method is described in Section 3. An evaluation of our method
for following motion capture data by automatically generated ar-
ticulated figures is described in Section 4. Section 5 gives a brief
conclusion.

2 RELATED WORK

The control of an articulated figure in a physical simulation based
on motion capture data is a well studied problem with different
solutions including analytical controllers, numerical optimization,
random sampling and reinforcement learning. Gleicher et al. [1997]
apply space-time constraints to retarget motion to a physical model
which enables further editing. Popivi¢ and Witkin [1999] present
an improved method for space-time constraint-based motion re-
targeting, which also allows for complex editing by mapping to a
simplified intermediate representation of the model. Muico et al.
[2009] introduce an online controller that makes use of a reference
motion that is pre-processed offline using space-time constraints.
The motion is then adapted online to environment constraints by
solving a linear complementary problem in a small window. De
Lasa et al. [2010] present a framework for optimization-based mo-
tion synthesis where multiple objectives are combined based on a
state machine and solved at runtime using a prioritized QP-solver.

Zordan et al. [2005] retarget motion capture data to a physical
model using PD-controllers and apply an analytical balance con-
troller based on virtual forces to modify the leg angles. Yin et al.
[2007] present the SIMBICON framework that follows reference
poses from a state machine using PD-controllers and also modifies
the angles of the hips and legs to keep balance. Coros et al. [2010]
improve upon the SIMBICON controller by integrating a balance
controller based on an inverted pendulum model. Tsai et al. [2010]
apply angular velocity constraints of the physics engine to con-
trol the model but also apply an inverted pendulum model to keep
balance. Lee et al. [2010] present an online balance controller that
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modulates streams of reference motion data to keep balance using
PD-controller tracking. Geijtenbeek et al. [2012] develop an online
balance controller using virtual forces and apply CMA-ES offline
to optimize the PD-controller gains and weights for different char-
acters. For an overview of analytical methods and methods based
on optimization we refer the reader to a survey by Geijtenbeek and
Pronost [2012].

Liu et al. [2010] introduce a sampling framework to reconstruct
open loop control sequences to follow motion capture data. The
authors improve their original sampling algorithm for trajectory
following by applying CMA-ES updates and a sliding window [Liu
et al. 2015]. Liu et al. [2016] also trained a graph of linear feed-
back policies by reconstructing random walks through a motion
graph via their sampling-based optimization algorithm. Hamalai-
nen et al. [2014] developed an algorithm based on random sampling
that adapted a distribution tree from which new actions were sam-
pled and combined it with an approximate nearest neighbor search
model. Additionally, Himaldinen et al. [2015] presented the Con-
trol Particle Belief Propagation (C-PBP) method, a probabilistic
framework based on particle belief propagation along trajectories
for articulated figure control. Recently, Rajaméaki and Haméldinen
[2017; 2018] have presented an improved and simplified sampling
framework based on Monte Carlo Tree Search that combines a
particle filter with a neural network model and an approximate
nearest neighbor search model to synthesize new motions based
on constraints at runtime. Naderi et al. [2017] present a planning
algorithm for climbing motions in a physics simulation that uses
CMA-ES or alternatively C-PBP [Hadmél4inen et al. 2015] to control
the physical model.

The sampling based optimization algorithm CMA-ES [Hansen
2006] has also been applied for the training of policy models in a
physics simulation by Ding et al. [2015]. Furthermore, reinforce-
ment learning based on policy gradient methods [Schulman et al.
2017] that explore the parameter space via random sampling have
been successfully applied to locomotion generation in physics sim-
ulations by Peng et al. [2017]. The authors further improved their
approach to accurately follow motion capture data [Peng et al.
2018a] and reference video data [Peng et al. 2018b]. Similarly, Ho
and Ermon [2016] apply generative adversarial imitation learning
to follow motion capture data. There is a lot of recent advances
regarding controller model learning using reinforcement and imi-
tation learning in physics environments. However, this is not the
focus of this work.

