
Extended Kalman Filter for Large Scale Vessels
Trajectory Tracking in Distributed Stream

Processing Systems

Katarzyna Juraszek1, Nidhi Saini2, Marcela Charfuelan2, Holmer Hemsen2,
and Volker Markl1,2

1 Technische Universität Berlin, Straße des 17. Juni 135, 1062, Berlin, Germany
https://www.tu-berlin.de

2 DFKI GmbH, Alt-Moabit 91c, 10559, Berlin, Germany
https://www.dfki.de

Abstract. The growing number of vehicle data being constantly re-
ported by a variety of remote sensors, such as Automatic Identification
Systems (AIS), requires new data analytics methods that can operate
at high data rates and are highly scalable. Based on a real-life data
set from maritime transport, we propose a large scale vessels trajectory
tracking application implemented in the distributed stream processing
system Apache Flink. By implementing a state-space model (SSM) - the
Extended Kalman Filter (EKF) - we firstly demonstrate that an imple-
mentation of SSMs is feasible in modern distributed data flow systems
and secondly we show that we can reach a high performance by leverag-
ing the inherent parallelization of the distributed system. In our experi-
ments we show that the distributed tracking system is able to handle a
throughput of several hundred vessels per ms. Moreover, we show that
the latency to predict the position of a vessel is well below 500 ms on
average, allowing for real-time applications.

Keywords: time-series · state-space models · Extended Kalman Filter
· stream processing · spatio-temporal data · remote sensing systems.

1 Introduction

Analysing and understanding of maritime traffic is a topic of increasing interest,
due to its direct implications on security and safety, as well as on environmental
and socio-economic factors. Nowadays, there is a growing number of ship report-
ing technologies and remote sensing systems such as the Automatic Identification
System (AIS), Long Range Identification and Tracking (LRIT), radar tracking
or Earth Observation. Each of these technologies provides spatio-temporal ves-
sel positioning data that contributes to better monitoring of maritime transport.
The AIS technology has become a standard in the industry, being mandatory
for ships in international voyages, such as cargo vessels, fishing vessels exceed-
ing certain size as well as all passenger vessels, regardless of their size. The
AIS information provided by vessels, as a stream of tuples, includes kinematic
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information such as latitude, longitude, speed and course, voyage information
including destination port and estimated time of arrival, as well as static data
such as size and type of a ship. The AIS technology, which was originally in-
troduced for collision avoidance, is currently also used for vessel tracking, vessel
behaviour identification and anomaly detection [3].

State-space models (SSMs) are a popular methodology to model how differ-
ent phenomena change over time [16]. The term state-space was originally coined
by Kalman (1960), and applied to the field of control engineering. An SSM is a
representation of some physical system, where input, output and state variables
are related by first-order differential equations. The state variables depend on
input variables, while the output variables depend on the values of the state
variables. The SSM methodology has been successfully applied in various fields,
including engineering, statistics, computer science and economics. The Kalman
Filter is well-known for being one of the most powerful techniques for state esti-
mation. The purpose of the algorithm is to provide an estimation with minimum
error variance. The nonlinear version of the algorithm, the so called Extended
Kalman Filter (EKF) is widely used to estimate position in GPS receivers [13] or
for robot tracking [17]. The academic community, using EKF in practice, usually
focuses on motion of robots in a constrained space. In contrast, applying state
space models to vessels’ tracking data imposes further challenges such as infre-
quent or discontinued observations, arbitrary or noisy trajectories and erratic
movements.

Distributed computing helps in processing large amounts of raw data in real-
time and in a timely manner by parallelising the computation, distributing the
data and handling failures [11]. In addition, distributed stream processing solu-
tions are helping to overcome the main obstacles of real-time processing, which
are achieving the consistency of states across the system as well as fault recov-
ery, requiring long recovery times. Thanks to these features, new distributed
processing engines, which provide users with the scalable execution of data anal-
ysis tasks are arising [12]. The main goal of current and popular engines such
as Hadoop [2], Apache Spark [7] or Apache Flink [6] is to enable developers to
write distributed data analysis applications in an easy and efficient manner.

