
STAG: Smart Tools and Applications in Graphics (2019)
M. Agus, M. Corsini and R. Pintus (Editors)

Motion Data and Model Management for Applied Statistical Motion
Synthesis

E. Herrmann1,2 , H. Du1,2, A. Antakli1,2, D. Rubinstein2, R. Schubotz2,
J. Sprenger1,2, S. Hosseini1,2, N. Cheema1,2,3, I. Zinnikus2, M. Manns4, K. Fischer2 and P. Slusallek1,2

1Saarland University, Germany
2 German Research Center for Artificial Intelligence (DFKI), Germany

3 Max Planck Institute For Informatics, Germany
4 University of Siegen, Germany

Abstract
Machine learning based motion modelling methods such as statistical modelling require a large amount of input data. In
practice, the management of the data can become a problem in itself for artists who want to control the quality of the motion
models. As a solution to this problem, we present a motion data and model management system and integrate it with a statistical
motion modelling pipeline. The system is based on a data storage server with a REST interface that enables the efficient
storage of different versions of motion data and models. The database system is combined with a motion preprocessing tool
that provides functions for batch editing, retargeting and annotation of the data. For the application of the motion models in a
game engine, the framework provides a stateful motion synthesis server that can load the models directly from the data storage
server. Additionally, the framework makes use of a Kubernetes compute cluster to execute time consuming processes such as the
preprocessing and modelling of the data. The system is evaluated in a use case for the simulation of manual assembly workers.

CCS Concepts
•Computing methodologies → Motion capture; Motion processing; •Human-centered computing → Visualization toolkits;

1. Introduction

Machine learning has become a popular method to solve difficult
problems based on example data. Specifically, for character anima-
tion, machine learning models provide a method to create realistic
results based on examples from motion capture data.

However, in practice managing training data for such models can
become a tedious and error-prone task. Furthermore, motion data
that comes from diverse capture sources has to be merged into a
consistent dataset by retargeting to a single skeleton. Therefore, the
training of motion models needs a framework for the editing and re-
targeting of a large amount of data. Existing exchange formats such
as BVH often lack important information about the coordinate sys-
tem of the character which makes it difficult to retarget the motion
of the trained model. Additionally, existing motion editing tools are
built for editing single motions and editing of multiple files requires
the users to write custom scripts.

In this paper we integrate a framework for the management of
motion clips with a statistical motion modelling pipeline by Min
et al. [MC12]. Compared to existing tools, the framework was de-
veloped to provide a streamlined workflow to iteratively improve
motion models based on new data from diverse sources. Addition-
ally, it enables the retargeting of entire training data sets to different
characters.

The data management system is based on an SQL database at
its core that stores data in JSON data structures. The schema-less
data format enables easy extension of data with experiment specific
entries. The central repository provides an overview of the data and
can store statistical models in different versions which simplifies
the management of the experiment data and enables easy sharing of
the result. Our framework also includes a model deployment server
to display motions synthesized from the trained models in a 3D
scene for testing with user defined constraints.

We integrate a preprocessing tool with the database that offers
functions for manual annotation and retargeting of motions. Fur-
thermore, the tool integrates motion editing functionality to apply
small fixes using inverse kinematics. This motion editing function-
ality also enables enhancement of training data sets using manually
edited variations of captured motions. For execution of time ex-
pensive processes of statistical motion modelling pipelines such as
dynamic time warping or the retargeting of a large collection of
files, we have integrated a generic job system based on a Kuber-
netes cluster system.

We first give a brief overview of related work in Section 2. We
provide the background on the statistical motion synthesis method
in Section 3. Our data management framework, the preprocessing
tool and the model deployment server are described in Section 4.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

https://orcid.org/0000-0003-1052-9883

E. Herrmann et al. / Motion Data and Model Management for Applied Statistical Motion Synthesis

Implementation details on the compute cluster integration are given
in Section 5 and a use case for our framework for the simulation of
workers is described in Section 6. Finally, we provide a conclusion
and an outlook on future work in Section 7.

2. Related Work

The framework covers different aspects of the workflow of the mo-
tion modelling, from data management to deployment, with the
goal to simplify the use of motion models in practical applications.

To facilitate practical application of motion models different so-
lutions have been presented in the literature. Shapiro et al. [Sha11]
present the SmartBody system which integrates motion synthesis
methods based on motion graphs and scattered data interpolation.
The ICT Virtual Human Toolkit [HTM∗13] provides a complete
system for the creation of autonomous human agents and the visu-
alization of the behavior in a 3D engine. Shoulson et. al integrate
different motion synthesis methods into a framework for the eval-
uation of agents [SMKB13]. Gaisbauer et al. [GLA∗19] present a
system that integrates different motion synthesis approaches into
unified controller framework.

