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Abstract—This paper presents a novel method for the analy-
sis of tabular structures in document images using the potential
of deformable convolutional networks. In order to assess the
suitability of the model to the task of table structure recogni-
tion, most of the prior methods have been tested on the smaller
ICDAR-13 table structure recognition dataset comprising of
just 156 tables. We curated a new image-based table structure
recognition dataset, TabStructDB2, comprising of 1081 tables
densely labeled with row and column information. Instead of
collecting new images for this purpose, we leveraged the famous
Page-Object Detection dataset from ICDAR-17, and added
structural information for all the tabular regions present in
the dataset. This new publicly available dataset will enable the
development of more sophisticated table structure recognition
techniques in the future. We performed extensive evaluation on
the two datasets (ICDAR-13 and TabStructDB) including cross-
dataset testing in order to evaluate the efficacy of the proposed
approach. We achieved state-of-the-art results with deformable
models on ICDAR-13 with an average F-Measure of 92.98%
(89.42% for rows and 96.55% for columns) and report baseline
results on TabStructDB for guiding future research efforts
with an F-Measure of 93.72% (91.26% for rows and 95.59%
for columns). Despite promising results, structural analysis of
tables with arbitrary layouts is still far from achievable at this
point.

Keywords-Document Analysis, Table Structure Recognition,
Table Understanding, Deformable FPN, Convolutional Neural
Networks

I. INTRODUCTION

Significant efforts have been made in the past for auto-
mated extraction of information from documents [1], [2], [3],
[4], [5]. Tabular structure embedded in documents is one of
the most important mediums of communicating important
information, specifically for financial and scientific records.
This information is usually of high interest. Automatic
extraction of such information for the purpose of digiti-
zation/processing is highly valuable for organizations [2].
Different methods have been proposed in the past to extract
this information automatically from documents ranging from
hand-designed heuristics to data-driven methodologies [1],
[2].

The complete problem of table understanding is com-
prised of two sub-problems [6]. The first problem is the
detection of the table itself [7], [3], [2]. Once a table is
detected, the structure of the table is analyzed [2]. Most of
the prior methods for the analysis of tabular structures rely
on the availability of born-digital PDFs [1]. This allows the

direct extraction of textual regions. However, this limits the
applicability of these systems to only PDFs where many
of the documents are scanned or present in the form of
images [2].

Training data-driven models for the task of table structure
analysis requires access to a large amount of labeled data,
specifically for deep models [2]. The largest publicly avail-
able dataset for this purpose is ICDAR-13 table structure
recognition dataset comprising of 156 tables extracted from
238 pages (67 PDF documents) [6]. The dataset is comprised
of labels for cells. Schreiber et al. (2017) [2] translated
the dataset to labels for rows and columns in order for the
image-based models to be trained. Despite being extensively
labeled, the dataset itself is quite small compared to current
demands. Segregation into the corresponding train and test
sets specifically result in only a small number of images for
testing. Schreiber et al. (2017) [2] used only 31 images to
test their model.

The ICDAR-17 Page-Object Detection dataset is com-
prised of 2417 document images and 1081 tabular structures.
In order to deal with the problem of data scarcity, we
hand labeled all the tabular structures in the ICDAR-17
POD dataset with row and column information for image-
based table structure recognition task2. The dataset will
enable further developments in the domain of table structure
recognition, specifically for data-driven approaches.

The problem of table structure recognition (cell identifica-
tion) can be decomposed into the problem of identification
of the corresponding rows and columns. Once the rows
and columns are identified, they can be coupled together
to identify the cells. However, this simple assumption fails
for hierarchical columns (which have a row/column span of
more than one). Therefore, both datasets (ICDAR-13 labeled
for rows/columns by Schreiber et al. [2] and our custom
ICDAR-17) neglect row/column span (hierarchical labels).

In contrast to the Fully-Convolutional Network (FCN)
based formulation presented by Schreiber et al. (2017) [2],
we treat the problem of row/column identification in a tabu-
lar structure as that of object detection where the document
can be considered analogous to scene and row/column can
be considered as analogous to objects. With an FCN based
approach, the system heavily relies on post-processing in
order to filter out the regions where no ruling lines or textual
content is present [2]. On the other hand, object detection



based approach can directly regress for the bounding boxes
without having to rely on sophisticated post-processing tech-
niques. The proposed approach, DeepTabStR (Deep Table
Structure Recognizer), leverages the potential of deformable
convolution operation to tackle the structure recognition
problem [8], [7]. We also test the proposed approach on a
new large dataset that we self-labeled (TabStructDB) along
with the publicly available ICDAR-13 dataset [6] in order to
identify the efficacy of the proposed approach in real-world.
In particular, the contributions of this paper are as follows:

• We introduced a new dataset for table structure recog-
nition comprising of 1081 tabular regions densely
labeled with row and column information called as
TabStructDB2. This dataset will enable the development
of more sophisticated methods for the task of table
structure recognition in the future.

