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Abstract The rise of Industry 4.0 and the convergence

with BPM provide new potential for the automatic gath-

ering of process-related sensor information. In manufac-

turing, information about human behavior in manual

assembly tasks is rare when no interaction with ma-

chines is involved. We suggest technologies to automat-

ically detect material picking and placement in the as-

sembly workflow to gather accurate data about human

behavior and flexible support of human-process inter-

action. The detection of material picking is achieved

by using background subtraction in combination with

scales. For placement detection, two approaches are test-

ed: image classification using convolutional neural net-

works and object detection using Haar wavelets. The

detected fine-grained worker activities are then corre-

lated to a hybrid model of the assembly workflow using

BPMN and CMMN, enabling the measurement of pro-

duction time (time per state) and quality (frequency

of error) on the shop floor as an entry point for con-

formance checking and process optimization. The ap-

proach has been evaluated in a quantitative case study

recording the assembly process 30 times in a laboratory

setup within four hours. Under these conditions, the

classification of assembly states using a neural network

provides a test accuracy of 99.25% on 38 possible assem-

bly states. Material picking based on background sub-

traction has been evaluated in an informal user study

with six participants performing 16 picks each, provid-

ing an accuracy of 99.48%. The suggested method offers

a promising approach to easily assess fine-grained tim-

ings and error rates of assembly steps which can be used

to optimize the corresponding process.
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1 Introduction

The current trend of automation and data exchange

in manufacturing, known under the term Industry 4.0

(Kagermann et al., 2013; Lasi et al., 2014), addresses

the convergence of the physical and the virtual world.

It comprises the introduction of cyber-physical systems

(CPS), Internet of Things (IoT) and cloud computing

in a fourth industrial revolution, where manufacturing

companies face volatile markets, cost reduction pres-

sure, shorter product lifecycles, increasing product vari-

ability, mass customization leading to batch size one

and, with rising amounts of data, developments towards

a smart factory (Cavanillas et al., 2016).

To plan, construct, run, monitor, and improve a flex-

ible assembly work station or CPS tackling the chal-

lenges of Industry 4.0, engineers and managers require

detailed information about the assembly workflow in

the life-cycle phases of a CPS, see for example Thoben

et al. (2014). In workflows with manual tasks, this infor-

mation contains data on human behavior, such as grasp

distance, assembly time, and the effect the workplace

design has on the assembly workflow. It can be used to

plan and construct efficient assembly work stations and

receive information on the executed workflows to estab-

lish a continuous improvement process (CIP/Kaizen)

within the organization. As of today, data has to be ap-

proximated or gathered manually which consumes time

and money.

We see a large potential in the technical support

and automatization of data gathering processes provid-

ing information about a workflow’s execution regarding
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time and quality. The accurate detection and validation

tasks in the assembly workflow, and as a consequence,

the generation of meaningful events correlated to that

workflow, is a challenging task. On the hardware side,

the selection of appropriate sensors, their integration

into the assembly system and the robustness against

changing conditions in the manufacturing context have

to be considered. On the software side, these sensors

have to be used to reliably detect activities, deliver re-

sults fast, and provide complete information in a homo-

geneous data format. If the physical setup, the software

configuration, and the operation of such a system effi-

ciently support the workflow execution, this will add

value to the organizations deploying them: (1) Process

models will be enriched with detailed information about

the assembly steps. (2) Live workflow tracking enables

online conformance checking. (3) Further analysis of

workflow traces can be used to adapt and optimize the

workflow execution.

In a first iteration, an artifact, fast and easy to set

up in terms of configuration and instrumentation, was

developed integrating multiple sensors to analyze hand

and body posture, as well as material picking. For this

we used ultrasonic distance sensors, as well as cam-

eras based on infrared, RGB+Depth, and RGB images

(Knoch et al., 2016). This proof-of-concept implemen-

tation was then extended and evaluated in a case study

with 12 participants in a second iteration (Knoch et al.,

2018). In (Knoch et al., 2019), we reduced the sensor

setting to the most promising sensors (two RGB cam-

eras and one hand sensor) applying new methods from

computer vision and machine learning to achieve a high

resolution in recognizing assembly tasks. Task-related

events were correlated to process tasks in a BPMN

model.