Research on motion data storage has been focused mainly on
efficient storage of large datasets and the retrieval of similar motion
data from unordered data sets. Kapadia et al. [KCT∗13] present a
motion retrieval approach that allows the definition of arbitrary key
features by experts which are then used to construct a novel trie-
tree data structure. Similarly, Bernard et al. [BWK∗13] present a
visual motion data base exploration tool that makes use of k-Means
clustering of poses represented as feature vectors containing 3D
positions of important joints to generate interactive visualizations
at different levels of detail.

The management of training data has only recently been started
to be investigated in the context of motion data. Riaz [RKW16]
present a relational database system for the management of motion
recordings. Mahmood et al. [MGT∗19] started an effort to collect
motion capture data in a central database and retarget it to a param-
eterized character mesh model.

Commercial solutions such as Motion Builder [Aut19] provide
state of the art tools for motion editing and retargeting and interop-
erability with different tools. Blade by Vicon [Vic19] is a popular
motion data storage solution that integrates functions for retarget-
ing and motion editing. Both solutions, however, do not include
a data management solution intended for machine learning. Mix-
amo [Ado19] is a commercial solution that offers motion editing
and retargeting tools integrated with a database of characters and
motions. However, they provide only single example clips for each
motion type and the tools are intended for traditional animation
pipelines. There are also commercial solutions for markerless mo-
tion capturing such as iClone [Rea19] that integrate functions to
retarget and edit data for use on a game character.

In this paper, we combine a motion database with a motion pre-
processing tool and a deployment server into a framework to man-
age and evaluate human motion data for statistical modelling. In
our experience we found it useful for the iterative improvement of
statistical motion models based on a dataset that contains multiple
examples of each motion type.

3. Statistical Modelling and Synthesis Pipeline

Given a set of motion clips for different actions, we construct a
graph of low dimensional statistical motion models, each represent-
ing the variation of a motion primitive such as left step or right step
for a walk action. New motions can then be generated by evaluating
samples from these motion primitive models and concatenating the
results. The statistical modelling pipeline we apply was originally
presented by Min et al. [MC12]. Our adaption of the method was
already presented in an earlier work [AHZ∗18] but is summarized
here for completeness. Figure 1 gives an overview of the statistical
modelling pipeline.

In our framework, motion clips are defined as a sequence of
skeleton poses. Each pose consists of one root translation and a
set of quaternions each representing the relative orientation of one
joint.

In order to project example clips of motion primitives into low
dimensional space, we first align them spatially and temporally to a
reference clip using dynamic time warping. To be able to constrain
specific keyframes during the sampling, we use a manually defined
semantic annotation of the time line and perform the dynamic time
warping process separately for the segments between keyframes.

We reduce the dimensionality using functional Principal Com-
ponent Analysis. For this purpose we create a functional represen-
tation by fitting cubic B-splines to the aligned skeleton pose se-
quences and time warping functions. The motion splines can be
evaluated by the time spline, which maps from sample time to
canonical time.

We then apply Principal Component Analysis on the coeffi-
cients of the aligned motion splines and time splines separately
to project the motions into a low dimensional space. We apply
the Expectation-Maximization algorithm to fit a Gaussian Mixture
Model (GMM) to the low dimensional samples. Using this statisti-
cal model, new variations of a motion primitive can be sampled and
back projected to cubic B-spline parameters using the inverse PCA
transform. For more details on the modelling, we refer the readers
to previous work by Du et al. [DHM∗16].

In order to accelerate the constrained search for a motion, we
also construct a space partitioning tree structure on the latent mo-
tion space according to Herrmann et al. [HMD∗17]. The tree is
constructed by applying the k-Means algorithm recursively on ran-
dom samples of the motion model. Each node in the resulting tree
stores the mean latent parameters of its children.

At runtime we perform a search in the k-Means tree to find the
optimal parameters of the motion primitive using Equation (1) as
objective function.

O(s,C) =
N

∑
i=0

√
(f (M(s))−Ci)2 (1)

Here s is the latent motion parameter, C is a set of constraints, N
is the number of constraints, f is the forward kinematics function
and M(s) is the projection from latent space to motion space. The
tree search algorithm evaluates the mean of each child node using
the objective function to decide which branch to traverse. To avoid
ending up in a local minimum, parallel candidates traverse the tree

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

E. Herrmann et al. / Motion Data and Model Management for Applied Statistical Motion Synthesis

Figure 1: Overview of the statistical motion synthesis method based on Min et al. [MC12] that is used in our framework. We use functional
PCA (FPCA) for dimensionality reduction of examples of motion primitives and model the distributions of low dimensional examples as
Gaussian Mixture Models (GMM). To accelerate the constrained motion synthesis we also construct k-Means trees as space partitioning
data structures on the low dimensional samples of each motion primitive [HMD∗17].

using different branches. The parameters found by the search can
be used as initial guess for further numerical optimization [Mar63].
The parameters of multiple motion primitives can be stacked into
one vector for this purpose. Equation 2 shows the objective function
for numerical optimization.

arg min
s1,...,sT

T

∑
i=1

O(si,Ci)− ln(pri(si)) (2)

Here si is the latent motion parameter for step i and pr gives the
likelihood from the GMM of the motion primitive. Ci are the con-
straints for step i and O is Equation 1.

