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Abstract—Outdated channel state information (CSI) has a
severely negative impact on the performance of a wide variety of
adaptive transmission systems. Channel prediction is an effective
method that can directly improve the quality of CSI. To realize
the full potential of adaptive systems, the prediction horizon
should be long enough to at least compensate for the time
delay. In this paper, therefore, we focus on the problem of long-
range prediction (LRP), i.e., how to forecast fading channels as
far ahead as possible. Two different LRP approaches - Multi-
Step Prediction and Fading Signal Processing - are proposed
for the predictors based on classical Kalman filter and recently
proposed recurrent neural networks. As an application example,
we present an LRP-aided transmit antenna selection system,
whose performance in noisy and correlated channels is evaluated.
Numerical results reveal that the RNN predictor can achieve a
comparable performance with respect to the classical predictor,
while avoiding its drawbacks in parameter estimation and multi-
step processing.

I. INTRODUCTION

Due to feedback and processing delays, channel state infor-

mation (CSI) at the transmitter might be outdated before its

actual usage, especially in fast fading channels. It has been

well proved that outdated CSI has a severe impact on the

performance of a wide variety of adaptive wireless techniques,

such as precoding in multiple-input multiple-output (MIMO)

[1] and Massive MIMO, interference alignment [2], transmit

antenna selection [3], transmit diversity [4], cooperative re-

laying [5], coordinated multi-point transmission [6], physical

layer security [7], mobility management [8], etc. In the liter-

ature, a large number of algorithms and protocols have been

proposed to combat outdated CSI. However, these methods

either passively compensate for the performance loss with a

cost of scarce wireless resources [9] or aim to achieve merely

a portion of the full potential under imperfect CSI [10].

A technique known as channel prediction that can actively

forecast future CSI has drawn much attention from researchers

due to its potential of effectively solving this problem. Through

exploiting temporal correlation, a prediction method based on

a Kalman filter (KF) has been proposed [11]. It models a

fading channel as an autoregressive (AR) process [12] and

extrapolates future CSI using a weighted linear combination of
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current and a series of past CSI. However, this method needs to

estimate the maximal Doppler shift, which is by far difficult, if

not impossible, in practice. The AR predictor can only enable

one-step prediction. Although long-range prediction can be

realized by recursively reusing predicted values at previous

time instants, the problem of error propagation is raised.

Recently, exploiting the capability on time-series prediction

of a recurrent neural network (RNN) [13], a narrow-band

channel predictor [14] and its extension for MIMO channels

[15] have been proposed. In [16], the authors proposed to

employ a real-valued RNN to improve prediction accuracy,

and justified its performance in [17], followed by a frequency-

domain predictor [18] proposed for frequency-selective MIMO

channels. As a data-driven approach, the complex modeling

and tedious parameter estimation process in the AR model

can be totally avoided. Training a RNN does not need prior

knowledge of the fading channel, and a series of channel

response samples is enough, eliminating the gap between

modeling and reality.

Beyond the aforementioned works, the limit on prediction

horizon and the methods to realize long-range prediction

(LRP) is still an open issue. In this paper, therefore, we will

investigate the problem of LRP, i.e., how to forecast MIMO

fading channels as far ahead as possible. Two different LRP

approaches, i.e., Multi-Step Prediction (MSP) employing a

multi-step recurrent network that can flexibly tune the number

of prediction steps, and Fading Signal Processing (FSP) that

lowers the sampling rate of a fading signal before feeding

into a predictor, are proposed. To measure the prediction

range in a unified way, a metric called the prediction factor

with respect to the coherence time of channels is defined in

this paper. Performance assessment of outage probability in

a transmit antenna selection (TAS) system with the aid of

LRP is carried out through Monte-Carlo simulations. Some

representative results taking into account different influential

factors, such as additive noise, inter-antenna correlation, and

Doppler spectra, are illustrated.

The rest of this paper is organized as follows: Section II

briefly introduces the structure of a RNN. Section III details

two LRP approaches. The simulation configurations and nu-

merical results are illustrated in Section IV, and conclusions

are made in Section V.