In this article, which is an extension of (Knoch et al.,

2019), we added a brief introduction about the context

of use and the relevant terminology in Section 2. Section

3 describes related work from the field of BPM and ac-

tivity recognition. It is extended with work from BPM

at the intersection with IoT. Section 4 introduces the

concept split into the activity detection (4.1) and the

process model (4.2) part. We add scales to consistently

check the inventory at the assembly work station, inves-

tigate the potential of object detection for state classi-

fication, and use hybrid process models controlling the

manual assembly workflow flexibly based on capability

descriptions. Thereby, workers interacting with the pro-

cess achieve more freedom during assembly and man-

agers can adapt the process faster using prepared pro-

cess snippets controlling the detection and validation

in a flexible but - through activity detection - safe way.

Using a combination of imperative (BPMN) and declar-

ative (CMMN) process notations flexible work step or-

ders are supported by defining only the checkpoints a

worker needs to pass by. Different worker roles such as

trainees and experts are allowed to have a different level

of freedom following a different model during assembly

without loosing the safety of sub-task validation. Sec-

tions 5 and 6 contain the implementation and evalua-

tion of this adapted concept, followed by a discussion

of the results in Section 7. The paper is concluded in

Section 8.

2 Context

A discrete manufacturing process produces distinct items

and can be executed individually. The product in such

a process is made from single or multiple inputs, which

are material parts, components, and sub-assemblies. Man-

ufacturing follows the job, batch, or flow production

principle. Manual assembly work stations can be found

in both job (individual assembly of items) and batch

(assembly of items in batches) production. Manual as-

sembly work stations are part of assembly lines or ar-

ranged in slots where the product is assembled partially

or completely. Independent from the applied production

principle, manual assembly work is used to repair de-

fective products after negative inspection. During as-

sembly, workers are assisted by worker guidance sys-

tems (WGS), providing instructions on different levels

of granularity based on the worker’s skill (Kerber and

Lessel, 2015). It is common practice that work steps

have to be confirmed by the worker manually. While the

level of process standardization is high during produc-

tion, during a repair process, assembly workflows are

more flexible due to the variance in errors. The process

model controlling such an assembly has to support both

flexible and strict processes.

Planning an assembly workflow involves the defi-

nition of task and flow structures, and the elicitation

of assembly times. The structure of the task divides a

work-step into a reasonable number of sub-tasks. The

structure of the flow defines order and relations be-

tween work steps, such as parallel and sequential as-

sembly, in a precedence graph. During execution, short-

termed controlling and monitoring tasks, such as fail-

ure handling, supply of materials, and elicitation of in-

formation about the manufacturing progress, have to

be carried out by the controlling process instance. The

process model needs to fulfill both the requirements

of describing the workflow and handling events during

run-time. Abstract process descriptions based on the

required capabilities make these models more robust

against changes regarding the concrete hardware and

software.
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A manual assembly task is split into different sub-

tasks. In the field of assembly time elicitation, a stan-

dardized terminology is used to label such a manual

task. Methods Time Measurement (MTM)1 defines five

basic motions within an assembly step: reaching, grasp-

ing, moving, positioning, and releasing a material part.

The activity detection modules suggested in this work

are embedded in the flow of basic motions defined by

MTM. In the process model, they are used to define the

capability that is requested in one task. Both enables

the gathering of timing for basic motions and the ab-

stract description of process tasks based on a standard-

ized terminology (MTM). Each activity module imple-

menting such a capability is automatically mapped to

the process without any adaptions in the model that

would become necessary, for example when the activ-

ity module has changed or the model is executed on a

different work station.

Detection of human activities and their correlation

to the correct process instance support automatic time

elicitation, workflow tracking, exception handling, and

just-in-time material supply. Therefore, data from order

management, the work plan, and the bill of materials

have to be correlated with activities detected by sensors

equipped to an assembly work station. The selection,

positioning, and accuracy of the sensors strongly affect

the tracking resolution and involve set-up and training

times (supervised machine learning).

3 Related Work

Related work can be found at the intersection of BPM

with cognitive computing, context-awareness, IoT, and

human activity recognition, here mainly vision-based.