The resulting parameters will be back projected into a motion
which can be further modified using inverse kinematics to reach
constraints outside of the range of the models. To generate smooth
transitions between motion primitives, transition constraints on
hand and feet are applied and a standard smoothing method is used.

4. Motion Data and Model Management Framework

Our statistical modelling framework consists of three parts. Firstly,
a motion preprocessing tool provides functions to edit and annotate
motions. The second part is a data storage server with a REST inter-
face, that manages the input and output data of the statistical mod-
elling pipeline. Lastly, a deployment server can deploy models di-
rectly from the database. Additionally, a WebGL client can be used
to browse and visualize the content of the database. The motion
preprocessing tool is integrated with the database to directly edit
the data in the database. An overview of the framework is shown in
Figure 2.

4.1. Motion Preprocessing Tool

Our framework includes a motion preprocessing tool in order to
annotate data, fix errors in the motion data and retarget motions
to different character models. The tool provides a simple 3D visu-
alization of motions using either a skeleton or a loaded character
mesh. Individual clips can be imported from the standard formats
BVH† and ASF/AMC‡ or loaded from the data storage server using
a database browser. Loaded motions can be edited and uploaded to
the database. A screenshot of the motion database browser of the
tool is shown in Figure 3.

† https://research.cs.wisc.edu/graphics/Courses/cs-838-
1999/Jeff/BVH.html
‡ https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/ASF-
AMC.html

4.1.1. Motion Editing

We have integrated a motion editing tool into our framework based
on the approach presented by Lee and Shin [LS99]. A screenshot
of our motion editor is shown in Figure 4.

The user can modify specific frames by applying translation and
rotation constraints on specific joints. The pose to reach those con-
straints is found using inverse kinematics (IK). Instead of a hybrid
IK-approach presented by Lee and Shin, we use a simple IK solver
based on cyclic coordinate descent [Wri15]. To create a smooth
transition, the change is applied on a frame range via a cubic B-
spline representation. In addition to the IK-based editing, the tool
integrates functions for mirroring, smoothing and trimming of mo-
tions. All commands used during the editing of one motion clip can
be saved into a JSON format to later be applied on other clips in the
database.

4.1.2. Retargeting

In order to retarget motions, we make use of an algorithm similar to
the method of Monzani et al. [MBBT00]. We modified the original
approach to work without a reference T-pose by first estimating a
coordinate system for each joint. For each pose of the source mo-
tion, the algorithm estimates the global orientations of the joints
of the destination skeleton by aligning the coordinate systems of
corresponding joints. For this purpose, the global coordinate sys-
tem of each joint of the source skeleton is calculated via forward
kinematics (FK). The global orientation of a corresponding joint of
the destination skeleton is then calculated by first finding the rota-
tion to align the twist vectors and then finding the rotation to align
the swing vectors. The global orientations can be brought back into
the local coordinate systems of the destination skeleton, by making
sure that parent joints are processed before their child joints.

The retargeting method is summarized for a single pose in Al-
gorithm 1. Note that the method can be optimized for performance
by precalculating an alignment rotation using two corresponding
poses and applying it as a correction to the source pose.

The method takes a source and a destination skeleton as inputs.
In addition, it requires a root translation scale factor and a joint
list that has to be ordered to ensure that parent joints are retargeted
before their child joints. Our internal skeleton definition stores the
coordinate system of each joint which can be automatically derived
using a heuristic from the zero pose of the skeleton. The twist axis
corresponds to the vector to the child joint and the swing axis can
be set to the axis defined by vector from the left hip to the right
hip. The guess of the swing axis has to be manually corrected for

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

E. Herrmann et al. / Motion Data and Model Management for Applied Statistical Motion Synthesis

Figure 2: Overview of the motion modelling framework. The motion data and the models are stored in a central data storage server with a
REST interface. The data can be edited using a preprocessing tool. The motion model can be directly evaluated with a character mesh in a
WebGL client based on Unity. A collection of models can deployed using a motion synthesis server to animate characters in a 3D application.
Time expensive processes of the motion modelling pipeline are executed as jobs on a Kubernetes compute cluster.

Figure 3: Screenshot of the database browser integrated in the mo-
tion preprocessing tool

some joints. The refinement process has to be done only once per
skeleton and can be performed by loading the skeleton in our tool
and editing the skeleton meta data. Screenshots of the skeleton meta
data editor are shown in Figure 5. Once the coordinate systems for
a skeleton are defined, entire motion collections in the database can
be retargeted via the Motion Database Browser shown in Figure 3.

4.1.3. Semantic Time Annotation

The tool also provides a method for manual semantic annotation
of the timeline. The semantic annotation is necessary as meta in-
formation for the temporal alignment of different motion examples
on specific keyframes, such as the time of contact during a picking
motion. Additionally, the annotation can be used to extract motion
primitives from motion capture takes by splitting the motion clip
into separate smaller clips based on the annotation segments.

