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Abstract—The Clifford+T gate library consisting of
Hadamard, T , and CNOT gates has attracted much interest in
quantum circuit synthesis, particularly due to its applicability to
fault tolerant realizations. Since fault tolerant implementations
of the T gate have very high latency, recent work in this area
is aiming at minimizing the number of T stages, referred to as
the T -depth. In this paper, we present an approach to exploit
additional ancilla qubits in the mapping of reversible circuits
consisting of multiple controlled Toffoli gates (MCT gates) into
Clifford+T quantum circuits, with the primary optimization
objective to minimize the T -depth. Our proposed approach takes
advantage of and generalizes earlier work on corresponding
mapping algorithms. An experimental evaluation shows that our
approach leads to a significant T -depth reduction compared to
earlier approaches.

I. INTRODUCTION

Quantum computing [1] is a flourishing and very attractive
research area. Inheriting properties from quantum mechan-
ics, quantum computing allows for solving certain problems
exponentially faster than any known classical algorithm. In
contrast to Boolean logic, quantum bits (qubits) can not only
represent the classical 0 and 1 states, but also any linear
combination of both (superposition). Hence, quantum circuits
have an advantage of being able to perform massively parallel
computations in one time step leading to a significant speed-up
for several interesting and practically relevant problems such
as integer factorization [2], database search [3], etc.

Due to this fact, the synthesis of quantum circuits, i.e. the
(automatic) generation of quantum circuits realizing a given
quantum functionality, has become an active research area
and many theoretical implementations for this kind of circuits
have been presented. As quantum logic synthesis is a very
complex and challenging problem, Boolean functions—which
constitute a major component in many quantum algorithms—
are usually treated separately using a two-step approach:
the desired Boolean function is first realized in terms of
a reversible circuit, i.e., by means of classical reversible
logic gates, after which the resulting circuit is transformed
to a functionally equivalent quantum circuit by mapping each
reversible gate to a corresponding cascade of quantum gates.

For the synthesis of, or mapping to, quantum circuits,
several gate libraries were introduced in the past like the
1-qubit and CNOT library, the NCV library, and the Clifford+T
library. Recently, there has been particular interest in quantum

circuits using the Clifford+T gate library [4] because it is
universal (i.e., it can not only realize Boolean functions, but
also general quantum functionality with arbitrary precision) as
well as robust (i.e. fault-tolerant implementations of the gates
are known for most technologies that are considered promising
for large-scale quantum computing).

In the optimization of quantum circuits based on Clifford+T
gate library, major objectives are to minimize the T -count
(number of T gates, [5]) and particularly the T -depth of the
circuit (the number of T -stages where each stage consists of
one or more T or T † gates that can operate simultaneously on
separate qubits) [6]–[8]. This is due to the high cost of fault
tolerant implementations of the T gate, exceeding the cost of
Clifford group gates (CNOT,H, S gates) by as much as a
factor of a hundred or more [8].

Recent work has shown the prospects of dedicated mapping
approaches for reversible circuits [9]. However, while all
such approaches require additional helper qubits (so-called
ancilla qubits) to perform the mapping, only a few special
configurations of those have been considered thus far and in
all of these either clean ancillae (i.e. helper qubits initialized to
a certain pre-defined state) or dirty ancillae (i.e. helper qubits
with an arbitrary quantum state) are used.

In this paper, we adapt previous mapping algorithms and
generalize their ideas with the motive to further reduce the
T -depth of the circuits. We present:

1) An improved algorithm to map multiple-controlled Tof-
foli (MCT) gates into Clifford+T circuits using any
number of ancilla.

2) Moreover, the algorithm—for the first time—-supports
an arbitrary combination of clean and dirty ancillae
which allows us to “borrow” temporarily unused qubits
in order to further reduce the cost the mapping.

This algorithm is then used to map reversible circuits con-
sisting of MCT gates into Clifford+T quantum circuits, with
the help of the specified number of ancilla available at each re-
versible gate. Our approach for the improved reversible circuit
mapping allows for significant T -depth reduction compared to
state-of-the-art technology mapping methods proposed earlier
for Clifford+T circuits. As confirmed by an experimental
evaluation, improvements of the T -depth of up to 60% can
be observed. This clearly demonstrates the efficiency of our
approach.