• We formulated the problem of table structure recogni-
tion as an object detection problem and leverage the
potential of deformable convolution operation for this
task.

• We performed an exhaustive evaluation on the two
different datasets including cross-dataset evaluation and
achieved state-of-the-art structure recognition results on
the publicly available ICDAR-13 dataset (considering
the metrics for rows and columns) while also setting a
baseline for TabStructDB.

The rest of the paper is structured as follows. We first
provide a brief recapitulation of the previous work in the
direction of table structure analysis in Section II. We then
provide details regarding the datasets including the one we
curated ourselves in Section III. We describe the proposed
approach (DeepTabStR) in detail in Section ??. Finally, we
present our results in Section V along with a brief discussion
followed by the concluding remarks in Section VI.

II. LITERATURE REVIEW

Despite a vast amount of literature on the topic of doc-
ument analysis [1], [9], [2], [10], [3], [4], [5], [7], and a
range of methods proposed for the task of table detection [2],
[3], [7], there have been only a modest number of attempts
for the full table understanding problem which is much
more challenging as compared to the prior. Kieninger and
Dengel (1999) [1], who are the pioneers of the work on
table structure analysis, proposed the T-Recs system which
initially grouped words into columns by estimating their
horizontal ruling lines, These horizontal ruling lines were
then divided into cells based on the column margins. Wang
et al. (2004) [9] proposed a system which was similar to the
X-Y cut algorithm. The probabilities were computed based
on data, hence, making the system data-driven.

One of the major benchmarks for the task of table
structure recognition was established by the table structure
recognition competition organized in ICDAR-13 [6]. The
participants were required to detect the cells present in a

table which includes information regarding its location (row
and column), content, as well as the row and column span.
Based on this information, an adjacency list was formulated
which was in turn used for computing cell-level statistics.
Computation of the adjacency list relies heavily on perfect
extraction of the textual content. This perfect extraction
is almost impossible for image-based systems, therefore,
adjacency list based cell metrics inherently penalizes image-
based recognition systems. The only image-based system
in the competition achieved significantly poor scores as
compared to the rest of the participants due to additional
errors incurred through OCR along with the increase in the
complexity of the task itself [6].

Klampfl et al. (2014) [11] presented an unsupervised
learning approach along with a combination of hand-crafted
heuristics for the detection of tables along with the corre-
sponding analysis of the tabular structure in PDF documents.
Kasar et al. (2015) [12] introduced a table information
extraction system which leveraged a query-based approach
to selectively extract information from tabular structures.
The users were required to provide a query-pattern which
was transformed into an attributed relational graph. The
generated graph was matched with similar graphs in the
document using a fast graph matching technique to retrieve
other similar graphs, providing the desired information from
the table.

Shigarov et al. (2016) [10] explored the problem of
table structure analysis by providing analyzing different
algorithms, suitable thresholds and their rule bases to achieve
reasonable performance. They made heavy use of meta-data
available in born-digital PDFs such as font, font-size, their
corresponding bounding boxes etc. They also developed
custom heuristics for the extraction of relevant information
from the tabular structures. Rastan et al. (2019) recently
introduced the TEXUS framework [13], which recognizes
table structure in a layout independent manner. The system
is limited to born-digital PDFs.

All these methods were specifically developed leveraging
the meta-data available in born-digital PDFs. Since DeepT-
abStR directly operates over images, all prior approaches
are not directly comparable to our system. One of the
recent image-based deep learning methods for table structure
analysis has been proposed by Schreiber et al. (2017) [2].
They utilized the power of Fully-Convolutional Network
(FCN) designed for the task of semantic segmentation for
the identification of the corresponding rows and columns
in a tabular structure. They detected the corresponding
bounding boxes from the table using contour detection on
the generated segmentation masks. On the other hand, we
directly treat it as an object detection problem [8], [14], [15]
allowing us to directly regress for the coordinates of the
rows and columns instead of going through an intermediate
representation and then post-processing it.