A screenshot of the semantic timeline annotation tool is shown
in Figure 6. The annotation is created by setting the start and end
of a segment in the timeline. Additionally, users can move segment
boundaries or cut and merge segments to fix mistakes. All functions
are mapped to keyboard shortcuts. The trajectory of specific joints
can also be plotted to simplify identification of keyframes.

Figure 4: Screenshot of motion editor tool. The motion can be
edited by specifying inverse kinematics constraints or by directly
applying rotations on joints. Joints can be selected by clicking on
the visualization.

4.1.4. Copy and Paste

In addition to standard motion editing, the tool also provides the
option to fix specific joints in a motion by a copy and paste func-
tion. This way broken parameters in a motion can be overwrit-
ten with correct parameters from another motion, for example the
parameters of a finger during a grasp motion. The frame range
that should be copied can be specified. A transition between the
modified and the original frames is automatically generated using
SLERP [Sho85]. The source motion parameters are automatically
stretched if the source frame range is different than the target frame
range. A screenshot of the copy and paste tool is shown in Figure
7.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

E. Herrmann et al. / Motion Data and Model Management for Applied Statistical Motion Synthesis

Algorithm 1: Retargeting algorithm
Input : src_skel,dst_skel,src_pose,scale, joint_list
Output: dst_pose pose parameters

1 dst_pose← zero_pose()
2 dst_pose.translation← src_pose.translation× scale
3 for joint ∈ joint_list do
4 src_twist,src_swing← getAxes(src_skel, joint)
5 dst_twist,dst_swing← getAxes(dst_skel, joint)
6 global_trans f orm← FK(src_skel,src_pose, joint)
7 global_twist← global_trans f orm× src_twist
8 global_swing← global_trans f orm× src_swing
9 qy← alignAxis(dst_twist,global_twist)

10 dst_swing← rotate(dst_swing,qy)
11 qx← alignAxis(dst_swing,global_swing)
12 q← qy×qx
13 p_ joint← get_parent(dst_skel, joint)
14 if p_joint != null then
15 p_trans f orm← FK(dst_skel,dst_pose, p_ joint)
16 q← inverse(p_trans f orm)×q
17 end
18 dst_pose← replace(dst_pose,q, joint)
19 end
20 return dst_pose
21

Figure 5: Two screenshots of the skeleton meta data editor show-
ing the coordinate system of the left elbow for two different skele-
tons transformed into the global coordinate system based on corre-
sponding poses. The green axis represents the twist axis and the red
axis represents the swing axis. The user can edit the local coordi-
nate system of joints by defining unit vectors for the axes and map
joints to a standard skeleton. Note that the thin red, green and blue
lines at each joint represent the standard X, Y and Z axes rotated
by the joint orientation in the global coordinate system.

4.1.5. Graph Editor

For the deployment of multiple statistical models, we need to define
a graph structure with transitions between the motion models. For
this purpose, we have added a graph editor shown in Figure 8. The
user can define a graph by selecting models from our database as
nodes and add transitions between them.

Figure 6: Screenshot of the time line annotation tool. The annota-
tion is edited by defining a start and end point of a segment or by
cutting or merging segments at the frame slider. Mistakes can be
fixed by moving the boundary of neighboring segments to the frame
slider.

Figure 7: Screenshot of the joint parameter copy and paste tool.
The left view shows the source motion and the right view the target
motion. The affected joints can be selected from a list. The source
and target frame range can be defined using sliders.

4.2. Data Storage Server

The data storage server keeps motion and model data in an SQL
database and provides a REST interface to edit entries in the
database. Motion capture formats such as BVH often have the prob-
lem of being difficult to retarget to mesh characters due to miss-
ing information on the coordinate system. Additionally, some for-
mats store redundant information on the skeleton in each file which
makes it less efficient for storage and retrieval. We took this prob-
lem into account when designing the internal data representation to
reduce redundancy and add information necessary for retargeting.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

E. Herrmann et al. / Motion Data and Model Management for Applied Statistical Motion Synthesis

Figure 8: Screenshot of the graph editor. The graph is constructed
by adding models from the database into a hierarchy of nodes and
adding transitions between them.

Figure 9: Schema of the motion and model database. Data is orga-
nized based on a hierarchy of collections. All objects are stored in
the JSON format in the records of the tables.

4.2.1. Data Representation

The database contains a motion clip table for the input and a model
table for the output of the modelling pipeline. Intermediate results
can be stored in a processed data table. The data in those tables
is organized using references to a hierarchy of collections. Addi-
tionally, an extra skeleton table is used to store information on the
skeleton hierarchy data. Separating the skeleton from the motion
clips and the model allows reduction of storage size by avoiding
redundant information. The definition of graphs of motion models

Figure 10: Internal motion format. Each vector in the pose list
contains a root translation and the relative orientation of joints as
quaternions ordered according to the joint sequence.

for deployment are stored in an additional graphs table. The layout
of the database is shown in Figure 9. Objects are generally stored in
the JSON format§. To reduce the required space a binary encoding
of JSON can be used ¶.