II. STRUCTURE OF A RNN

Recurrent neural network is a popular machine learning

technique that has shown great potential in time-series pre-

diction tasks [13]. The structure of a recurrent network used

to build a channel predictor is shown in Fig.1. For simplicity,

only a shallow network is illustrated, while the number of

hidden layers can be added to form a deep (learning) neural

network. It consists of three layers: a hidden layer with

NL neurons, a layer having No outputs, and an input layer

with N neurons including NE external inputs and NF feed-

back inputs, where N=NE+NF . Representing the external

input by a vector xe=[x1, ..., xNE
]T , while the output by

y=[y1, ..., yNo
]T . Denoting the mapping from the output to the

feedback f=[f1, ..., fNF
]T as a function Φ, we have f=Φ(y).

As a combination of xe and f, the input vector is represented

by x= [x1, ..., xNE
, f1..., fNF

]
T

. The behaviour of a RNN is

mainly determined by the values of network weights. Each

connection between the output of a neuron in the predecessor

layer and the input of a neuron in the successor layer is

assigned a weight. As shown in Fig.1, wl,n denotes the weight

connecting the nth input and the lth hidden neuron, while cm,l

is the weight for connecting hidden neuron l and output m,

where 1≤n≤N , 1≤l≤NL, and 1≤m≤No.

Constructing a NL×N weight matrix W as

W =









w1,1 · · · w1,N

...
. . .

...

wNL,1 · · · wNL,N









, (1)

the input for the hidden layer is expressed in matrix form by

zh = Wx+ bh, (2)

where bh=
[

bh1 , ..., b
h
NL

]T
denotes the vector of biases in the

hidden layer. The activation function is an important feature of

a neuron, having also an impact on the behaviour of a neural

network. As usual, a sigmoid function is employed to deal

with nonlinearity, which is defined as

S(x) =
1

1 + e−x
. (3)

Substituting (2) into (3), the activation vector of the hidden

layer is thus

ah = S
(

zh
)

= S
(

Wx+ bh
)

, (4)

where S(zh) means an element-wise operation for simplicity,

i.e., S(zh)=
[

S(zh1 ), ..., S(z
h
NL

)
]T

. In analogous to (1), an-

other weight matrix C having a dimension of No×NL with

entries {cm,l} is introduced. Then, the activation vector for

the output layer is:

y = S
(

Vah + by
)

. (5)

The operation of a RNN predictor is divided into two

phases: training and predicting. Provided a training data set,

a series of continuous channel responses sampled from a real

channel or synthetical model, the network feeds forward each
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Fig. 1. Schematic diagram of a recurrent neural network.

sample and compares its resulting output with a desired value.

Prediction errors are propagated back through the network,

causing recursive updates of weights and biases until a certain

convergence condition satisfies. Afterwards, the trained RNN

is applied to predict unknown upcoming channel state based

on current and a few past states. The training procedure of a

network has already been well studied such as [19].

III. LONG-RANGE PREDICTION

Without loss of generality, a multi-antenna wireless system

with Nt transmit and Nr receive antennas in a flat fading

channel is modeled as

r(t) = H(t)s(t) + n(t), (6)

where r(t) represents the Nr×1 received symbol vector at

time t, s is the Nt×1 transmit vector, n stands for the vector

of additive white Gaussian noise (AWGN), and H∈CNr×Nt

is the matrix of time-varying channel gains. The channel

gain between transmit antenna nt and receive antenna nr

is represented by a complex-valued variable hnrnt
∈C1×1.

Owing largely to processing and feedback delays, the CSI at

the time of selecting adaptive parameters may substantially

differ from the CSI at the instant of using these parameters

to transmit signals, i.e., H(t) 6=H(t+τ), where τ denotes the

delay. The outdated CSI severely deteriorates the performance

of a wide variety of adaptive transmission systems [1] - [8].

The aim of LRP is to predict a fading channel as far ahead as

possible where predicted CSI Ĥ(t+τ) can still provide useful

information about its actual value H(t+τ).
Two different LRP approaches for MIMO channels, i.e., M-

SP, taking advantage of the multi-step flexibility of a RNN, and

FSP that down-samples a fading signal to lower it sampling

rate before feeding it into a predictor, are detailed as follows:

A. Multi-Step Prediction

Due to the similarity between RNN’s structure and MIMO’s

channel model, which are both multiple inputs and multiple



outputs with fully weighted connections, the RNN predic-

tor congenitally suits a multi-antenna system by tuning the

number of input and output neurons in terms of the number

of antennas. It is computationally efficient in comparison

with predicting each subchannel independently with a separate

linear filter or neural network. To adapt to the input layer, a

channel matrix needs to be vectorized following:

hv = ~H = [h11, h12, ..., hNrNt
]. (7)

At time t, H(t) and its delays H(t−1), ...,H(t−d) are

fed into the RNN as the external input, which in this case

can be rewritten as xe(t)=[hv(t), hv(t−1), ..., hv(t−d)]. The

feedback function Φ can be flexibly configured to generate

a small feedback including only Ĥ(t), where f=[ĥv(t)], or a

larger one like {Ĥ(t), Ĥ(t+1), ...}, depending on the trade-off

between prediction accuracy and computational complexity.