III. DATASETS

A. ICDAR-13 Table Structure Recognition Dataset1

ICDAR-13 dataset is comprised of 67 PDF files. These
PDF files contain a total of 238 pages, along with 156
tabular structures [6]. Following the work of Schreiber et
al. (2017) [2], we converted the cell-based annotations to
the corresponding annotations for rows and columns. We
used the same train and test split as used by Schreiber et
al. (2017) [2] in order to enable a direct comparison against
their approach.

B. TabStructDB2

In ICDAR-17, a Page-Object Detection (POD) compe-
tition was organized where the task was to identify page
objects in documents which includes tables, figures and
equations in documents [16]. The dataset was composed
of 2417 images in total, where 1600 images were used for
training, while the rest of the 817 images were used for
testing. We are introducing a new table structure recognition
dataset, TabStructDB2, where we labeled each tabular region
present in the ICDAR-17 POD dataset with table structure
information comprising of the row and column information.
In contrast to the annotations generated by Schreiber et al.
(2017) [2], we label the complete row regardless of the
textual region for consistency. We also ignore hierarchical
labels where multiple columns are nested and only mark
one at the finest level. This is consistent with ICDAR-13
image-based table structure recognition dataset generated
by Schreiber et al. (2017) [2] where row/column span
(hierarchical labels) were also discarded. The training set
of ICDAR-17 POD is comprised of 1600 images containing
731 tabular regions while the test set comprised of 817
images containing 350 tabular regions. We kept the same
dataset split for consistency. Therefore, our dataset is com-
posed of 731 training and 350 test table images.

It is important to mention that we found several cases
in ICDAR-17 datasets where clear tables were left out. We
marked some of them where a similar table was marked on
the same page of the document but left out the ones where
there were no markings on a particular page to minimize
deviation from the original dataset. We found quite a large
number of errors in the annotations provided for ICDAR-17
POD competition, as is common in any large dataset.

IV. METHOD

Object detection has achieved amazing advances in recent
years [8], [15], [14]. With the synergy in the task of identi-
fication of objects in natural scene images and identification
of rows and columns in a tabular structure, we propose the
use of object detection models for the task of table structure
recognition.

1ICDAR-13 dataset is publicly available at: https://bit.ly/2RLgFYu
2TabStructDB is publicly available at: https://bit.ly/2XonOEx

Conventional convolution operation has a fixed receptive
field. This fixed receptive field is problematic for layers on
top of the feature hierarchy where features can be present
at arbitrary scales along with arbitrary transformations. Sid-
diqui et al. [7] showed the effectiveness of the deformable
convolutional network for the task of table detection. There-
fore, we employ the deformable model family for the task
of table structure recognition. We will now dive deep into
the different components within the overall system pipeline
presented in Fig. 1.

A. Deformable Convolution

Convolutional neural networks are based on the primitive
convolution operation which operates as a sliding window
over the input. This enables the convolution operation to
share parameters at different locations in the image, hence,
making it parameter efficient. The conventional 2-D convo-
lution operation can be represented mathematically as:

(F ∗ I)(i, j) =
K∑

m=−K

K∑
n=−K

F (m,n)× I(i−m, j − n)
∀i = 1, ...,H,∀j = 1, ...,W (1)

where ∗ is used to denote the convolution operation, F de-
notes the filter which is learned using the data, I denotes the
image, K denotes a value which is computed as b|F |/2c (|F |
denotes the size of the filter), H denotes the image height,
W denotes the image width and i, j represents the location
where the convolution operation is performed. Since the
convolution operation takes a fixed window of size |F |×|F |
into account, it fails to compensate for objects occurring at
different scales along with different transformations. In order
to deal with this issue of fixed receptive field, Dai et al.
(2017) [8] proposed the deformable convolution operation.
The deformable convolution operation uses extra offsets
instead of using a fixed grid which allows the layer to adapt
itself. These offsets are computed based on another set of
convolutional layers, hence making them learnable. Since
they are computed for every input, the generated offsets are
also conditioned on the input allowing the network to adjust
its receptive field based on the location and object in view.
The deformable 2-D convolution operation can be expressed
mathematically as:

(F ◦ I)(i, j) =
K∑

m=−K

K∑
n=−K

F (i, j)× I(i−m+ δverticali,j,m,n , j − n+ δhorizontali,j,m,n )

∀i = 1, ...,H,∀j = 1, ...,W (2)

where ◦ denotes the deformable convolution operation while
all the mutual parameters are the same as Eq. 1. δverticali,j,m,n
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Figure 1: DeepTabStR: The proposed system pipeline

and δhorizontali,j,m,n denotes the corresponding offsets generated.
Since these offsets are generated by the convolutional layers,
hence, they can be fractional and are implemented via bilin-
ear interpolation [8]. Since there are separate convolutional
layers for the generation of these offsets, the number of
parameters in the network increases.