The remainder of this paper is structured as follows. The
next section introduces notations and preliminaries. Section III
discusses related work. Based on this, Section IV presents our
decomposition method which generates Clifford+T quantum
circuits for MCT gates. Experimental results are presented in
Section V. Finally, the paper is concluded in Section VI.

II. BACKGROUND AND PRELIMINARIES

To keep the paper self-contained, this section briefly intro-
duces the basics of reversible and quantum circuits.

A. Reversible Functions and Circuits

A multi-output Boolean function f : {0, 1}n → {0, 1}n is
called reversible if f is bijective, i.e., if each input pattern is
mapped to a unique output pattern and vice versa.

Reversible functions on n bits are realized by reversible
circuits consisting of at least n lines (carrying binary values).
These reversible circuits are cascades of reversible gates
belonging to a particular gate library, with no fan-out or
feedback. The most popular gate library is given by multiple-
controlled Toffoli (MCT) gates which are defined as follows:

Definition 1 (Multiple-Controlled Toffoli gate). Given a set
of circuit lines X = {x1, x2, . . . , xn}, an m-controlled
Toffoli gate T (C; t) is given by a set of control lines
C = {xc1 , . . . , xcm} ⊂ X (where |C| = m), and a target line
t ∈ X \C. On the target line, the gate performs the mapping
t 7→ t ⊕ (xc1 ∧ . . . ∧ xcm), i.e. the target line is inverted if,
and only if, all control lines are in the 1-state. All other lines
pass through unaltered.

An MCT gate with no control line always inverts the target
line and is thus the well-known NOT gate. An MCT gate with
a single control line is called a controlled-NOT (CNOT) gate
(also called a Feynman gate). The case of two control lines
is the original Toffoli gate. Here in this paper, we follow the
normal convention of using

⊕
to indicate target lines and •

to indicate control connections.1

B. Quantum Circuits

A quantum circuit is a model of quantum computation
representing a sequence of quantum operations. Each operation
is represented by a quantum gate and the circuit is a cascade
of quantum gates where the circuit lines represent the qubits
(quantum bits) of a quantum system.

In contrast to classical bits which can only assume two
discrete states, qubits can represent any combination of the
classical Boolean values. More precisely, the state space of a
qubit is a 2-dimensional Hilbert space such that all possible
states can be written as |ψ〉 = a|0〉+b|1〉 =

(
a
b

)
where |0〉, |1〉

denote the computational basis states (associated with the
classical Boolean values) and a, b ∈ C such that |a|2+|b|2 = 1.
Analogously, the state space of an n-qubit quantum system has

1In this paper, we only consider “positive” controls (sensitive to the
1-state). The extension to “negative” controls (sensitive to the 0-state) is
straightforward and has no impact on the T -gate cost of the mappings.

Symbol Name Unitary Matrix

H Hadamard gate 1√
2

(
1 1
1 −1

)

X NOT gate
(

0 1
1 0

)

• CNOT gate

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


T T gate

(
1 0

0 eiπ/4

)

S S gate
(

1 0
0 i

)

αZ αZ gate (α ∈ {±i,±1})
(
α 0
0 −α

)
Fig. 1. Quantum Operations

2n basis states (|0 . . . 00〉, |0 . . . 01〉, . . . , |1 . . . 11〉) such that
the state vector has 2n dimensions.

Definition 2 (Quantum Gate). In general, a quantum gate
acting on n qubits/lines is represented by a 2n × 2n unitary
matrix. As in reversible circuits, circuit lines may be desig-
nated as control lines, which have the effect of applying the
gate to the target qubit whenever (possibly in superposition)
the control qubit is in the |1〉-state.

In this work, we consider the Clifford+T gate library which
consists of NOT,CNOT,H, S, S†, T, T † gates. It is to be
noted that since the matrices of interest are unitary, the adjoint
of a matrix (denoted by †) is its inverse. Commonly used
quantum operations in the Clifford+T gate library and their
corresponding unitary matrices are shown in Fig. 1. Quantum
gates can be applied in parallel (in one stage) if they act on
disjoint sets of qubits. The resulting matrix of this parallelized
execution is computed using the Kronecker product of the
individual gate matrices.