In this paper we propose an implementation of the EKF in a distributed
stream processing system for real-time trajectory tracking of many vessels in
parallel. In our experiments each vessel provides a stream of remote sensing AIS
data, which is used to create and continuously update its SSM. This way we are
able to estimate in real-time a new position of each vessel. We show that in our
use case the distributed tracking system is able to handle a throughput of 200
vessels/ms and requires a latency below 500 ms on average to predict the next
position of a vessel.

The paper is organised as follows. First we summarize the selection of re-
lated work on processing streams, real-time data tracking and EKF. Section 3
includes the theory behind the EKF as well as the practical implementation of
the algorithm in Apache Flink. Section 4 describes the technical setup behind the
EKF in the distributed environment. In the subsequent part, Section 5, the data
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set characteristics, accuracy results of the experiments as well as performance
evaluation is given, followed by the conclusion in the last section.

2 Related Work

As reported in the survey paper [24], AIS data is used nowadays in several works
for mining relevant aspects of navigation such as safety of seafaring, namely traf-
fic anomaly detection, route estimation, collision prediction, and path planning.
In this survey several techniques are reported, including EKF as a learning-
model-based method for route estimation.

EKF has been used for tracking vessels in many works. For example in Perera
and Soares [21] an EKF algorithm is proposed as a vessel state estimator due to
its capabilities of fusing nonlinear system kinematics with a given set of noisy
measurements. They use the EKF not only for state estimation (i.e. position,
velocity and acceleration) but also for trajectory prediction. Their experiments
are performed in Matlab and only with simulated data.

SSMs and Kalman Filtering have been studied and implemented in vari-
ous tools for a long time but mainly applied to single machines and relatively
small sets of batch data. Several traditional tools get short on processing the
big amounts of data that can be generated nowadays or simply they are not
capable of processing stream data. Therefore some researchers have started to
consider the possibility to use and implement these techniques in large scale
distributed data flow systems. For example Sheng et al. [23] implemented an
extended Kalman filter (a recursive filter) using the MapReduce framework, in
order to perform prediction in an industrial setting. Moussa [19] used Apache
Spark Streaming to implement a scalable application for real-time prediction
of vessels’ future locations. The method used in this work for estimating a new
position is based on a scalable computation of trip patterns, which are efficiently
queried using a geo-hashing index. This work also uses the DEBS Challenge 2018
data, but unfortunately it does not report thorough experiments on throughput
or latency.

Another interesting work that already addresses the problem of processing
streams of AIS data in real-time is reported by Brandt and Grawunder [9],
where the whole trajectories of a vessel and its current neighbors are predicted
in order to avoid critical situations, such as two vessels being too close to each
other. In the setup of this work, the real-time arrival and processing of the data
points is simulated by sampling the data and then estimating the trajectory of
a vessel ten minutes into the future. In contrast to the approach presented in
our paper, the authors calculate ten locations per predicted trajectory rather
than the next location of the vessel. The authors admit that the simple linear
extrapolation used in their work to predict the future trajectories of the moving
objects leads to non-optimal predictions, especially when a vessel is turning. In
addition, the authors perform the computation on a single machine and therefore
the computationally demanding queries are far from delivering the results in near
real-time. Dalsnes et al. [10] present a similar data-driven approach using cubic
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spline interpolation of trajectories sampled from an AIS historical database.
They predict vessel’s position 5 to 15 minutes into the future also using the
recent past trajectory of the vessel. This work relies heavily on the availability
of historical data and there is no information regarding its use in a streaming
fashion or real-time.

3 The Extended Kalman Filter

We apply distributed data flow processing to analyse kinematic information,
such as latitude, longitude, speed and course from multiple vessels in parallel.
While processing the data, we apply the Extended Kalman Filter to real-time
stream data in order to estimate the next position of a vessel. To the best of our
knowledge, we present the first implementation of an Extended Kalman Filter
on the distributed data flow system Apache Flink.