We apply a sampling-based approach which represents the prob-
lem as a black box and build upon the method introduced by Liu
et al. [2015] for open loop control reconstruction. Liu et al. sample
correction torques from a Gaussian distribution to modify an initial
guess to successfully follow reference motion capture data using a
physical model. They adapt the distribution using CMA-ES based
on samples of the previous iteration. The optimization is applied
along a sliding window in the temporal domain to make sure previ-
ous parts of the motion have a sufficient quality before optimizing
later parts of the motion. The method makes use of PD-controllers
which require tuning for specific tasks and adaption for the influ-
ence of gravity. We simplify the sampling according to Rajaméaki
and Hédmal4inen [2017] by sampling trajectories of angular velocity
constraints as control signals of the physical model instead of joint
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torques. Angular velocity constraints can be directly solved as part
of all constraints of the physics engine in a single linear comple-
mentary problem (cf. [Tsai et al. 2010]). It leads to higher stability
at lower simulation update rates and reduces the number of param-
eters that need to be tweaked for each articulated figure compared
to PD-controllers. Additionally, we propose an improvement of the
sampling distribution representation as a Gaussian mixture model
to better capture the variation in the samples.

3 ADAPTIVE GAUSSIAN MIXTURE
TRAJECTORY MODEL

We want to find a sequence of control signal frames C(¢) = (a, ..., aT)
for an articulated figure model to follow a reference motion capture
sequence Q(t) = (qo, ..., qT). Each control signal frame a; consists
of a list of angular velocity constraints for each degree of freedom
of the model. The reference frames q; are a list of quaternions for
each joint of the model that can be used to calculate the pose of
each body via forward kinematics.

We apply an iterative sampling algorithm over a sliding window
to find the control sequence for an articulated figure similar to
[Liu et al. 2015]. To better represent the sampling space we adapt a
Gaussian mixture model using CMA-ES instead of a single Gauss-
ian. Similar to previous work on sampling-based optimization, the
method can be easily parallelized.

3.1 Sampling Algorithm

The motion is represented as a mixture model trajectory with T
discrete time steps.

M) = (mg, ...,m7T) (1)

where each element m; is a continuous distribution representing
the possible actions at time step ¢ by a Gaussian mixture model.

ar ~ mg
k . .
my = ZwiN(,u;,Z;)
i

Here ,ug represents the guess of the control at time ¢ of cluster i,
Zi is a covariance matrix and w; is a weight with a value between 0
and 1. We construct the control signal trajectory C(t) to follow the
motion by iteratively sampling control signal frames for each time
step from the distribution trajectory M(t) along a sliding window.

The sampling algorithm is described in Algorithm 1. In each
iteration, we use a Monte Carlo Tree Search (MCTS) according to
[Rajaméki and Haméldinen 2017] to sample control trajectories
from the distribution M(t) inside of a sliding window. The state
s¢ resulting from a control signal a; ~ m; is evaluated based on
the cost function described in Section 3.2. The sampling function
returns as soon as the end of the current sampling window was
reached or all samples lost control before the end was reached.
When a sample loses control the state of an active sample is copied
to use the full sampling budget in each step. Furthermore, we filter
the samples based on their cost according to [Liu et al. 2015] and
keep only a certain percentage pijse, of the best samples.

To check whether a trajectory has lost control we check three
conditions. Firstly the angle between the body up axis and the
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Algorithm 1: Sampling algorithm for motion control recon-
struction

Input :Cyef, Ngampless Nsaves Pfilters Mwindows Kmax, Niter, dt
Output:C reconstructed control signal

1 M « init_distribution(Cyr, k = 1)

2 start,best_end «— 0,0

3 iter_counter « init_iter_counter()

4 R « init_tree_root()

5 while start < length(M) do

6 end « best_end + nyyindow
7 T « MCTS(R, M, nsamples: Pfilter» Start, end, dt)
8 S « extract_latest_trajectories(T, nsgpe)