The per-region classification head at the end of the net-
work (Fig. 1) expects a fixed-size input since it is comprised
of fully-connected layers. On the other hand, the generated
region-proposals vary in terms of size based on different
bounding boxes. Girshik et al. (2015) [14] introduced ROI-
pooling layer which was able to convert these region propos-
als into fixed feature volume while retaining differentiability.
ROI-pooling is a core component for all region based
detection methods [8], [14], [17], [18].

Let F be the feature map obtained from the network,
(i0, j0) be the top-left corner of the ROI, and w × h be the
ROI size, the conventional ROI-pooling layer converts the
ROI to a fixed size of volume of k × k. This operation can
be represented mathematically as:

ROI Pool(F,m, n) =
∑

F (i0 + i, j0 + j)/nm,n,

∀i = {1, ..., h|bm× (h/k)c ≤ i < d(m+ 1)× (h/k)e},
∀j = {1, ..., w|bm× (w/k)c ≤ j < d(m+ 1)× (w/k)e}

(3)

where nm,n is the number of pixels in the bin (m,n). If there
are C input feature maps, the overall output from the layer
will be k × k × C which will be fed to the classification
head. Just like it’s convolutional counterpart, deformable
ROI-pooling has a fixed receptive field. In order to also
enable the ROI-pooling layer to deal with objects at arbitrary
scales, Dai et al. (2017) [8] similarly equipped the ROI-
pooling layer with deformable property by again introducing
the additional offsets. This can be represented as:

DeformableROI Pool(F,m, n) =∑
F (i0 + i+ δverticalm,n , j0 + j + δhorizontalm,n )/nm,n,

∀i = {1, ..., h|bm× (h/k)c ≤ i < d(m+ 1)× (h/k)e},
∀j = {1, ..., w|bm× (w/k)c ≤ j < d(m+ 1)× (w/k)e}

(4)

where all mutual parameters are the same as Eq. 3. δverticali,j

defines the vertical offset while δhorizontali,j defines the
horizontal offset. These offsets are again fractional and
implemented via bilinear interpolation.

B. Deformable Models

We evaluated the complete family of deformable models
which includes Faster R-CNN, R-FCN and FPN [8]. In all
deformable models, a deformable base model is used which
was a ResNet-101 in our case. The model is pretrained on
ImageNet dataset comprising of 1.2 million images [19].
This transforms the network into a generic feature extractor.
Since deformable convolution is a memory intensive opera-
tion, only three layers in the network were transformed into
their deformable variant. In the case of FPN, an additional
fourth layer was also transformed to further improve the
quality of the extracted features. All the deformable layers
were located on top of the feature hierarchy as deformable
convolution operation is mainly useful where detection of
complete objects is desired [8]. In order to leverage a non-
deformable pretrained ResNet-101 ImageNet model [20],
the offsets are initialized with zero and adapted during
training. Zero offsets translate to the regular convolutional
grid, making it directly equivalent to the non-deformable
variant.

The deformable Faster R-CNN adapts the original faster
R-CNN framework [14] by using deformable ROI-pooling
instead of the conventional ROI-pooling layer along with



the deformable ResNet-101 as the base model. Similarly,
deformable R-FCN adapts the R-FCN framework [17] by
equipping the model with deformable position-sensitive
ROI-pooling layer instead of the normal position-sensitive
ROI-pooling layer along with the deformable base model.

In order to further improve performance in detection
of objects that are present at different scales, a common
practice is to perform detection at several different scales
and aggregate the predictions from all these different scales.
In order to deal with this issue, Feature-Pyramid Networks
(FPN) were proposed [18]. FPN uses a top-down pathway
along with a bottom-up pathway. This enables the network
to detect objects at multiple scales without multiple for-
ward passes through the network. Deformable FPN uses
deformable position-sensitive ROI-pooling layer and a de-
formable base model [8].