3.1 EKF in Theory

As presented in Figure 1, the EKF consists of two steps, first, the prediction step,
and second, the correction step. The prediction step starts with the approxima-
tion of the state ahead, the so-called a priori state x̂−t . The f(x̂+t−1) function is
a non-linear function relating the a posteriori state at the previous time t − 1
to the state at the current time t. The added wxt

is a white Gaussian process
noise with 0 mean and covariance Qt. The second equation in the prediction
step projects the error covariance P−

t , called the a priori error covariance, where
F (x̂+t−1) is the Jacobian matrix of partial derivatives of f with respect to x. The
correction part of the algorithm starts now and the measurement equation zt is
introduced at this point.

zt = h(x−t )) + wzt , (1)

where wzt is white Gaussian measurement noise with zero mean and Rt co-
variance. The h(x−t )) function in the measurement equation zt is a non-linear
function relating the a priori state x−t to the actual measurement at time t.

The correction part takes the a priori state and the a priori error covariance
to compute three values. The first value calculated in the correction step is the
Kalman gain Kt. It represents how a new measurement improves the predicted
state vector, where H(x̂−t ) is the Jacobian matrix of partial derivatives of h with
respect to x. Next, the a posteriori state x̂+t is calculated by updating the a priori
state with the actual measurement. In the end the a posteriori error covariance
P+
t is computed using identity matrix, Kalman gain Kt, Jacobian matrix H(x̂−t )

and a priori error covariance P−
t . Now the algorithm loops by again starting the

prediction part, using the calculated posteriori values as input in the prediction
equations. The interested reader is referred to [20] and [25] for a detailed and
practical description of SSM and EKF.
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Prediction step

1. Calculate a priori state
x̂−
t = f(x̂+

t−1) + wxt

2. Calculate a priori error covariance
P−
t = F (x̂+

t−1)P+
t−1F (x̂+

t−1)T + Qt

Correction step

1. Compute Kalman Gain
Kt = P−

t H(x̂−
t )T ×(H(x̂−

t )P−
t H(x̂−

t )T +Rt)
−1

2. Calculate a posteriori state by correcting x̂−
t

x̂+
t = x̂−

t + Kt(zt − h(x̂−
t ))

3. Calculate a posteriori error covariance
by correcting P−

t

P+
t = (I −KtH(x̂−

t )) · P−
t

(Only as first step:)
Initial estimates for x̂+

t−1 and P+
t−1

Fig. 1: Graphical representation of the Extended Kalman Filter operations (adapted
from [25]).

3.2 EKF in Practice

One of the prerequisites for implementing EKF in practice is the a priori knowl-
edge of the type of movement of an object. In case of tracking, such as vessels
on waters, no a priori knowledge of the directions of the target is generally avail-
able, therefore in our case the behaviour of vessels is approximated by a constant
velocity model. Since ocean vessels tend to follow a slow parabolic-type move-
ment, where fast changing manoeuvres are not present, this assumption goes in
line with other scholars’ findings [22]. In order to use the coordinate data, the
geodetic coordinates (WGS 84), which are not suitable for data processing are
converted so that the next location of a vessel is not predicted with respect to
longitude and latitude values, but rather as a latitude and longitude distance in
meters from the point where last position of a ship was reported.

EKF Parameters Initialization In order to start the EKF for the first time,
two parameters need to be initialized, a posteriori state and a posteriori error
covariance. Since the starting point of the route is known, the a posteriori error
covariance is set to a small value (0.01) on the main diagonal of the a poste-
riori error covariance matrix. The initial state estimate is set to zero, as the
values will be replaced with the next run of the EKF. Two other parameters,
being reused by the EKF on each run, are Q and R, which are the process noise
covariance matrix and measurement noise covariance matrix. When using the
EKF algorithm for tracking of moving objects, Q represents possible accelera-
tions that allow the tracked object to deviate from constant velocity. Following
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the assumptions of the acceleration process noise, which can be assumed to be
8.8 m/s2 and assuming 2 rad/s as maximum turn rate for the vehicle, the follow-
ing values are set on the main diagonal of the process noise covariance matrix:
[(0.5 ·8.8 ·∆t2)2, (0.5 ·8.8 ·∆t2)2, (2 ·∆t)2), (8.8 ·∆t)2], where ∆t is the time differ-
ence in seconds between the current and the previous measurement [8]. The last
parameter to be initialised is the measurement noise covariance matrix R. The
measurement noise covariance R can be defined using the standard deviation of
a GPS measurement, which is assumed to be 6.0. The bigger the value, the less
”trust” is given to the sensor readings [15].