9 S « sort_by_avg_cost(S)

10 if length(first(S)) == 0 then

11 ‘ break

12 end

13 best_end « start + length(first(S))
14 med_end « start + length(median(S))

15 iter_counter « update_iter_counter(med_end)

16 M «— update_distribution(M, S, start, end, kmax)

17 if iter_counter(med_end) > nj;¢r then

18 k « get_active_clusters(M(start))

19 R, start « move_window(R, S, start, med_end, k)
20 end

21 end

I
1Y)

besty « argmin(avg_cost(R))
23 C « extract_trajectory(R, besty)

4 return C

)

global up axis must not exceed the maximum angle in the reference
data. Secondly, only the feet may touch the ground, and lastly, there
should not be any self-collision between bodies of the legs. Similar
to [Rajaméki and Hamaldinen 2017] we multiply the Gaussians
of the distribution of the current step m; with the Gaussians of
the previous step m;_; before sampling an action a; as shown in
Equation 2.

ag ~ N(/J;, th) X N(/l;,pz:i,l) (2)

This way the variation between steps is reduced and the resulting
motion is smoother. To make up for the loss of variation we scale
the resulting covariance matrix with a constant factor.

We use the nggype latest trajectories generated by the MCTS
algorithm to update the means and covariance matrices of the
distribution trajectory M(t). During the update of the distribution
we prune and split clusters based on the number of elite samples
they produced. In the following we refer to the best samples of an
iteration as elite samples. The distribution adaption is described in
Section 3.3.

Similar to [Rajaméki and Haméldinen 2017] we keep multiple
states and construct a control tree R. Each node in the tree corre-
sponds to one cluster of the distribution at the current start step of
the window. The sliding window is moved and the control tree R is
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extended based on the number of times a step has been reached by
the median sample without losing control. We use the best samples
for the k active clusters to update the control tree R. The reconstruc-
tion stops when the start step of the sliding window has reached
the end of the reference motion or the MCTS algorithm returns
only trajectories of 0 length. After the optimization has finished
the trajectory extracted from the best leaf of the control tree R is
returned as final result.

The search window can also be reset multiple times with the
previous result as initial guess to further improve the reconstruction
until the cost converges or a maximum number of reconstruction
attempts has been reached.

Algorithm 2: Simplified Monte Carlo Tree Search (MCTS() in
Algorithm 1)

Input :R M, nsamples: Pfilters Start, end, dt

Output:T trial control tree

1 T = copy(R, start)
2 for t = start;t < end;t + + do

3 forn =0;n < nggmples;n + + do

4 leaf « select_leaf(T, t)

5 p_cluster_idx « leaf .cluster_idx

6 cluster_idx « sample_child(M, t — 1,p_cluster_idx)
7 action « sample(M, t, cluster_idx)

8 state «— step_sim(leaf.state, action, dt)
9 cost < Egrqre(state)

10 if not lost_control(state) then

11 ‘ leaf .extend(cost, action, state)

12 end

13 end

14 T « filter(T,pfiiter)

15 end

17 return T

3.2 Cost Function

We evaluate the fitness of the state s; resulting from a control sample
a; of a trajectory C using the cost function shown in Equation 3,
which is based on the cost function described by [Liu et al. 2015].

Estare(st) = wpEp(se) + wrEr(se) + wpEp(se) 3)

The weighted cost terms for the root E,, pose EP and balance
E}, are described in the following equations.

Equation 4 shows the root term which calculates the error of the
root transformation in the global coordinate system.

E, = dq(Qroot, Groot) + dv(Proot,[;root) (4)

Here proor and groor are the position and orientation of the root
body. The function dg() is the rotation distance measure and dy ()
is the L2-norm. The reference root position and orientation is given
by proot and §rooz, respectively.

Equation 5 shows the pose term, which represents the point cloud
distance of the figure pose and the target pose in the coordinate
system relative to the root body.