There are two distinct possibilities of training the model
i.e. a separate model for both rows and columns or a
single combined model. We trained both separate as well
as combined models in order to establish a clear difference
between the two approaches for this task.

V. EVALUATION

We evaluated DeepTabStR on the two available datasets
i.e. ICDAR-13 table structure recognition dataset and Tab-
StructDB described in detail in Section III. In addition to
testing on the corresponding test set of a particular dataset,
we also perform cross-dataset testing in order to get a
real hint regarding the generalization capabilities of our
models. The results from all the models including cross-
dataset testing are presented in Table I.

We report the document averages where we first compute
the precision, recall and F-Measure for every document
separately followed by averaging over the entire dataset. This
scheme avoids large influence originating from only one of
the documents containing a large number of rows/columns
by averaging over the entire dataset. The same evaluation
scheme was used for the ICDAR-13 table structure recog-
nition competition and Schreiber et al. (2017) [6], [2].

A. ICDAR-13

It is important to understand that the official ICDAR-
13 dataset is labeled with cell-level information. Hence,
the metrics reported in the original competition were cell-
level metrics. On the other hand, we report metrics on
rows and columns, which is a completely different direction.
Therefore, methods operating on rows/columns including
ours and others [2], cannot be compared with the entries
from the competition.

We, therefore, compare our method with the only other
image-based model presented by Schreiber et al. [2]. We
used the same train/test split as theirs, making a direct
comparison possible. The results from the comparative study
are presented in Table II. It is evident from the table

that the proposed DeepTabStR based on deformable FPN
comprehensively outperforms the previous approach.

For cross-dataset testing, we trained the model on Tab-
StructDB and evaluated it on the entire as well as only the
test set of ICDAR-13 dataset and vice versa. Training the
combined model or separately for both classes resulted in
a negligible difference in performance (∼ 0.70 F-Measure)
indicating that there is still a vital gap in the generalization
capabilities of the system.

The first row in Fig. 2 and Fig. 3 presents a sample correct
and incorrect detection from the ICDAR-13 dataset. In the
case of incorrect detection, the system was unable to detect
the two rows containing only the title as the network learned
to separate out rows based on the complete line instead of
just a single word. The presence of these single words is
also quite common in the case of multi-line rows.

B. TabStructDB

We have reported baseline results on the TabStructDB.
Training and testing the model on TabStructDB resulted
in a high F-Measure (∼ 0.93). However, if we tested
the model on the ICDAR-13 dataset and evaluated on the
complete TabStructDB, there was a very significant drop
in performance (∼ 0.70 F-Measure). A significant drop in
performance during cross-dataset can be in part because of
the different labeling schemes. ICDAR-13 is labeled with
only the textual regions while TabStructDB is marked with
the complete row/column regardless of the textual content.

A sample correct and incorrect detection is visualized in
the second row of Fig. 2 and Fig. 3 respectively. It is clear
from the incorrect detection that the system had a hard
time telling apart a multi-line row as the system learned
to segment rows without relying on the presence of ruling
lines. Confusion in the case of multi-line rows was prevalent
throughout the dataset.

VI. CONCLUSION

DeepTabStR leveraged the power of deformable convo-
lution to achieve table structure recognition in documents.
We also introduced a new image-based table structure
recognition dataset (TabStructDB) comprising of 1081 tables
densely labeled with information regarding the rows and
columns of the table. We presented an exhaustive evaluation
on the publicly available ICDAR-13 table structure recog-
nition dataset along with the newly proposed TabStructDB.
We achieved state-of-the-art results on the ICDAR-13 dataset
with an average F-Measure of 92.98% and report baseline
results on TabStructDB with an F-Measure of 93.72%. The
obtained results advocate that DeepTabStR was indeed able
to successfully segment the rows and columns in a wide
range of documents.