EKF Implementation In the EKF algorithm implemented for the purpose of
finding the next position of a vessel, the belief state to be estimated has four
variables: cumulative longitude distance x, cumulative latitude distance y (both
calculated from the departure point), heading, and velocity of a vessel at a given
time t. The algorithm starts with calculating the a priori state. To do so, the a
posteriori state from previous measurements is used with the constant velocity
model to predict the new a priori state. The a priori state has the following form:

x̂−t =


x−t
y−t
ψ−
t

υ−t

 =


x+t−1 +∆t · υ+t−1 · cos(ψ+

t−1)
y+t−1 +∆t · υ+t−1 · sin(ψ+

t−1)
(ψ+

t−1) mod (2 · π) − π
υ+t−1

 (2)

where x̂−t is the predicted a priori state, x−t and y−t are respectively the cumula-
tive longitude and latitude distance in meters from the departure port, ∆t is the
time difference in seconds between the current and the previous measurement,
ψ+
t−1 is the heading of a vessel and υ+t−1 is the velocity of a vessel in meters per

second.
To calculate the a priori error covariance, the F (x̂+t−1), which is the Jacobian

matrix of partial derivatives of f(x̂+t−1) with respect to x, needs to be calculated
first.

F (x̂+t−1) =


1 0 −∆t · υ+t−1 · sin(ψ+

t−1) ∆t · cos(ψ+
t−1)

0 1 ∆t · υ+t−1 · cos(ψ+
t−1) ∆t · sin(ψ+

t−1)
0 0 1 0
0 0 0 1

 (3)

The a priori error covariance is then predicted following the formula given for
P−
t . The input in the calculation of the a posteriori state is the actual mea-

surement data zt and the a priori state x̂−t . In our EKF implementation, the
actual measurement data is the actual longitude and latitude distance from the
departure point, calculated as the cumulative sum of all the distances between
the measurements until this point in time.

zt =

[
measured cumulative longitudinal distance

measured cumulative latitude distance

]
(4)
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The remaining parts of the algorithm are calculated following the equations from
Figure 1.

4 Distributed Pipeline

4.1 Technical setup

The technical setup of the processing pipeline for this work is presented in Figure
2. The real-time arrival of the time-series data is simulated using Apache Kafka
and the distributed computing of the next location prediction given by the EKF
is leveraged with the use of Apache Flink.

Fig. 2: Detailed Kafka Flink pipeline.

4.2 EKF in the distributed environment

Since every non-trivial streaming application is stateful, applying the EKF in a
distributed environment using Flink requires working with the state abstraction.
States are an important feature but also have a serious performance impact on
the processing in distributed data flow systems, as they require synchronization
across machines and need to be managed in a fault-tolerant way in case of
machine failures. A stateful application remembers certain events or intermediate
results, which can be accessed later, for instance when a new event is arriving [6].
Given the recursive nature of the EKF algorithm, where the a posteriori values
calculated in the correction step are further used in the prediction step when a
new event arrives, the use of Keyed State operators [4] is crucial for implementing
this algorithm in a distributed system. We use four different states in our work:

– The first state prevKalmanParams is used to store a tuple consisting of a
posteriori state and a posteriori error covariance calculated in the Correction
step.

– The second state prevTimestamp stores the timestamp of the last arriving
event so that the time difference (∆t) needed for the prediction of the a
priori state can be calculated upon arrival of the next event.
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– The third state prevGeoPoints remembers the last position reported in the
last event in order to calculated the distance travelled.

– The fourth state prevCumSum stores the cumulative sum of distance travelled
from the reported departure port.

Each of these states is updated on every input tuple whenever an event arrives.
The state values from the previous run are fed to the current calculation. In the
implementation of the EKF algorithm the Managed Key State ValueState<T>
was used, which is a state scoped to the key of the current input element. It means
that every keyed stream, belonging to one trajectory, will have a corresponding
state. This type of state can keep the value, which can be then retrieved and
updated per key. In our case one key corresponds to one vessel.