E. Herrmann et al.

Npodies
Ep = Z dv(piiﬁi) ®)
i=0
Here p; is the position of a body in the coordinate system of the root
body and p; is the reference body position in the root coordinate
system of the reference pose. Equation 6 shows the balance term
which was introduced by [Liu et al. 2010].

Npodies
Ey= ) dolri#) (©)
i=0
Here r; = (pi —pcom)ly=o is the vector from the body to the center
of mass projected on the ground. This term penalizes moving the
body parts too far away from the center of mass.

3.3 Mixture Model Adaption

In order to better model the variation, we represent the distribu-
tion using multiple clusters similar to [Calinon et al. 2012]. The
distribution is modified in each iteration by applying the CMA-ES
update step [Hansen 2006] separately on individual segments of
the trajectory based on the best samples. An overview of the steps
of the distribution adaption is given in Algorithm 3.

Algorithm 3: Mixture Model Adaption (update_distribution()
in Algorithm 1)

Input :M,S,start,end, kmax

Output: M updated distribution

1 for t = start;t < end;t + + do

2 St « sort_by_cost(S(t))

3 M(t) « prune_clusters(M(t), St)

4 M(t),S;" « split_clusters(M(t), St, kmax)

5 n_clusters « get_active_clusters(M(t))

6 for k = 0;k < n_clusters;k + + do

7 ‘ M(t)(k) « cma_update(M(t)(k), St ‘(k))
8 end

9 end

11 return M

In the first step, we split and prune existing clusters of the dis-
tribution based on the number of elite samples that were sampled
from them. These samples are ordered separately for each step t
based on the cost value. The order is used to assign a weight to each
sample with a logarithmic scale according to [Hansen 2006]. If the
sum of the weights of the samples generated by a cluster is below
a threshold, the cluster will be pruned. The remaining clusters are
then split by applying the kMeans algorithm on the elite samples
that they produced. The number of clusters of a segment m; is
automatically found by applying the kMeans algorithm recursively
and selecting the best clustering based on the minimum Bayesian
Information Criterion (BIC) score [Pelleg et al. 2000]. Due to a lim-
ited sampling budget, only a limited number of clusters can be kept
track of in each iteration. Therefore, the clusters are ordered based
on their weight and clusters with more samples will be split first,
so that more clusters are available during the BIC evaluation.
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Figure 1: The steps of the Gaussian mixture model adaption for one segment m;. The dashed circles represent a cluster in the
distribution. Red points represent samples that lost control and blue points represent elite samples that successfully reached
the end of the window. Clusters are split using kMeans into k clusters based on the minimum BIC score. The samples are then
used to update the distribution. After the update of the distributions for each step, the graph structure is modified to allow
transitions from the previous step and to the next step. During the sampling, a transition is randomly chosen based on the

current cluster.

To better capture the variation of successful actions for each step,
we include all samples in the update of each cluster of m;. For this
purpose we order the remaining samples, that are not associated
with a cluster, after the associated samples. The cluster assignment
therefore affects the order and thus the weight of each sample in
the update of each cluster. The mean and the covariance matrix of
the clusters are then updated based on the reweighted elite samples
according to the standard CMA-ES update [Hansen 2006]. To apply
the CMA-ES update we also keep track of the evolution path, step
size and number of updates for each cluster. After the splitting of
the clusters of the distribution for each step, we modify the graph
structure to include transitions to and from the new clusters. In the
next iteration of the sampling, one transition from step m; to ms41
will be randomly selected with equal probabiliy. An overview of
the steps of the cluster splitting is given in Figure 1.