The output of a multi-step RNN predictor is denoted by

Ĥ(t+D), where D is a positive integer standing for the

number of steps being predicted ahead. If D=1, it returns

back to a one-step predictor. From the perspective of training,

there is no intrinsic difference between one-step and multi-

step predictors except that the desired value for calculating the

propagation error shifts from H(t+1) to H(t+D), resulting in

different weights and biases.

In contrast, according to [18], the AR predictor based on a

Kalman filter is given by:

Ĥ(t+ 1) =

p
∑

k=1

akH(t− k + 1), (8)

where p is the number of filter taps and a1, a2, ..., ap are

AR coefficients. It is noted that (8) can only provide one-

step prediction. By employing predicted values recursively, a

multi-step AR predictor can be built, i.e.,

Ĥ(t+D) =

p
∑

k=1

akĤ(t− k +D) (9)

B. Fading Signal Processing

A discrete-time channel series {H[k]|k=1, 2, 3, ...} is a

sampling of continuous-time channel response. Its sampling

rate fc is generally as same as the data symbol rate fs for

the sake of channel estimation and symbol detection, where

the interval of each prediction step equals to one symbol

period Ts=1/fs. However, using a RNN to predict a fading

signal symbol-by-symbol is both inefficient and unnecessary.

According to the Sampling Theorem [20], a discrete-time

series can capture all the information of a continuous-time

signal with a finite bandwidth if the sampling rate is greater

than the Nyquist rate. In our case, that is to say, the original

channel response can be properly recovered if the sampling

rate is greater than two times the maximal Doppler shift fd.

Since fd is generally far less than fs, it is possible to predict a

fading channel with a lower rate that is less than fs but greater

than 2fd, namely 2fd<fc<fs. Predicting a fading signal at a

lower sampling rate means the length of each prediction step

is enlarged.
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Fig. 2. A down-sampled fading signal with a factor of S = 5 and its
interpolated version.

In addition to MSP, therefore, another LRP method can be

realized by means of using a fading signal with a sampling

rate as low as possible (equivalent to extend the prediction

interval). To be specific, the series {H[k]|k=1, 2, 3, ...} at a

sampling rate of fc=fs is down-sampled by a factor of S,

generating a new series {H[k′]|k′=S, 2S, 3S, ...} that has a

lowered rate of f ′

c=fs/S. An example of down-sampling and

interpolating a fading signal with a factor of S=5 (for a better

illustration) is shown in Fig.2. Obviously, if the prediction is

conducted at the lower rate, the signal at the upper of the

figure, the prediction range of each step is multiplied by S,

compared with the original signal. Once a RNN is trained by

down-sampled signals, feeding H[k] and its delayed versions

H[k−S], ...,H[k−dS] into a one-step predictor, its output is

Ĥ[k+S], which has a longer prediction range S times that of

Ĥ[k+1]. It can be also derived that a D-step predictor can

forecast SD symbols ahead by combining MSP with FSP.

In general, a wireless system acquires CSI by inserting

comb-type pilot symbols into transmitted signals at the trans-

mitter and conducting channel estimation at the receiver.

FSP can be well combined with a pilot-assisted system, e.g.,

transmit antenna selection in a MIMO system. As illustrated

in Fig.3, the signal transmission is organized in block-wise,

where a pilot symbol is inserted in each block that has a total

size of S symbols. At time t, the receiver conducts chan-

nel estimation based on the received pilot symbol, resulting

in a channel estimate H[t]. Feeding H[t] into a multi-step

predictor, together with the estimates H[t−S], ...,H[t−dS]
obtained in previous blocks, the predictor can extrapolate

Ĥ[t+SD]. With a number of neighboring predicted values,

making use of channel’s temporal correlation, the interpola-

tor can also provide predicted CSI at the symbol rate, i.e.,

Ĥ[t+1], Ĥ[t+2], ..., Ĥ[t+SD], if needed.
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Fig. 3. Illustration of a long-range predictor applied for TAS in a MIMO system.