5 Data and Experiments

The data set used in the vessels trajectory tracking use case, was provided by
MarineTraffic during the 2018 DEBS Grand Challenge [1] and includes the geo-
location data, in terms of latitude and longitude, of vessels departing from 25
ports in the Mediterranean Sea. The data is provided as a continuous stream
of tuples. A ship sends a tuple according to its behaviour based on the AIS
specifications. Each these tuples includes also the name of the port of origin,
unique ID of the vessel, time stamp, vessel’s course, heading and draught. The
data include several types of vessels, corresponding to 503 trajectories obtained
during a period of approximately three months in 2015 (10-03-15 13:13 to 19-05-
15 7:32). Many of the vessels report their position every two minutes, but some
have very irregular periods, including long periods of time (several hours) with
no report.

The experiments are conducted on a single server machine with 48 CPUs, 2.0
Ghz, 126 GB of RAM, running Ubuntu 16.04, Apache Kafka (v. 2.11) and Apache
Flink (v. 1.8). Following the recommendations in the Flink documentation, we
fixed the number of Flink task slots to 48. Thus in our experiments the level of
parallelism is given by the number of slots or CPUs used [5].

In the following we evaluate our system according to accuracy and large scale
performance. In the first experiment, Section 5.1, we calculate the next position
prediction error for every point of the 503 trajectories in the data. In the second
experiment, Section 5.2, we evaluate the performance of the system in terms of
event and processing time latency as well as ingestion rate.

5.1 Accuracy Evaluation

The result of the point prediction using the Extended Kalman Filter is a longi-
tude and latitude pair of the next vessel’s position. For evaluating accuracy we
use the RMSE, which is also used for example in [10] to analyse the proximity
of the mean of predicted values to the true value. We apply RMSE to calculate
the prediction error for latitude and longitude values but also for distance, that
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is, the distance between the predicted position point and the actual point. As
it is done in [10,18], we define the distance RMSE for a vessel’s trajectory, of L
total number of reported AIS tuples, as:

RMSEdist =

√∑L
l=1∆d(l)2

L
(5)

where ∆d(l), for a particular position l, is the actual distance between the true
position and the one predicted with EKF, both input as pair of longitude and
latitude coordinates. The lower the RMSE, the better the prediction. In our case
∆d(l) is calculated using the Haversine3 distance to calculate the great-circle
distance between two points. The RMSE for longitude and latitude is calculated
similarly, subtracting the true longitude (or latitude) from the predicted one.

Fig. 3: Accuracy Evaluation: (left) Error distance distribution and (right) Impact of
Elapsed Time (ET) between observations, blue points corresponds to RMSEdist.

After applying EKF to the 503 trajectories in the data, equivalent to 542,153
position points (AIS tuples), we analyse the overall distribution of distance er-
rors. In Figure 3 (left) we can observe in the histograms that most of the distance
errors are below 20 km in around 78% of all the data and will therefore focus
now on the data with distance error below 20 km. In a preliminary study we
observed that the number of observations per kilometer has an impact on the
RMSE for latitude and longitude, i.e. the more reported positions per kilometer
of trajectory the better the prediction. Thus we analyse the error distance with
respect to the elapsed time between observations. We can observe in the box-
plot of Figure 3 (right) that the more frequent the observations (120 seconds),
the lower the distance error, in fact, for some trajectories the RMSEdist is well
below 1 km (see below Figure 4 and Tables 1 and 2). These levels of RMSEdist

(below 1km) are also obtained by Dalsnes et al. [10], in a batch setting where
the approach is slightly different than ours and the results are given in median
RMSEdist values calculated for partial trajectories.

3 https://www.movable-type.co.uk/scripts/latlong.html
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Fig. 4: Accuracy Evaluation: two trajectories corresponding to shipID-28 (left
RMSEdist=334.14m, mean ET=167.2 sec.) and shipID-57 (right RMSEdist=664.23m,
mean ET=667.9 sec. ), blue points correspond to actual values and red points to the
ones predicted with EKF.

Fig. 5: Accuracy Evaluation: two trajectories corresponding to shipID-
2 (left RMSEdist=4755.24m, mean ET=1279.7 sec.) and shipID-95 (right
RMSEdist=20279.30m, mean ET=1644.7 sec.), blue points correspond to actual
values and red points to the ones predicted with EKF.

Table 1: Accuracy evaluation: Distance error quantiles for selected ship trajectories.