4 EXPERIMENTAL RESULTS
4.1 Experiment Setup

The algorithm was implemented based on the Open Dynamics
Engine version 0.12 [Smith 2004] and makes use of modifications
provided by [Rajamaki and Hamaldinen 2017] to enable reprodu-
cable simulations when states are copied between workers. The
friction coefficient was set to 0.8. The simulation update rate was
set to 30 FPS, which is possible due to the use of angular velocity
constraints. The articulated figure body models used in the experi-
ments were generated from reference character models. We used
MakeHuman! version 0.1.0 to generate the characters and exported
the models with CMU skeletons. The unit scale during the export
was set to decimeter. Our figure generator uses a T-pose and a man-
ually defined body radius as input to create axis aligned capsule
bodies in the physics engine. The generated figures have 8 ball
joints and 4 hinge joints resulting in 28 degrees of freedom. We

MakeHuman: http://www.makehumancommunity.org/

apply a standard skeleton retargeting method [Monzani et al. 2000]
for the retargeting between the kinematic skeleton and the figure
joints. However, for the feet, we need to calculate an extra offset to
make sure the bodies are aligned with the flat ground during the
T-pose. The character models and corresponding figures used in
the experiments are shown in Figure 2.

a)

b)

Figure 2: a) Female and male character models generated by
MakeHuman. b) The corresponding articulated figures with
12 joints and 28 degrees of freedom used in the experiments.

For the sampling algorithm, we set an initial noise value of 0.8
radians for each joint, except for the shoulders, which were set to
0.2 radians, and the spine joints, which were set to 0.4 radians. The
initial guess of the mean for the distribution is generated via finite
difference. We have fixed the number of kMeans iterations to 1000.
The sliding window size was set to 10 steps for the experiments.
The weights for the root position, root orientation, pose and balance
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Figure 3: Comparison of the average cost of 5 reconstruction
attempts using a different number of clusters.

term were set to 1, 1, 1 and 0.1, respectively. We set the threshold
for the cluster pruning based on the weighted sum of elite samples
to 0.01 and the constant for the scaling of the smoothed covariance
matrix to 2. Smoothing was activated for all experiments. The
learning rate of each cluster was adjusted based on the number of
successfully reconstructed samples per frame according to [Hansen
2006]. The number of minimum iterations per frame was set to 10
and the sample filtering per frame to 60%. The experiments were
run on a workstation with an Intel i7 4770k CPU and 32 GB RAM.

4.2 Evaluation

To determine the optimal number of clusters we first evaluate the
effect of the number of clusters by retargeting a walk motion to
the female model. The samples per frame were set to 4096 and the
number of elite samples to 2048. Table 1 shows the comparison of
the mean and the standard deviation of the average cost value of the
best motion samples of 5 reconstruction attempts without window
reset for a different number of clusters. A plot of the average cost
during the reconstruction is shown in Figure 3.

Table 1: The effect of different numbers of clusters on 5 re-
construction attempts of a walk motion with 477 frames.

clusters | average cost | median steps | time iter
1 5.634 £ 0.626 | 167 550.4s 62.0
2 4.479 = 1.667 | 202 582.8s 62.0
4 2.021 £0.402 | 324 1256.8s | 62.0
8 2.874 £1.231 | 356 1536.8s | 62.0
16 2.846 £ 1.226 | 477 1862.4s | 62.0
32 1.752 £ 0.094 | 477 2507.2s | 62.0

The evaluation shows that the median number of successfully
reconstructed steps is increased while the mean and standard devia-
tion of the cost is reduced when more than one cluster is used. This
means that the reliability of the reconstruction can be increased

E. Herrmann et al.
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Figure 4: Change of the mean cost of samples during the re-
construction of a walk motion for the female model (top)
and the male model (bottom) using 16 clusters. Each blue
dot represents the mean cost of all frames of a sample in-
cluding an error offset from the sliding window. The orange
line represents the value of the best samples of each iter-
ation and the light blue line represents the mean value of
each iteration.

by applying CMA-ES on the mixture distribution compared to ap-
plying CMA-ES on a single Gaussian as used in the algorithm of
[Liu et al. 2015]. Note that the larger average cost using 8 clusters
compared to 4 can be explained by the higher number of recon-
structed frames. The minimum mean and standard deviation of
the cost was achieved using 32 clusters. However, the processing
time increases as well with the number of clusters, therefore, we
select 16 clusters for the other experiments. Note that the quality
of the motion can be further increased by increasing the number
of samples, by increasing the minimum iterations per frame or by
resetting the sliding window multiple times.