Two important metrics for the cost of a Clifford+T circuit
are given by the T -count, i.e. the total number of T and T †

gates in the circuit, and the T -depth, i.e. the number of stages
of the circuit that contain one or more T or T † gates performed
concurrently on separate qubits.

Example 1. Figure 2a shows the realization of the Toffoli gate,
i.e. a two-controlled MCT gate, in Clifford+T [8, Fig. 7(a)].
The gates are to be applied from left to right. The circuit has
a T -count of seven and a T -depth of three.

Additional helper qubits, so-called ancilla qubits, are fre-
quently employed for storing intermediate results during quan-
tum computation. These can either be initialized to a pre-
defined state (usually |0〉, denoted as clean ancillae) or have
an arbitrary quantum state (denoted as dirty ancillae). In
both cases, ancillae should be returned back to their original
state after the computation in order to re-use them for future
computations.



• T • • T † •

• = T • T † T † •

H T • T • H

(a) Mapping without ancilla qubits

T • • T † • •

T • • T † • •

H T • T • H

|0〉 T † |0〉
(b) Mapping with one clean ancilla

Fig. 2. Mapping of Toffoli gate into Clifford+T circuits [8]

Example 2. Consider the quantum circuit in Fig. 2b (taken
from [8, Fig. 15]). It also realizes the Toffoli gate, though with
the use of one additional clean ancilla. This ancilla allows us
to reduce the T -depth to two, while the T -count remains seven.

III. RELATED WORK

The mapping of reversible MCT circuits to quantum circuits
is usually conducted in two steps. First, the MCT gates with
c ≥ 3 controls are decomposed into MCT gates with less
than three controls, i.e. NOT, CNOT, and Toffoli (NCT) gates.
Afterwards, each NCT gate is mapped individually to an
equivalent cascade of quantum gates.

The complexity and cost of this decomposition as well as
the mapping of NCT gates to Clifford+T is linear in the
number of controls. More precisely, using the well-known
decompositions of MCT into NCT gates proposed by Barenco
et al. [10] as well as the realization of the Toffoli gate in
Clifford+T shown in Fig. 2a, we obtain the following

Lemma 1 (Lemma 7.2 from [10]). An MCT gate with c ≥ 3
controls can be mapped directly to a circuit that consists of
4(c− 2) Toffoli gates using (c− 2) dirty ancilla (see Fig. 4a).
The resulting circuit has a T -depth of 12(c− 2).

Lemma 2 (Lemma 7.3 from [10]). A MCT gate with c ≥ 3
controls can be mapped directly to a circuit consisting of 4
MCT gates with fewer controls with the help of only one dirty
ancilla (see Fig. 4b). These 4 MCT gates have enough dirty
ancilla to be further mapped to Toffoli gates using Lemma 1.

As noted by Nielsen and Chuang [1], the availability of
clean ancillae instead of dirty ancillae can significantly reduce
the cost of the above decompositions. More precisely, the
presence of one clean ancilla allows for omitting the last gate
in the construction from Lemma 2, while the construction from
Lemma 1 simplifies to 2(c−2)+1 Toffoli gates, i.e. a T -depth
of 6(c− 2) + 3, for (c− 2) clean ancillae. E.g., Fig. 4c shows
the simplified version of the decomposition of the 4-controlled
MCT gate shown in Fig. 4a.

Further improvements of the mappings with better T -depth
have been proposed in [9], based on structural investigations
at the quantum gate level:

• • • • • •

• • = • S† S •

U
H iZ H

U
H −iZ H

Fig. 3. Reducing T -depth of Toffoli gate pairs using controlled ±iZ-gates

Lemma 3 (Lemma 1 in [9]). An MCT gate with c ≥ 3 controls
can be realized with a T -depth of 4(c− 1) using (c− 2) dirty
ancillae.

Note that the original formulation of Lemma 3 does not
cover the case c = 3, but it is also valid for c = 3 according
to the results from [11].

Lemma 4 (Lemma 2 in [9]). An MCT gate with c > 3 controls
can be realized with a T -depth of:
• 8(c− 2)− 4, using one dirty ancilla.
• 6(c− 2) + 2, using one clean ancilla (if c is odd).
• 6(c− 2), using one clean ancilla (if c is even).