The motion clips table stores individual clips in a JSON format
as shown in Figure 10 that describes a sequence of parameters for
a skeleton. A pose consists of a root translation and a sequence of
quaternions for the joint rotations, which we concatenate into a sin-
gle vector. This corresponds also to the input to the preprocessing
pipeline.

Optionally, each motion clip entry can store semantic annota-
tions of the time line. The semantic annotations consist of a list of
segments, each defined by a name, a start frame and an end frame.
The semantic annotation is stored in a meta data column. This al-
lows both columns to be updated separately. To store the intermedi-
ate result of the preprocessing pipeline we have added a processed
data table with corresponding entries to the motion clips table. In
this table we store the result of the dynamic time warping. For each
motion clip we store the time function to restore the original mo-
tion as meta information. The content of the processed data table is
used as input for the statistical modelling step.

The motion model table stores both the statistical motion model
and the acceleration data structure. The model structure is shown in
Figure 11 and defined by spatial and temporal mean and Eigen vec-
tors, which result from the dimension reduction, and the parameters
of the Gaussian mixture distribution, resulting from the statistical
modelling. The acceleration data structure is a hierarchy of nodes
each storing its children and a mean parameter value. The model
is stored in the data column and the acceleration data structure is
stored in the meta data column so that they can be updated sepa-
rately.

Figure 13 shows the custom format for the skeleton that defines
a hierarchy of joints stored in the skeleton table. Each joint stores
its name, an offset to its parent and a list of its children. To enable
retargeting each skeleton table also stores a mapping of joint names
to a reference skeleton. To convert the joint rotations between the
different coordinate systems, each joint also stores a twist and a
swing axis. The information for retargeting is stored in a meta data
column.

The graphs table is used to store graph definitions as shown in

§ https://www.json.org/
¶ http://bsonspec.org/

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

E. Herrmann et al. / Motion Data and Model Management for Applied Statistical Motion Synthesis

Figure 11: Model format for storing the result of the dimensionality
reduction and statistical modelling.

Figure 12: Format of the acceleration data structure. Each node
stores the mean low dimensional parameter of its children.

Figure 14. Each node in the graph refers to a motion model in the
database by its id and stores a list of transitions to other nodes in
the graph definition. Additionally, each action stores a list of nodes
for the possible start and end states. We group nodes into actions
which is useful for actions that are separated into multiple motion
models such as walking.

4.2.2. Database Interface

For the editing of the database, the storage server provides a REST
interface. The interface offers functions for the insertion, modifica-
tion and removal of entries in the tables. The interface takes mes-
sages in the JSON format that can be easily processed into strings
for storage in the database.

The database server also provides a web client that enables users
to browse the database and visualize selected motion clips and sam-
ples from motion models using different meshes. This way users
can immediately inspect how their captured data and the trained
motion models appear in a game engine using a character mesh. A
screenshot of the database web interface is shown in Figure 15.

To display a motion, the web viewer queries the REST interface
of the storage server for the skeleton and motion data described in
Section 4.2.1 which is transferred directly using the JSON format.

Figure 13: Internal skeleton format. The joint map assigns impor-
tant joints a default joint name.

Figure 14: Graph format.

Figure 15: Screenshot of the Web-based database browser.

The web client application converts the retrieved data into transfor-
mation matrices that are applied on the characters in the 3D visu-
alization. When the user requests samples from a statistical model,
the server converts the low dimensional samples into motion clips
before they are send.

New motions can also be uploaded directly using the web inter-
face. Corrections to existing motions can be made using the motion
editing tool described in Section 4.1.

4.3. Motion Model Deployment Server

Our framework also includes a stateful motion synthesis server to
deploy motion models and enable the interactive control of charac-
ters in a 3D scene given constraints, such as a walk trajectory or a
pick target. For the visualization of the motion, the server is inte-
grated with a 3D engine such as Unity. The server was already dis-
cussed in previous work [AHZ∗18], however we extended it to load
a graph of motion models directly from the data storage server. Fig-
ure 16 shows the interaction between the motion synthesis server
and a 3D application.

The server sends individual poses to the client as messages in
a JSON format using either a TCP or a WebSocket connection. In
each scene update, the current pose containing the root translation
and the local orientation of each joint is applied on the skeleton
hierarchy of the target character. The pose update message can also
include a list of events for scene manipulation. This way, scene
objects can be attached to and detached from the character when a
pick and place action is performed.