IV. NUMERICAL RESULTS

In this section, the performance of the long-range RNN

predictor over multi-antenna channels is evaluated via Monte-

Carlo simulations, in comparison with that of the predictor

based on a Kalman filter. Outage probability achieved by LRP-

assisted TAS in a MIMO system is illustrated. To measure the

prediction range in a unified way, we define a metric called

the prediction factor, which is the ratio of the time predicted

ahead Tp and the coherence time Tc, namely

η =
Tp

Tc

. (10)

Since Tp=SD/fs and Tc=1/fd generally, (10) can be further

rewritten as

η =
SDfd
fs

. (11)

Given a flat fading Rayleigh channel with an average power

gain of 0dB, where the channel coefficient h is zero-mean

circularly-symmetric complex Gaussian random variable with

the variance of 1, i.e., h∼CN (0, 1). The symbol rate is set

to fs=105Hz to satisfy the flat fading assumption and the

maximal Doppler frequency is fd=100Hz to emulate fast

fading environment. The signal transmission is organized in

block-wise, with a block size of S=50 that includes Nt

antenna-specific pilot symbols inserted at the head of each

block. Through the observation in the simulation, the optimal

number of neurons in the hidden layer is set to NL=10, while

the length of the tapped delay line is selected to d=3. The

simulation parameters are summarized in Table I.

To train a recurrent network, we build a training dataset

that consists of a series of CSI extracted from consecutive

103 blocks, i.e., {H[t]|16t6103}. The training process starts

from an initial state with random weights and biases. At

iteration t, feeding H[t] into the network, the resultant out-

put is compared with the desired value and the prediction

error Ĥ[t+D]−H[t+D] is back propagated to update the

TABLE I
SIMULATION PARAMETERS

Parameter Value

Sampling rate fs = 10
5
Hz

Down-sampling factor S=50

Max. Doppler frequency fd = 100Hz

MIMO configuration 4× 1

Channel Rayleigh flat fading

Doppler Spectra (default) Jakes

Neural Network 3-layer RNN

Training algorithm Levenberg-Marquardt

Number of hidden neuron NL = 10

Input tapped-delay length d = 3

weights and biases by training algorithms such as Levenberg-

Marquardt [19]. This process is iteratively carried out until

the convergence condition reaches. In contrast, a KF predictor

does not need training. Its coefficients a1, a2, ..., ap in (9) can

be figured out if fd and fs are known, according to [12].

Suppose the applied MIMO system is a uniform linear array

having Nt=4 transmit and Nr=1 receive antennas, a single

transmit antenna with the largest instantaneous channel gain is

selected. For simplicity, the selection is carried out in block-

wise, i.e., each block selects its respective transmit antenna

using the CSI of its pilot symbol. The outage probability, an

important performance metric over fading channels, is defined

as P(R)=Pr{log2(1+SNR)<R}, where Pr is the notation

of mathematical probability and R means a target end-to-end

data rate that is set to 1bps/Hz in our simulations. To decide

the transmit antenna for upcoming block t+D, the possible

selection methods are:

• The perfect mode that chooses the antenna according to

the perfect CSI at that block, i.e., H(t+D), despite it is

never practically available.

• The outdated mode in traditional TAS systems where the
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Fig. 4. Outage probabilities of the prediction-aided TAS system in (a) noiseless i.i.d. and (b) noisy i.i.d. Rayleigh channels.
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Fig. 5. Outage probabilities of the prediction-aided TAS system: (a) in noiseless correlated channels with the Doppler spectrum of Asymmetric Jakes, and
(b) in noisy correlated (solid line) or noiseless i.i.d. (dashed line) Jakes channels.

outdated CSI H(t) is applied.

• The prediction mode makes a selection decision based on

the predicted CSI Ĥ(t+D) that probably approximates

H(t+D).
• The random mode where the antenna is randomly select-

ed without any consideration of CSI.