Note that the original formulation of Lemma 4 only covers
the case c ≥ 5. However, it can be extended to the case c = 4
using the “Miller mapping” from [9, Fig. 3]. For c = 4, the
four MCT gates are in fact two pairs of Toffoli gates with
the same set of controls. As nothing happens to these control
qubits between the application of the corresponding Toffoli
gates, the circuit re-writing from Fig. 3 can be performed to
replace the Toffoli gates by controlled ±iZ-gates together with
controlled S/S† gates (adapted from [9, Proof of Lemma 1]).

The controlled-S†/S gates cancel, while a two-controlled
±iZ-gate can be realized in T -depth 2 [9]. Thus, the T -depth
for realizing one pair of Toffoli gates is reduced from 6 to 4.
Overall, the T -depth of the complete 4-controlled MCT gate
becomes 12 = 6(4− 2) = 8(4− 2)− 4 as stated in Lemma 4.
Finally, a 3-controlled MCT gate can be realized with T -depth
6 using one clean ancilla according to [11].

IV. PROPOSED DECOMPOSITION AND MAPPING SCHEME

In this section we propose an approach for the decom-
position of MCT gates into smaller MCT gates with fewer
controls using a definite number of ancillae. The MCT gate
is decomposed in such a way that after mapping it into
Clifford+T circuits, it leads to further reduction of T -depth
which is our main objective.

In contrast to earlier mappings (c.f. Lemma 1–4), where
only the cases of exactly one or (c − 2) ancillae have been
considered for the decomposition, our approach generalizes
to any number of ancilla ranging from one to ∞, taking
advantage of the inverse proportionality between number of
ancilla and T -depth.

The general idea of our approach is to split the decomposi-
tion into several stages and re-use the mapping from Lemma 3
in each stage. In the following, let k denote the number
of clean ancillae and ai denote the i-th clean ancilla qubit
(i = 1, . . . , k), while d denotes the number of additionally
available dirty ancilla qubits.



• • •
• • •
• • • • •
• = • •

a1 a1 • • • • a1
a2 a2 • • a2

(a) Decomposition of 4-controlled MCT gate using
2 dirty ancilla as [10, Lemma 7.2]

• • •
• • •
• • •
• = • •
• • •

a1 a1 • • a1

(b) Decomposition of 5-controlled MCT gate
using 1 dirty ancilla [10, Lemma 7.3].

• • •
• • •
• • •
• = •

0 • • 0
0 • 0

(c) Decomposition of 4-controlled
MCT gate using 2 clean ancilla [1]

Fig. 4. Decompositions of MCT to NCT gates from Barenco et al. [10] and Nielsen & Chuang [1]

A. Using 1 ≤ k ≤ c
2 clean ancillae

The decomposition is divided into three stages.
1) In the first stage, the control lines of a c-controlled MCT

gate T (C, t) are divided into k+1 groups C1, . . . , Ck+1

of (adjacent) control lines. We apply k MCT gates
T (Ci, ai) (i = 1, . . . , k) with targets on the clean
ancillae. These gates can be applied in parallel as they
do not share any control or target.

2) In the second stage, the remaining control lines from
Ck+1 are taken into account using an MCT gate with
(k+|Ck+1|) controls, namely T (Ck+1∪{a1, . . . , ak}, t).

3) The third stage is a copy of the first stage in order to
restore the values on the ancilla qubits.

Example 3. Figure 5a shows the decomposition of a
9-controlled MCT gate using k = 2 clean ancillae with
the three stages discussed above where the MCT gates in
the first/third stage have 3 controls and the gate MCT gate
in the center has 5 controls. The overall T -depth of this
decomposition if 8 + 16 + 8 = 32.

In order to use the mapping from Lemma 3 in the second
stage, we require (k+ |Ck+1|)− 2 dirty ancillas. As all clean
ancillae have been occupied in the first stage, we may only
use the control qubits from the first stage as well as the d
additional dirty ancillae for this purpose. Hence,

d+ |C1|+ . . .+ |Ck| ≥ (k + |Ck+1|)− 2.