Ship ID
Distance Error Quantiles

Min 1Q Median Mean 3Q Max

28 40.0 133.4 233.5 271.5 361.4 1978.1
57 0.3 17.4 45.2 363.0 612.7 6442.5
2 1.0 331.1 580.1 1110.0 889.1 105040.3
95 601.9 2251.2 4844.1 9034.3 11213.3 477542.5
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Table 2: Accuracy evaluation: Distance RMSE for selected ship trajectories.

Ship ID
RMSE

Total route
length [km]

Distance error
[m]

Longitude
degrees

Latitude
degrees

28 334.1 0.00169 0.00127 193
57 664.2 0.00337 0.00174 2735
2 4755.2 0.02438 0.02725 3881
95 20279.3 0.15373 0.03960 1884

As we will discuss later, there are various factors that impact the accuracy
of the prediction, but first of all let us consider some examples of trajectories, in
Figures 4 and 5 and corresponding statistics in Tables 1 and 2. In cases where the
tracking data is frequently reported per kilometer of distance traveled, the EKF
algorithm has the chance to go through more iterations and therefore improve its
prediction with each run. As shown in Figure 4, the two vessels have a RMSEdist

of 334 and 664 m respectively and in both cases the ET between observations is
below 3 and 10 minutes in average. In the case shown in Figure 5, the infrequent
observations lead to inaccurate route prediction. For shipID-2 (left) the ET is
around 20 minutes on average and the route is pretty complex, with several
turns, however its RMSEdist is still below 5 km. For shipID-95 (right) the ET
is around 27 minutes in average, including long periods of no reporting at all,
which makes the prediction deviate a lot.

Factors influencing accuracy of the EKF prediction. In the EKF algo-
rithm, each new received event provides an adjustment to the model, improving
the chances of correctly predicting the next state. The less events arrive, the
smaller the chances that the estimated values will be accurate. In order to inves-
tigate if more data points indeed improve the prediction, the number of observa-
tion points per km of distance traveled was calculated for each trajectory. Figure
6 shows respectively longitude RMSE and latitude RMSE against the number
of observations per km. The majority of analyzed vessels report less than two
observations per km of distance traveled. In line with the expectations coming
from the nature of the EKF algorithm, both diagrams in Figure 6 confirm that
the higher number of received observations per km results in more accurate pre-
dictions (smaller longitude and latitude RMSE). Another factor, which causes
the results to be imprecise is the reported departure port. As the EKF algorithm
requires initialization values to be input in the first step of the algorithm, the
longitude and latitude of the departure port are used as the initial location co-
ordinates. In some cases, the route was reported to start in the wrong position,
which results in a significantly longer convergence time.
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Fig. 6: Accuracy Evaluation: RMSE for Longitude and Latitude.

5.2 Performance Evaluation

In our large scale performance experiment we start simulating the streaming
process by injecting the data into Kafka using several topics. Each Kafka topic
is then read as a stream data source by Apache Flink. Each tuple in the stream
source is processed by Flink using its event time, i.e. the timestamp when the
position is reported. In the data, on average 10 vessels report their position at
the same time with peaks of up to 50 different vessels reporting their position
simultaneously. This means that our processing system must be able to track
in real time many vessels at the same time. In order to cover this situation and
stress the system even more, we replicated four times the input data assigning
different ships id. In this way we simulate the processing of more than 2000
trajectories with peaks of maximum 200 vessels simultaneously reporting their
position.

According to the benchmarking study of Karimov et al. [14], in modern dis-
tributed stream processing systems two notions of time are distinguished: event-
and processing-time latencies. From this study we use the following metrics:

– event-time latency, which measures the time that a given event has spent in
a queue waiting to be processed. In our case it is the time a tuple spent in
the Kafka queue until the EKF operator is able to produce a new position
prediction for this tuple.

– processing-time latency, which measures the time it took for the event to be
processed by the streaming system, what in our case means the time it takes
for the EKF operator to produce an output.

– ingestion rate, which is the throughput of a streaming system and in our
case is measured as the number of tuples per millisecond processed by the
EKF operator in Flink.