Image-based ICDAR-13 and TabStructDB neglect the
row/column span in the table. An important extension of
DeepTabStR could be to directly regress for cells along



Training Testing Model Training Row Column Average
Dataset Dataset Method Precision Recall F-Measure Precision Recall F-Measure F-Measure

Deformable Combined 0.8845 0.8945 0.8861 0.7858 0.4715 0.4922 0.6892
FPN Separate 0.8949 0.8986 0.8942 0.9688 0.9630 0.9655 0.9298

ICDAR-13 Deformable Combined 0.6651 0.1032 0.1510 0.9568 0.8335 0.8648 0.5079
(Test Set) Faster R-CNN Separate 0.8817 0.4097 0.4531 0.9520 0.9477 0.9497 0.7014

Deformable Combined 0.8506 0.7564 0.7873 0.9156 0.8589 0.8810 0.8341
RFCN Separate 0.8835 0.8374 0.8568 0.9441 0.9624 0.9562 0.9065

Deformable Combined 0.5734 0.5934 0.5739 0.6152 0.5247 0.5095 0.5417
FPN Separate 0.6239 0.6781 0.6433 0.7665 0.7556 0.7498 0.6966

ICDAR-13 TabStructDB Deformable Combined 0.6563 0.1668 0.2119 0.7872 0.6803 0.7056 0.4587
(Training set) (Complete) Faster R-CNN Separate 0.5545 0.2785 0.4531 0.7681 0.7489 0.7533 0.6032

Deformable Combined 0.5207 0.4063 0.4285 0.7950 0.6017 0.6428 0.5356
RFCN Separate 0.6888 0.6303 0.6366 0.7308 0.7245 0.7132 0.6749

Deformable Combined 0.5777 0.5994 0.5789 0.6421 0.5682 0.5464 0.5626
FPN Separate 0.6353 0.6935 0.6562 0.7641 0.7580 0.7457 0.7009

TabStructDB Deformable Combined 0.6411 0.1669 0.2091 0.7976 0.6813 0.7088 0.4589
(Test Set) Faster R-CNN Separate 0.5492 0.2622 0.3009 0.7687 0.7462 0.7501 0.5255

Deformable Combined 0.5110 0.4028 0.4246 0.7717 0.5675 0.6118 0.5182
RFCN Separate 0.7073 0.6401 0.6488 0.7201 0.7053 0.6934 0.6711

Deformable Combined 0.7793 0.7450 0.7618 0.7592 0.7331 0.7427 0.7522
FPN Separate 0.7808 0.7626 0.7699 0.7496 0.7416 0.7439 0.7569

ICDAR-13 Deformable Combined 0.6634 0.2163 0.2536 0.7340 0.7204 0.7227 0.4881
(Complete) Faster R-CNN Separate 0.6048 0.5507 0.5660 0.7378 0.7518 0.7422 0.6541

Deformable Combined 0.1504 0.2455 0.1719 0.5013 0.4304 0.4053 0.2886
RFCN Separate 0.6954 0.6133 0.6273 0.6937 0.6644 0.6736 0.6504

Deformable Combined 0.7096 0.6803 0.6924 0.7424 0.7015 0.7166 0.7045
FPN Separate 0.7303 0.7120 0.7196 0.7262 0.7238 0.7244 0.7220

TabStructDB ICDAR-13 Deformable Combined 0.6182 0.1520 0.1920 0.6939 0.6580 0.6721 0.4321
(Training set) (Test Set) Faster R-CNN Separate 0.5279 0.4625 0.4818 0.6701 0.6768 0.6705 0.5761

Deformable Combined 0.1418 0.2310 0.1719 0.4214 0.4265 0.3883 0.2801
RFCN Separate 0.6024 0.5660 0.5764 0.6842 0.6494 0.6605 0.6184

Deformable Combined 0.9081 0.9426 0.9180 0.9465 0.9368 0.9350 0.9265
FPN Separate 0.9093 0.9404 0.9186 0.9560 0.9628 0.9559 0.9372

TabStructDB Deformable Combined 0.8986 0.5416 0.5917 0.9508 0.9452 0.9420 0.7669
(Test Set) Faster R-CNN Separate 0.8921 0.9125 0.8945 0.9585 0.9682 0.9594 0.9269

Deformable Combined 0.1383 0.2799 0.1764 0.5190 0.5007 0.4318 0.3041
RFCN Separate 0.8470 0.7795 0.7843 0.9616 0.9611 0.9562 0.8702

Table I: Cross-dataset testing results

(a) Row Predictions (b) Column Predictions (c) Cell Predictions

(d) Row Predictions (e) Column Predictions (f) Cell Predictions

Figure 2: Correctly Recognized Tabular Structures

with the information regarding row/col span which cannot
be achieved with the current system. An alternate direction
could be to directly generate a textual description of the
tabular region instead of detecting the cells independently
and post-processing it to merge back the overly-segmented
regions or discovering the row/column span [21].
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