To control the motion, the server expects a message in a JSON
format that describes a single action with an optional walk trajec-
tory and an optional list of constraints on joints of the skeleton at
specific labeled keyframes. To keep the server interface responsive
independent of the synthesis speed and duration of a task, the mo-
tion synthesis is executed in a separate thread. This thread generates

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

E. Herrmann et al. / Motion Data and Model Management for Applied Statistical Motion Synthesis

Figure 16: Interaction between the deployment server and a 3D
engine client. In each update the server sends the current pose of
the state machine. The state is updated by replaying a queue of
motion states. Each motion state represents a sample from a motion
primitive model. The queue of motion states is filled by a planner on
demand based on constraints from the client. If the queue is empty,
the server sends an idle motion.

motion states that are added to a motion state queue ahead of time.
If new input is provided before an action is complete, the buffer
is cleared and the synthesis thread is restarted based on the cur-
rent state and the new constraints. This way, it is possible to react
to changes in the scene using a continuous motion, for example in
order to avoid a collision with another worker.

When Unity is used as engine, the application can also be com-
piled to run in the browser using WebGL. The motion synthesis
server can then be integrated with the database client during testing
of the motion models. For the purpose of testing, the server also
provides a REST interface to reload updated motion models from
the database.

5. Implementation Details and Compute Cluster Integration

Each component of the system, including the preprocessing tool,
data storage server and the deployment server was implemented
using Python. The preprocessing tool uses Qt for Python and
OpenGL. This makes the framework executable on most desktop
and server operating systems. The database itself stores data in-
ternally using an SQLite database‖. This format has the benefit of
being easy to backup and copy between operating systems. Addi-
tionally, it can be accessed by a standard Python library. The REST
interface was implemented using the Tornado library∗∗. We use
Unity†† for the display of the motion in the database web client.
The data storage server was deployed on a central server running
CentOS. We also integrated an instance of the model deployment
server with the central data storage server. However, for a practical
application it is run on a dedicated server.

Our framework uses a compute cluster based on Kubernetes
1.13.2‡‡ for the execution of time consuming processes involved in
the preprocessing and modelling of motions. For this purpose, the

‖ https://sqlite.org
∗∗ https://www.tornadoweb.org
†† https://unity.com
‡‡ https://kubernetes.io/

preprocessing tool integrates the option to run specific functions as
jobs on the cluster using the Python API of Kubernetes. We expose
the functions from the modelling pipeline that we want to run on
the cluster in form of Python scripts with command line interfaces
that are stored in a Git repository§§.

When a job is executed, a Docker image with a Python inter-
preter is instantiated as a Kubernetes Pod¶¶. After the initialization
of the Pod, the Git repository containing the code is cloned and a
specific Python script is executed with command line arguments
provided to the REST API of Kubernetes. This generic job inter-
face is used for the retargeting, dynamic time warping and motion
modelling steps of the statistical modelling pipeline. The scripts
use the REST interface of the storage server to download input
data and store the result back into the database. If necessary, ar-
bitrary Python scripts can be run on the cluster using this generic
interface. To simplify the access management, the storage server
exposes a wrapper for the job system as REST service and checks
for permissions based on an access token so users do not need direct
access to the cluster.

The Kubernetes cluster runs on three physical machines each
with 2 Intel Xeon CPUs and 128 GB RAM. Access to GPUs is also
available via the cluster but this is not relevant in our case because
the statistical modelling pipeline only makes use of the CPU.

6. Application in Worker Simulation Use Case

We have applied our framework in a use case of worker simulations
in a Unity application. In addition to walking, the workers needed
to perform basic actions for the interaction with their environment.
These actions include picking up objects, fixing screws and using a
powerdrill. To model the walk action, we used an existing data set
of 29 minutes that was captured using a marker-based OptiTrack
system. However, the stationary actions such as picking up objects
were captured using a marker-less optical motion capture system
by The Captury‖‖ and an IMU-based system by Noitom ∗∗∗. Each
of the stationary actions was modelled using a single motion prim-
itive. However, we created separate motion primitives for interac-
tions with objects above and below the head of the character. The
details for the newly recorded data for each motion primitive of the
scenario are shown in Table 1. Figure 17 shows a comparison of the
training data and samples from the statistical motion model of the
pick action.

The recorded data was retargeted to a character with 63 joints
using the method described in Section 4.1.2. For this purpose
the source skeletons had to be first manually mapped to 21 com-
mon body joints and 30 common hand joints. Joints that were not
mapped were given a default rotation. The retargeted motions were
then manually segmented. However, an extra script with a heuris-
tic was used for the segmentation of the existing walk data set into
primitives. To be able to constrain the motion for the interaction

§§ https://git-scm.com/
¶¶ https://kubernetes.io/docs/concepts/workloads/pods/pod/
‖‖ http://thecaptury.com/
∗∗∗ https://neuronmocap.com/

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

E. Herrmann et al. / Motion Data and Model Management for Applied Statistical Motion Synthesis

Table 1: The newly recorded motion primitives for the use case.
The size is given after retargeting to a common skeleton and using
the binary encoded JSON format. Source a is the optical system by
The Captury and source b is the IMU-based system.