Analogously, only the qubits from Ck+1 and the target qubit
t may be used as (dirty) ancilla qubits for the first/third stage in
addition to the d extra ancillae. Hence, to employ the mapping
from Lemma 3 also in these stages, we need that

d+ |Ck+1|+ 1 ≥ (|C1| − 2) + . . .+ (|Ck| − 2)

= |C1|+ . . .+ |Ck| − 2k.

Using that |C1|+ . . .+ |Ck|+ |Ck+1| = c, we obtain

c+ 2− k + d

2
≥ |Ck+1| ≥

c− 2k − d− 1

2
(1)

Example 4. Consider the case c = 9, k = 2, d = 0. According
to Eqn. (1), we have 4.5 ≥ |Ck+1| ≥ 2. The case |Ck+1| = 3
is shown in Fig. 5a (T -depth 32 as calculated in Example 3),
while the cases |Ck+1| = 2 and |Ck+1| = 4 yield T -depths of
12 + 12 + 12 = 36 and 8 + 20 + 8 = 36. If a dirty ancilla
is available (d ≥ 1), the case |Ck+1| = 5 (shown in Fig. 5b)
becomes possible which reduces the T -depth to 2 · 2 + 24=28.

• •
• •
• •

0 • 0
• •
• •
• •

0 • 0
•
•
•

(a) without dirty ancillae

• •
• •

0 • 0
• •
• •

0 • 0
•
•
•
•
•

(b) with d ≥ 1 dirty ancillae

Fig. 5. Decomposition of 9-controlled MCT gate using k = 2 clean ancillae

As the T -depth of the second stage is directly correlated
with |Ck+1|, it is beneficial to make Ck+1 as small as possible
and “consume” more controls already in the first/third stage.
On the other hand, since all gates in these stages are executed
in parallel, the T -depth of the first/third stage is correlated
with the maximum number of qubits in |C1|, . . . , |Ck| such
that this maximum should only be increased if this would
allow for transferring a sufficient number of controls from the
central stage.

Accordingly, we propose the following algorithm for deter-
mining a beneficial partition of the controls into C1, . . . , Ck+1:

1) Start with the largest possible |Ck+1| (according to
Eq. 1) and distribute the remaining c− |Ck+1| controls
equally among C1, . . . , Ck such that they differ by at
most one control.

2) Successively move controls from Ck+1 to C1, . . . , Ck

as long as this does not increase the maximum number
of controls in C1, . . . , Ck and Eq. (1) remains valid.

3) If k ≥ 2 and at least three controls can be removed from
Ck+1 without violating Eq. (1), move controls to C1, C2

(one each) and repeat Step 2. Else, terminate.

Remark 1. Note that each control that can be moved in
Step 2 reduces the T -depth of the second stage by 4 without
increasing the T -depth of the other stages. The third step
reduces the T -depth of the second stage by 8, while the T -
depth of the first as well as the third stage is increased by
4 each (if the previous maximum of the |Ci| was at least 3
controls). In the case that the previous maximum was 2 (i.e.
only Toffoli gates in the first stage), the T -depth of the first



• • T •

• = • T •

iZ • • T † • •

0 0 T † 0

Fig. 6. Mapping of two-controlled iZ-gate into Clifford+T circuit using one
clean ancilla (giving a T -depth of 1)

and third stage can be reduced to 2 each (using the same
replacement with ±iZ-gates as in Fig. 3), such that the T -
depth increases from 2 to 8 per stage. This is why we require
at least three movable controls (which in total can reduce the
cost of the second stage by 12) in the first place in order to
ensure that Step 3 does not worsen the overall cost.

Overall, since k ≤ c
2 , we are always able to find a partition

such that all gates in the first/third stage have at least two
controls. For the corner case k = c

2 , we obtain a decomposition
with a T -depth of 2 + 4(k − 2) + 2 = 4(k − 1) = 2(c− 2).

B. Using c
2 < k ≤ (c− 2) clean ancillae

If k > c
2 , we are not able to find such a partition and

would end up with some Ci only containing one control. In
this case, it is more promising to use the corresponding clean
ancilla lines in a different way. More precisely, we propose to
use b c2c of the clean ancillae as targets for Toffoli gates with
controls from C in the first/third stage. Again, these gates can
be executed in parallel, have T -depth 2, and consume 2b c2c of
the original controls.