The performance assessment is first carried out in noiseless

i.i.d. MIMO channels with fd=100Hz. The predictors are

tuned to the multi-step mode of D=2 corresponding to a

prediction factor of η=0.1 in terms of (11). As illustrated in

Fig.4a, the outdated CSI drastically deteriorates the perfor-

mance with a high SNR loss of around 14dB in comparison

with the perfect mode at outage probability of 10−4. The

KF predictor with filter order p=4 denoted by AR(4) is

able to achieve a near optimal performance, outperforming

that of the RNN predictor. The TAS system with the aid of

either KF or RNN can achieve remarkable gains over the

outdated mode, justified the effectiveness of the proposed LRP

approaches. Further increased the prediction factor to η=0.2

by means of tuning to D=4, the performance gap between the

outdated mode and the perfect mode enlarges to over 16dB.

Two observations need to be highlighted: 1) although the

performance of LRP-aided system drops when the prediction

range become longer, it still has at least 5dB gain over the

outdated mode; and 2) the RNN predictor is more robust in

a longer range, with nearly 3dB over the KF predictors. It

implies that the multi-step RNN is a better option for LRP.

In practice, the available CSI is impaired by estimation

errors since additive noise cannot be avoided in the process

of channel estimation. Under the assumption that the SNR of

pilot symbols is SNRp=25dB, the performance evaluation in

noisy channels is also conducted. In the case of η=0.1, the

KF predictor still outperforms the RNN predictor, while the

better performance is achieved by AR(2), rather than AR(4)
in the noiseless case. As illustrated in Fig.4b, the performance

of AR(4) is very close to that of the random mode, even

slightly worse than the outdated mode. That is because the

problem of error propagation becomes severe with a larger



filter order when the applied CSI contains estimation error.

From this result, we can remark that the RNN is more robust

against additive noise than the KF.

The purpose of Fig.5a is three fold: First, to observe the

impact of antenna correlation, applying the correlation matrix

recommended in 3GPP LTE standards [21] and selecting the

medium correlation with coefficient of α=0.3. Second, to

observe the effect of different Doppler spectra by replacing

the default Jakes model with Asymmetric Jakes because the

KF predictor is specifically optimized for the Jakes model. As

shown in the figure, the RNN predictor achieves a notably

SNR gain of more than 7dB over the outdated mode in the

case of η=0.25 and is superior to the KF predictor with a

gain of over 3dB. Last but certainly not least is to verify

the impact of different sampling rates. As given in Table I,

the default is fs=105Hz and S=50, amounting to a block

length of 0.5ms. Using a different rate but keeping the block

length constant, e.g., fs=104Hz and S=5, it is found that the

performance is independent of fs. As shown in the figure,

on each colored curves, a block dash line, obtained in the

case of fs=104Hz and S=5, is overlapped. It implies that the

performance of the prediction-aided TAS system is decided by

the prediction range, regardless different sampling and down-

sampling rates, justified that the defined prediction factor η in

(11) can measure the predication range in a unified way.

Fig.5b illustrates the prediction limit of the RNN predictor

in both noiseless i.i.d. channels, denoted by RNN-a in the

legend with dashed curves in the figure, and noisy correlated

channels, denoted by RNN-b with solid curves. The limit is

bounded by the random mode where the LRP cannot provide

any useful information to improve a bit performance over

the random selection. It can be observed that around η=0.4
and η=0.25 are the limitation for noiseless i.i.d. and noisy

correlated channels, respectively. Recalling (11), it implies

that the RNN predictor is still effective until the prediction

range increases beyond one fourth of the coherence time,

corresponding to approximately 2.5ms in the condition of

fd=100Hz, which is meaningful from the practical view in

comparison with the length of a radio frame of 10ms in LTE

systems for example.

V. CONCLUSION

This paper investigated the problem of long-range fading

channel prediction. Two different LRP approaches - Multi-

Step Prediction and Fading Signal Processing - were proposed

for recurrent neural networks. A metric used to indicate the

prediction range in a unified way, referred to as the predic-

tion factor, was defined. Performance assessment in terms of

outage probability for LRP-aided TAS in a MIMO system

was carried out. The numerical results illustrated that the

RNN predictor can achieve a comparable performance with

respect to the KF predictor, while avoiding its difficulties in

modeling and parameter estimation. It was also revealed that

LRP can effectively combat the outdated CSI in a range of

over 25% of the coherence time, which is long enough to

achieve remarkable performance gains in fast fading channels.

Taking into account the moderate computational complexity of

a RNN predictor (being proved in pervious works), the LRP

is promising to facilitate adaptive transmission systems from

the practical viewpoint.
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