Cognitive BPM (CBPM) CBPM comprises the chal-

lenges and benefits of cognitive computing in relation

to traditional BPM. Hull and Motahari Nezhad (2016)

suggest a cognitive process management system (CPMS)

to support cyber-physical processes enabled by artifi-

cial intelligence (AI). Marrella and Mecella (2017) pro-

pose the concept of such a CPMS which automatically

adapts processes at run-time, taking advantage of the

AI’s knowledge representation and reasoning. Similar to

our system the alignment between real physical and ex-

pected modeled behavior can be measured. In context-

aware BPM, the user behavior is set in relation to sit-

uations affecting the behavior. Transferred to our ap-

proach, user behavior corresponds to detected worker

activities in the context of a concrete assembly task

from a process model instance executed at a concrete

1 mtm-international.org

assembly work station. Jaroucheh et al. (2011) apply

linear temporal logic and conformance checking from

process mining to compare real with expected user be-

havior. Since the collection of high resolution data for

the aforementioned systems is not a trivial task, aug-

menting the process with information captured by cog-

nitive computing, such as computer vision, is the focus

within this research activity.

IoT and BPM The manifesto by Janiesch et al. (2017)

indicates potential benefits of IoT from BPM and vice-

versa. Our approach tackles many of the challenges

defined by the authors, such as ‘placing sensors in a

process-aware way’, ‘detecting new processes from data’

and ‘bridging the gap between event-based and process-

based systems’. Most approaches in that field focus on

process discovery and due to data availability in the

smart living domain skipping the step of gathering data

discussed in our work. Cameranesi et al. (2018) and

Sora et al. (2018) present an approach to discover pro-

cess models from activities in an ambient assisted liv-

ing scenario and in the field of smart spaces. A data

set from a smart home scenario was chosen to extract

daily activities. In Cameranesi et al. (2018), aggregated

macro-activities characterizing daily user behavior have

been chosen as input for a process mining algorithm. In

a similar fashion Carolis et al. (2015) apply first-order

logic to learn daily routines of users in smart home envi-

ronments. In their approach, the authors suggest a new

process mining technique able to learn complex models

efficiently and in a way that is applicable on-line. Since

we assume an assembly workflow with restricted de-

grees of freedom, our focus is the handling of undesired

behavior (errors) and the analysis based on predefined

metrics measuring time and quality across process in-

stances. The application of process mining remains an

interesting field for future work.

Vision-based human activity recognition (HAR) In HAR

the main focus is on 2D video data and applies various

machine learning methods (for an overview see Poppe

(2010)). HAR applications in manufacturing are sparse

but occur more frequently since the rise of IoT, in-

dustrial internet, and Industry 4.0. Within the field of

human robot collaboration, Lenz et al. (2011) use 3D

video data to determine the hand position of a worker

sitting in front of an assembly work table and collabo-

rating with an assistive robotic system applying Hidden

Markov Models (HMM). Two cameras are mounted to

the assembly workstation and are calibrated to each

other. High calibration effort facilitates the applica-

tion of the method only in restricted setups. Similarly,

Roitberg et al. (2015) apply hierarchical HMMs in a
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multi-modal sensor setting within the same domain.

They combine RGB-D (Kinect 2) and IR (Leap Motion)

cameras to detect fine-grained activities (e.g. assembly,

picking an object, fixing with a tool) and gestures (e.g.

pointing, thumb up) and analyze the results of the sen-

sors individually and in combination. Combinations of

sensors show the best average recognition results for ac-

tivities in most cases. Unlike these approaches focusing

on gesture detection, we concentrate on the detection

of assembly states in the form of image classes allowing

the connection to state transitions in process models. It

is an example how AI can be applied to ensure process

quality and adherence to time constraints.

HAR using wearable sensors The authors in Grzeszick

et al. (2017) use convolutional neural networks (CNN)

on sequential data of multiple inertial measurement units

(IMU). Three IMUs are worn by workers on both wrists

and the torso. This way, an order picking process in

warehouses can be analyzed, fusing data from all sen-

sors to classify relevant human activities such as walk-

ing, searching, picking and scanning. In a similar fash-

ion Stiefmeier et al. (2008) apply different on-body sen-

sors (RFID, force-sensitive resistor (FSR) strap, IMU)

in a “motion jacket” worn by workers, and environ-

mental sensors (magnetic switches and FSR sensors)

to detect activities in the automotive industry, such

as inserting a lamp, mounting a bar using screws and

screwdriver, and verifying the lamp’s adjustment. We

decided to use contactless activity detection and avoid

the instrumentation of workers, because we expect lim-

ited user acceptance when wearing sensor equipment.