Motion Primitive Examples Poses Size (MB) Source
Pick object 89 17779 67.884 a
Place object 35 6240 23.832 a
Pick up screws 9 3544 13.517 a
Place screws 5 2413 9.201 a
Fix screws 24 7995 30.500 a
Use powerdrill 11 4395 29.547 a
Place object high 5 3970 15.133 b
Fix screws high 5 5011 19.100 b
Use powerdrill high 5 6808 25.948 b
Use scanner 23 5835 22.269 b
Press buttons 12 1570 6.001 b
Attach cable 6 4007 15.276 b
Remove cable 6 2473 9.431 b

Figure 17: Visualization of the pick training data (left) and 10 sam-
ples from the resulting statistical model (right).

with the scene, the timeline of each clip of the stationary actions
was manually annotated. Finally, each collection was given as in-
put to the statistical modelling pipeline and organized into a graph
structure connected by an idle motion.

After the time alignment the size of the training data for all mo-
tion primitives, including the walk data and mirrored motions, is
758 MB. The size of the resulting 13 motion models is 60,6 MB.
The acceleration data structures, each with 10000 low dimensional
samples, have a size of 173 MB. The aligned motion data, the mo-
tion models and the acceleration data structures are stored in the
binary encoded JSON format described in Section 4.2.1.

To control the behavior of the workers in the scene, the motion
synthesis server was integrated with the AJAN agent system as de-
scribed by Antakli et al. [AHZ∗18]. Each worker automatically de-
rives constraints from annotated scene objects. Figure 18 shows the
test scene with two workers driven by the motion synthesis server.
The target walk trajectories for the workers are generated using the
path planner of Unity. Our motion synthesis server also supports
the interaction with tools as shown in Figure 19. However, to ac-

Figure 18: Screenshot of the worker simulation in Unity with two
agents. The result of the Unity path planner is shown in purple.

Figure 19: Screenshots of the worker simulation in Unity using a
tool to interact with objects.

curately reach constraints using tools, inverse kinematics has to be
applied.

7. Conclusion and Future Work

We have presented a data management framework for the appli-
cation of statistical motion synthesis. The framework combines a
motion preprocessing tool with a motion database and a model de-

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

E. Herrmann et al. / Motion Data and Model Management for Applied Statistical Motion Synthesis

ployment server. This simplifies the management of the training
data and the resulting models and reduces the time needed to get
feedback on the quality of the motion models. This is important,
because we found in practice users have to improve machine learn-
ing models multiple times by editing the motion and adding new
training data, which can come from different sources.

The integration of a Kubernetes cluster system to run jobs en-
abled the acceleration of the modelling process by allowing users to
run multiple time expensive experiments in parallel. Furthermore,
the database allowed easy tracking of multiple versions of the mo-
tion models.

The motion database can be browsed on our project website∗∗∗.
A subset of the motions is also available for download. We plan to
make the code of the motion preprocessing tool and the backend in-
cluding the data storage server, modelling pipeline and the motion
synthesis server available on this website as well.

For future work we plan to integrate automatic motion annota-
tion [ChS∗19] and to move the existing motion editing function-
ality into the web client. We also plan to integrate other machine
learning methods into our framework such as Phase-Functioned
Neural Networks by Holden et al. [HKS17]. The database itself is
agnostic to the type of motion model due to the storage of models in
a JSON format. However, for the storage of larger models a migra-
tion to a different database system might be necessary. The combi-
nation of the database with the Kubernetes job system could be use-
ful to run experiments for hyperparameter optimization of neural
networks. By integrating different model types, our data manage-
ment framework can be complementary to unified controller sys-
tems such as proposed by Gaisbauer et al. [GLA∗19].

ACKNOWLEDGEMENTS

This work is funded by the German Federal Ministry of
Education and Research (BMBF) through the projects Hybr-
iT (grant number: 01IS16026A) and REACT (grant number:
01IW17003) and the ITEA3 project MOSIM (grant number:
01IS18060C).

References

[Ado19] ADOBE: Mixamo, 2019. URL: https://www.mixamo.
com. 2

[AHZ∗18] ANTAKLI A., HERMANN E., ZINNIKUS I., DU H., FISCHER
K.: Intelligent distributed human motion simulation in human-robot col-
laboration environments. In Proceedings of the 18th International Con-
ference on Intelligent Virtual Agents (2018), ACM, pp. 319–324. 2, 7,
9

[Aut19] AUTODESK INC.: Motion builder, 2019. URL: https://
www.autodesk.com/products/motionbuilder. 2

[BWK∗13] BERNARD J., WILHELM N., KRÜGER B., MAY T.,
SCHRECK T., KOHLHAMMER J.: Motionexplorer: Exploratory search
in human motion capture data based on hierarchical aggregation. IEEE
Transactions on Visualization and Computer Graphics (Proc. VAST)
(Dec. 2013). 2