For the second stage, we recursively apply the strategy from
either this or the previous subsection for an MCT gate with
c′ = c−b c2c controls (out of which c−2b c2c are the remaining
original controls and b c2c are new controls on the already used
clean ancillae), k′ = k−b c2c clean ancillae and d′ = d+2b c2c
dirty ancillae (using the already consumed controls as such).

For the case k = (c−2), this leads to 2dlog2(c)e−1 stages
consisting only of Toffoli gates which form a V -shape/binary
tree structure, such that the ±iZ-gate replacement can be
applied for all but the central stage, hence yielding a T -depth
of 4dlog2(c)e − 1 in contrast to 6(c− 2) + 3 using the naive
Nielsen&Chuang mapping discussed above.

C. Using more than (c− 2) clean ancillae

If there are still clean ancillae left after applying the
decomposition into Toffoli gates only as described above for
the case k = (c− 2), we can employ these ancillae to further
reduce the cost of the Toffoli/±iZ-gates using the mappings
shown in Figs. 2b and 6, respectively. In fact, using one
additional ancilla, the T -depth of a Toffoli and a ±iZ-gate
can be reduced from 3 to 2 and from 2 to 1, respectively.

Consequently, the cost of a stage can be reduced by 1 if, and
only if, the number of unused clean ancillae is greater than or
equal to the number of Toffoli/±iZ-gates in that stage. E.g.,
for the first stage this is the case when k − b c2c ≥ b

c
2c. The

maximum reduction that can be achieved in this way is a T -
depth of 2dlog2(c)e.
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Fig. 7. T -depth of MCT gate decompositions for various combinations of
clean/dirty ancillae (k, d)

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed decomposition
scheme in comparison with previous work. To this end, the
proposed scheme has been implemented in C and has been
tested on a suite of benchmarks taken from RevLib [12].

A. Impact of clean and dirty ancillae

Figure 7 shows the T -depth of the resulting decompositions
for MCT gates with up to c = 17 controls using different com-
binations of clean and dirty ancillae (denoted as (k, d)). Here,
the dataset (1, 0) represents the state-of-the-art for k = 1 clean
ancilla and no dirty ancillae as given by Lemma 4. It can be
seen that additional dirty ancillae make it possible to gradually
reduce the cost by around 10–25% (c.f. datasets (1, 5) and
(1, 10)). The minimum T -depth of 4(c − 1) is achieved for
d = c − 5 dirty ancillae which can be explained by the fact
that in this setting a single Toffoli gate in the outer stages is
sufficient and the central MCT gate has (c − 2 + 1) = c − 1
which requires c − 3 = (c − 5 + 2) dirty ancillae in order to
apply the Lemma 3 mapping.

However, as one can also see from Fig. 7, as second clean
ancilla is sufficient to achieve the same reduction—without
the need for any additional dirty ancilla (c.f. dataset (2, 0)).

Employing a higher number of k > 2 clean ancillae
allows us to easily outperform the Lemma 3 mapping, while
additional dirty ancillae only show an effect for c > 10
controls. In fact, for k = 10 clean ancillae, dirty ancillae do
not have any effect for the considered number of controls.
Because of this, we only show the dataset (10, 0).

Moreover, we observed that for c ≤ 30 the minimal cost was
already achieved for k = c clean ancillae, i.e. two additional
clean ancilla reduce the cost by 50% compared to the k = c−2
mapping (from 4dlog2(c)e − 1 to 2dlog2(c)e).



TABLE I
EXPERIMENTAL RESULTS

Benchmark T -depth (and improvement in %)
ID L G max c Conv. (1,0) ∆conv (1,5) ∆(1,0) (2,0) ∆(1,0) (3,0) ∆(1,0) (5,0) ∆(1,0)