In addition, using wearables the reloading of batter-

ies and mechanical signs of fatigue during usage may

be issues the operator wants to avoid. Thus, an easy

and light setup is suggested, applying state-of-the-art

AI technology to the problem of workflow tracking in

manual assembly enabling conformance checking and

optimization.

4 Concept

BPM has a high potential to support the implemen-

tation and adaption of process models which control

and sense the assembly workflow. We provide a concept

showing how recognized events from the shop floor can

be correlated to tasks in the model based on capabil-

ity descriptions, allowing the supervision of time and

quality constraints defined ex-ante in the form of refer-

ence times and material states. In addition, the collec-

tion of timing information and error frequency supports

the optimization of assembly workflows, e.g. through

conformance checking. To enable this kind of supervi-

sion and optimization, the detection of critical activities

within one work step is necessary. The setup is designed

as light-weight and can be easily used to equip any as-

sembly work station in a short time.

4.1 Activity Detection

Figure 1 shows the three-tiered activity detection: first,

grasps to container boxes are detected to analyze which

part the worker assembles next (Grasp Detection). In

parallel, the amount of pieces removed from the respec-

tive box is verified by the Inventory Control. After per-

forming the actual assembly step, the worker places his

hands next to the workpiece, where they are detected

by the Hand Detection module. At this point in time,

an image is captured, as there cannot be any occlusions

or motion blur. This image is then used for Material De-

tection, analyzing which workstep the assembly led to,

i.e. if the step was correct and the next assembly step

can be taken or whether one of several possible failure

states is reached and a recovery strategy needs to be

applied.

4.1.1 Grasp Detection

Grasp Detection involves the appearance of a foreground

object (user’s hand) over a stationary background (form-

ed by the image of the container box) seen by the cam-

era observing the container box from the top. It is as-

sumed that this kind of activity occurs when a part is

removed from its designated container box. Therefore,

activity zones have to be predefined within the image

when setting up the camera to detect the worker’s hand.

In the process model, material grasping and grasp de-

tection form the first step after receiving the instruction

for the current assembly task. Such a system facilitates

the supervision of assembly workstations equipped with

a lot of similar-looking materials without the effort of

hard-wiring the system with the workstation, as in case

of classical pick-supervision.

4.1.2 Inventory Control

Inventory or stock control is capable of checking the

number of material parts in stock. An inventory system

permanently tracking the number of parts can be used

to verify the removal of the correct amount of pieces

needed within one assembly task. Since bulk material is

hard to detect with optical sensors, another sensor has

to be employed allowing the accurate measurement of

small materials such as screws or nuts. A high precision

scale carrying a material box supports such a relative
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Fig. 1 Flow chart representing the activity detection process within one work step following the MTM basic motion flow;
dashed rectangles indicate optional validation (depends on worker skill).

measurement once the weight per piece is known and

approximately equal among material pieces of one type.

If these constraints are met, the weight-based counting

of pieces can be solved using a scale with an adequate

resolution. The remaining challenge is the filtering of

noise created by vibrations during material removal.

Although the noise is an indicator for the grasp activ-

ity, grasp detection remains necessary to achieve more

accurate time estimates.

4.1.3 Hand Detection

Hand Detection allows the active confirmation of work

steps by the worker without reaching to distant touch

screens or buttons. With correct and complete execu-

tion, this enables positive feedback and forms the point

in time when image data for material detection is gath-

ered. For the worker, this procedure offers more safety,

since subsequent work steps are only started after suc-

cessful confirmation of the previous ones. In the case of

a mistake, the operator is supported with fine-grained

assistance. For later material detection, this approach

ensures that no hands occlude the workpiece and that

the workpiece does not move, thereby avoiding motion

blur.

4.1.4 State Classification

State Classification can be used on the acquired image

to confirm whether the material parts being grasped

are correctly assembled in the desired way. This in-

volves verifying if each part is correctly located in the

expected orientation. A camera is used to monitor the

assembly region (where assembly of product is being

performed) which facilitates verification and quality as-

surance based on the image information. This can be

achieved in two ways: (1) image classification considers

the whole image for estimating the product’s state, and

(2) object detection detects each individual object’s po-

sition and orientation in an image to deduce the overall

assembly state. Both approaches require the gathering

of training data.