The results of the reconstruction of a walk motion with 477
frames for the male and female figure is shown in Figure 6. The
motions were generated using 16 clusters, 4096 samples and 1024
elite samples. The female motion was generated in 26 minutes and
24 seconds with an average frame cost of 1.850 and the male motion
was generated in 27 minutes and 12 seconds with an average frame
cost of 2.498. Figure 4 plots the average error of the samples during
the optimization and Figure 5 shows the change of the cost of
individual frames. The average error increases in the beginning as
more frames are reconstructed but reduces over time, as soon as
all frames are reconstructed after iteration 50. The costs can also
be reduced by disabling the smoothing due to higher variation of
the samples. However, the resulting motion contains noticeable
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Figure 5: Change of the cost of frames during the reconstruc-
tion of a walk motion for the female model (top) and the
male model (bottom) using 16 clusters. The color of each
pixel represents the cost of a frame during a certain itera-
tion. The optimized frames are restricted by a sliding win-
dow. The sliding window can be reset after it has reached
the end to further improve the reconstruction.

jittering when smoothing is disabled. A faster generation with fewer
samples is also possible, however it is less reliable.

Reference motions can also be adapted to changes in the under-
lying terrain without changing the cost function. An example of the
reconstruction on randomly generated terrain is shown in Figure 7.
The motion was reconstructed in 30 minutes and 9 seconds with
an average cost of 3.002 using 16 clusters.

One limitation of our approach is the extra time needed for the
splitting of the distribution by applying kMeans which we want
to address in future work by parallelizing the splitting of different
clusters. In general it is possible to find control signals that follow
the reference motion capture data with a natural pose while keeping
balance. However, the method can only be applied to reconstruct
motion examples starting from an idle pose without external forces
as it only optimizes the angular velocity constraints to produce
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Figure 6: Walk motion a) reconstructed by the female b) and
the male figure c) using 16 clusters. Bodies in contact with
the ground are highlighted in purple.

joint torques. Different starting states, for example starting during
a walk cycle, could be supported by also optimizing an external
force applied on the first frame. The smoothing via the Gaussian
multiplication is effective at reducing variation between frames,
however it also thins out the distribution after multiple iterations,
which can cause the algorithm to get stuck before reaching the
end of the motion. We noticed in our experiments that the use of
the mixture model counteracted this problem by increasing the
variation and thus the reliability of the algorithm.

Figure 7: Walk motion reconstructed by the female figure
on randomly generated terrain. Bodies in contact with the
ground are highlighted in purple.
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5 CONCLUSION

We have presented a sampling-based optimization method with ap-
plication to open loop control reconstruction for articulated figures
in a physics engine based on reference motion capture data. The
method combines ideas of previous work to provide a simple mo-
tion reconstruction framework with little parameter tuning. Akin
to Liu et al. [2015] we optimize a distribution of samples using
CMA-ES over a sliding window. However, similar to Rajaméki and
Hiamaldinen [2017] we keep multiple states using a trajectory of
mixture models and generate smooth control trajectories by multi-
plying Gaussians of consecutive steps before sampling. We apply
the kMeans algorithm to split the distribution of samples and deter-
mine the number of Gaussians of the model automatically using the
BIC score. The use of angular velocity constraints of the physics
engine enables the retargeting of motions to figure models that
were automatically generated from 3D models without additional
parameter tweaking.

The experiments show that applying CMA-ES on a mixture
model with multiple clusters and keeping multiple states when
moving the sliding window forward can lead to more reliable re-
sults compared to using a single Gaussian.

We plan to use the algorithm in combination with reinforce-
ment learning to optimize trajectories in the replay memory during
the training of a policy model. Furthermore, we plan to evaluate
the method on other problems such as collision free path finding.
For this purpose we want to evaluate alternative methods for the
distribution splitting.
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