9symml 195 10 129 9 2144 1896 -11.6 1640 -13.5 1600 -15.6 1128 -40.5 846 -55.4
max46 240 10 107 8 1640 1384 -15.6 1272 -8.1 1220 -11.8 850 -38.6 612 -55.8
urf3 279 10 14075 8 13355 10666 -20.1 10506 -1.5 8700 -18.4 8082 -24.2 7086 -33.6
sqn 258 10 76 6 751 674 -10.3 674 -0.0 501 -25.7 402 -40.4 268 -60.2
sym9 148 10 210 4 2184 2016 -7.7 2016 -0.0 1218 -39.6 1092 -45.8 840 -58.3
sym10 262 11 194 10 3756 3516 -6.4 2860 -18.7 2828 -19.6 2038 -42.0 1568 -55.4
cm152a 212 12 16 4 120 114 -5.0 114 -0.0 68 -40.4 60 -47.4 44 -61.4
sao2 257 14 88 10 2199 1718 -21.9 1662 -3.3 1662 -3.3 1230 -28.4 982 -42.8
pm1 249 14 35 4 182 166 -8.8 166 -0.0 102 -38.6 92 -44.6 72 -56.6
co14 215 15 30 13 952 952 -0.0 784 -17.6 672 -29.4 560 -41.2 448 -52.9
ham15 109 15 109 4 62 48 -22.6 48 -0.0 35 -27.1 34 -29.2 32 -33.3
inc 237 16 93 7 914 898 -1.8 898 -0.0 654 -27.2 536 -40.3 351 -60.9
cnt3-5 180 16 20 3 70 50 -28.6 50 -0.0 40 -20.0 40 -20.0 40 -20.0
t481 263 17 21 4 108 104 -3.7 104 -0.0 64 -38.5 56 -46.2 40 -61.5
cmb 214 20 18 12 240 176 -26.7 176 -0.0 176 -0.0 128 -27.3 112 -36.4
alu1 198 20 32 3 132 98 -25.8 98 -0.0 68 -30.6 68 -30.6 68 -30.6
mux 246 22 35 6 432 432 -0.0 432 -0.0 340 -21.3 262 -39.4 170 -60.6
frg1 234 31 212 23 5179 4976 -3.9 4920 -1.1 4863 -2.3 3636 -26.9 2925 -41.2
simple 321 235 4227 6 64491 63628 -1.3 63628 -0.0 48335 -24.0 39276 -38.3 25126 -60.5
alu 319 235 15764 36 698563 697322 -0.2 697322 -0.0 675805 -3.1 494900 -29.0 375658 -46.1

Average Improvement (in %) -11.1 -3.2 -21.8 -36.0 -49.2

B. Mapping of Reversible Circuits

We evaluated the proposed approach on a suite of bench-
marks taken from [12]. Due to page limitations, we only report
the results for a restricted set of benchmarks in Table I.

Here, the first four columns describe the benchmark in terms
of its name (ID), number of qubits (L), number of gates (G) as
well as the maximum number of controls of all gates (max c).
The next column (Conv.) denotes the cost obtained using the
state-of-the-art mapping approach from [9]. More precisely,
we assume the availability of one clean ancilla and map a
c-controlled MCT gate using Lemma 3, if there are at least
c − 2 spare qubits, and by applying Lemma 4 (for one clean
ancilla) otherwise. In the remaining columns we list the cost
of the decompositions obtained by the proposed approach for
different combinations of clean and dirty ancillae (denoted as
(k, d)) as well as the improvement w.r.t. the state-of-the-art
(∆conv) or w.r.t. the proposed (1, 0) mapping (∆(1,0)).

The proposed (1, 0) mapping in many cases shows an
improvement of 10–20% over the state-of-the-art mapping
with one clean ancilla (11,1% on average). In most cases,
however, adding additional dirty ancillae does not have a
significant impact (3,2% improvement on average for (1, 5)
over (1, 0)). This can be explained by the fact that in most
circuits there are already enough unused qubits that can be
employed as dirty ancillae anyway. Finally, one can observe
that the effect of extra clean ancillae is rather small if all MCT
gates in a circuit have only few controls (max c = 3, 4), but
grows to an average improvement of almost 50% for k = 5
clean ancillae if max c is greater.

VI. CONCLUSIONS

In this work, we have enhanced the existing decomposition
and mapping approaches for MCT gates with the goal of
reducing the T -depth which is one main cost parameter in
fault-tolerant quantum computation. Our mapping approach

for the first time allows us to take into account an arbitrary
number and combination of clean and dirty ancillae. An
experimental evaluation confirms the benefits of this approach
especially for a large number of controls.
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