As pointed out by Karimov et al. [14], in practical scenarios, event-time latency
is very important as it defines the time in which the user interacts with a given
system and should be minimized. It should be noted that processing-time la-
tency makes part of the event-time latency. Thus our objective is to find the
configuration that minimizes the processing-time in our system.
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As shown in our Kafka-Flink pipeline (see Figure 2) we use 8 Kafka topics
and 8 corresponding Flink sources. The input source in each Kafka topic is the
data replicated four times, which contains trajectories of more than 2000 vessels.
Overall the system receives and processes 17.4 million AIS events.

We use the default configuration settings for Kafka, so the number of parti-
tions per topic is 1. We change the level of parallelism from 1 to 48 and repeat
each experiment five times, averaging the results afterwards. To be precise, par-
allelism 1 means using only one slot or CPU, which is the equivalent of executing
the experiment on a single machine. The results are presented in Figure 7. We
use logarithmic scale on the y-axis to facilitate comparison.

Fig. 7: Performance Evaluation: Boxplot of event-time latency and processing-time
latency in server machine using 8 Kafka topics and 8 Flink sources.

For a single machine (in Figure 7 number of slots equal to 1), we obtain on av-
erage the highest processing-time latency and event-time latency. For parallelism
2 we can observe that the processing-time latency decreases but the event-time
latency is also in the order of seconds, which is still too high for real time process-
ing. The processing-time latency decreases significantly when increasing the level
of parallelism, with optimal latency values for this setting, between parallelism 4
(mean 27.7 ms) and 8 (mean 37.1 ms). Using higher parallelism (parallelisation
8) also helps us to reduce the event-time latency to a mean minimum of 574.7
ms. We can observe that for parallelism above 2 the event-time latency is below
a second, which can be explained by an increase of the ingestion rate. Therefore
in the following, we further investigate the ingestion rate in our system.

As a comparison in Figure 8 we show a boxplot of the ingestion rate in Flink
in terms of tuples per millisecond. We can observe that without parallelism
the ingestion rate on average is minimum with approx. 170 tuples/ms, when
increasing the parallelism the ingestion rate is on average stable in approx. 200
tuples/ms, reaching maximum rates of approx. 500 tuples/ms.
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Fig. 8: Performance evaluation: Boxplot of the average Flink ingestion rate in tuples
per millisecond.

There are several aspects that are interrelated and contribute to the overall
performance of the system. For example, for parallelism 2 the average ingestion
rate is higher but the processing latency with only two processors is still high.
The optimal configuration in our system is obtained with 8 slots. Although the
ingestion rate is stable at approximate 200 tuples/ms, by adding more than 8
slots we do not gain any performance. Such behaviour could be explain by the
fact that the overall input data (17.4 million AIS events) is not large enough, so
we do not benefit from increasing parallelism, but instead we introduce distri-
bution overhead.

6 Conclusion

In line with the expectations coming from recursive nature of the EKF, where
predictions are corrected upon the arrival of a next data point, the frequency of
events reception turned out to be an important factor influencing the accuracy
of prediction produced. The results show that the complexity or stability of the
routes are not the most important factor contributing to the accurate predic-
tion of the vessels’ routes. Irrespective of the trajectory complexity, the high
frequency of the incoming sensor measurements as well as correct initialisation
of the parameters can provide a precise estimation of even more complex routes.

Regarding large scale performance, we showed that using a distributed stream
processing system we can process on average 200 different vessels’ positions per
ms (200 tuples/ms), and our system, under this rate, requires below 500 ms to
predict the next position of a vessel. In our setting, this optimal performance
was obtained when using 8 Kafka topics and the corresponding 8 Flink sources.
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Beyond this optimal value, when we increase the number of Kafka topics and
Flink sources, the system introduces some overhead that is reflected on the
latencies.

As future work we will consider a more realistic scenario, where massive
real data is used and a setting in a cluster of computers. In a cluster setting
we should take into account the additional overhead due to the communication
between nodes, thus we will study the optimal combination of parallelism, Kafka
topics and ingestion rate, in particular when actual big sets in the order of GBs
are used. Furthermore, we will address the issue of visualization in real time
including a dashboard for indicating various conditions of the vessels, such as
elapsed time since last report, distance traveled or big error predictions which
may correspond to possible anomalies.
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