∗∗∗ http://motion.dfki.de

[ChS∗19] CHEEMA N., HOSSEINI S., SPRENGER J., HERRMANN E.,
DU H., FISCHER K., SLUSALLEK P.: Fine-Grained Semantic Seg-
mentation of Motion Capture Data using Dilated Temporal Fully-
Convolutional Networks. In Eurographics 2019 - Short Papers (2019),
Cignoni P., Miguel E., (Eds.), The Eurographics Association. doi:
10.2312/egs.20191017. 10

[DHM∗16] DU H., HOSSEINI S., MANNS M., HERRMANN E., FIS-
CHER K.: Scaled functional principal component analysis for human
motion synthesis. In Proceedings of the 9th International Conference on
Motion in Games (2016), ACM, pp. 139–144. 2

[GLA∗19] GAISBAUER F., LEHWALD J., AGETHEN P., SUES J.,
RUKZIO E.: Proposing a co-simulation model for coupling heteroge-
neous character animation systems. In 14th International Joint Confer-
ence on Computer Vision, Imaging and Computer Graphics Theory and
Applications (GRAPP) (2019). 2, 10

[HKS17] HOLDEN D., KOMURA T., SAITO J.: Phase-functioned neural
networks for character control. ACM Transactions on Graphics (TOG)
36, 4 (2017), 42. 10

[HMD∗17] HERRMANN E., MANNS M., DU H., HOSSEINI S., FIS-
CHER K.: Accelerating statistical human motion synthesis using space
partitioning data structures. Computer Animation and Virtual Worlds 28,
3-4 (2017). 2, 3

[HTM∗13] HARTHOLT A., TRAUM D., MARSELLA S. C., SHAPIRO
A., STRATOU G., LEUSKI A., MORENCY L.-P., GRATCH J.: All to-
gether now: Introducing the virtual human toolkit. In 13th International
Conference on Intelligent Virtual Agents (Edinburgh, UK, 2013). 2

[KCT∗13] KAPADIA M., CHIANG I.-K., THOMAS T., BADLER N. I.,
KIDER JR J. T., ET AL.: Efficient motion retrieval in large motion
databases. In Proceedings of the ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games (2013), ACM, pp. 19–28. 2

[LS99] LEE J., SHIN S. Y.: A hierarchical approach to interactive motion
editing for human-like figures. In Siggraph (1999), vol. 99, pp. 39–48. 3

[Mar63] MARQUARDT D. W.: An algorithm for least-squares estimation
of nonlinear parameters. Journal of the society for Industrial and Applied
Mathematics 11, 2 (1963), 431–441. 3

[MBBT00] MONZANI J.-S., BAERLOCHER P., BOULIC R., THAL-
MANN D.: Using an intermediate skeleton and inverse kinematics for
motion retargeting. In Computer Graphics Forum (2000), vol. 19, Wiley
Online Library, pp. 11–19. 3

[MC12] MIN J., CHAI J.: Motion graphs++: a compact generative model
for semantic motion analysis and synthesis. ACM Transactions on
Graphics (TOG) 31, 6 (2012), 153. 1, 2, 3

[MGT∗19] MAHMOOD N., GHORBANI N., TROJE N. F., PONS-MOLL
G., BLACK M. J.: AMASS: Archive of motion capture as surface
shapes. arXiv:1904.03278 (2019). 2

[Rea19] REALLUSION: iclone, 2019. URL: https://www.
reallusion.com/de/iclone. 2

[RKW16] RIAZ Q., KRÜGER B., WEBER A.: Relational databases for
motion data. International Journal of Innovative Computing and Appli-
cations 7, 3 (July 2016), 119–134. doi:http://dx.doi.org/10.
1504/IJICA.2016.078723. 2

[Sha11] SHAPIRO A.: Building a character animation system. In Inter-
national conference on motion in games (2011), Springer, pp. 98–109.
2

[Sho85] SHOEMAKE K.: Animating rotation with quaternion curves. In
ACM SIGGRAPH computer graphics (1985), vol. 19, ACM, pp. 245–
254. 4

[SMKB13] SHOULSON A., MARSHAK N., KAPADIA M., BADLER
N. I.: Adapt: the agent developmentand prototyping testbed. IEEE
Transactions on Visualization and Computer Graphics 20, 7 (2013),
1035–1047. 2

[Vic19] VICON: Blade, 2019. URL: https://www.vicon.com/. 2

[Wri15] WRIGHT S. J.: Coordinate descent algorithms. Mathematical
Programming 151, 1 (2015), 3–34. 3

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

https://www.mixamo.com
https://www.mixamo.com
https://www.autodesk.com/products/motionbuilder
https://www.autodesk.com/products/motionbuilder
https://doi.org/10.2312/egs.20191017
https://doi.org/10.2312/egs.20191017
https://www.reallusion.com/de/iclone
https://www.reallusion.com/de/iclone
https://doi.org/http://dx.doi.org/10.1504/IJICA.2016.078723
https://doi.org/http://dx.doi.org/10.1504/IJICA.2016.078723
https://www.vicon.com/