Process-based Gathering of Image Data Training of a

classifier or object detector usually requires manual la-

beling of a large amount of data samples. This might be-

come an obstacle when the suggested method for qual-

ity assurance based on image data is applied in an orga-

nization. Thus, an approach is needed to quickly get the

system running in practice. The approach of process-

controlled activity detection suggested in this paper can

solve this challenge. A slightly modified model can be

used to control the training process and, due to the cor-

relation between process instances and sensors, to au-

tomatically gather and annotate image data. Remotely

controlled light bulbs equipped to the assembly work

station are used to generate different lighting conditions

which is necessary to achieve a robust material detector.

The training images can be acquired either in a sepa-

rate gathering process (as done for the presented eval-

uation), or confirmations/correction input to the WGS

can be used to label images with corresponding classes,

thus supporting cost-neutral data capture in the wild.

Image Classification Image classification is a well known

task with many out of the box solutions. The validation

of an assembly state can be solved with image classi-

fication which has a very vivid community generating

competing results of high quality, for example within

the ImageNet Large Scale Visual Recognition Challenge

(Russakovsky et al., 2015). Each material state in the

process model, including all error states, is considered

as a separate class. For each of these classes, a set of

images is acquired to train a classifier according to the

approach described above. Whenever an image is cap-

tured after hand detection, this image is classified to the

corresponding state in the BPM, which allows jumping

to the next step in the WGS, a system showing instruc-

tions about the current assembly task on a screen, or

intervening in case of error states.

Object Detection The verification of the assembly of

the parts can also be treated as a detection and lo-

calization problem. The entire image or a predefined

region is searched for the specific part. A separate ob-

ject detector is trained for each part independent of
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the other parts. Therefore, the labeled training data

from above can be used in a slightly modified way by

cropping the respective part from the image. Based on

the label from the process, the name and orientation

of the work piece are known, allowing the definition of

a bounding box’s position and size. Once defined, the

cropping is processed automatically by applying the co-

ordinates and dimensions to all other images (since the

camera and the assembly zone are fixed). During exe-

cution of the detector, since the material of interest is

known from the grasp signal, only the respective ob-

ject detector is run on the image to improve efficiency.

Information about the location of the detected part is

used to check the correctness of the assembly, taking

into consideration the previous process step.

4.2 Process Model and Correlation

A correlation between a physical thing and a modeled

workflow can be tight or loose according to (Wom-

bacher, 2011). In a tight correlation, process model and

sensors depend on each other, while in a loose corre-

lation, process steps are only used as synchronization

points. We are aiming at a tight correlation, since it

allows the process to control the senors and to en-

hance the process model with fine-grained information

about the process execution. Nevertheless, it requires

the model to be more complete regarding error han-

dling and case modeling.

At the beginning of each process, order information

and work plan data from manufacturing information

systems is fetched and used to set variable properties

such as material types and the amount to assemble in

each step. The model contains the logic and is con-

figured with a set of properties in a graphical process

model editor, which allows the coupling of events to

the model without the specification of concrete devices

and due to the generic implementation without fur-

ther software implementation effort. The binding be-

tween model and components in the assembly workflow

is based on a topology describing the value range of the

property variables necessary to run a concrete workflow.

4.2.1 Abstract Process Descriptions

Abstract descriptions of manufacturing processes con-

sist of a sequence of capability requirements. These ca-

pability requirements have to be mapped to the man-

ufacturing equipment on the shop floor. An efficient

automatic alignment of capability requirements and re-

source type warrants is achieved, applying light-weight

semantic procedures from transaction processing in dia-

Activity DetectionActivity Detection

Work Step Execution

Capability Model Resource Repository

Worker Guidance 

System
Activity Detection

1 2

3

Fig. 2 Logical capability checking (1), operational matching
(2), and device control (3).

log systems, such as algorithms for unification and pat-

tern matching.

Figure 2 shows the three phases necessary to exe-

cute a work step from an abstract assembly process.

First, a set of potential operational resources is deter-

mined based on descriptions in the capability model.

The resulting resource asserting the requested capabil-

ity are checked in a second phase for the availability

and state. Finally, if a resource was selected the de-

tection and guidance process can start exchanging the

messages described in Subsection 4.2.4.

CapabilityRequests are divided in WorkerAssistance

and WorkStepConfirmation requests. Both requests con-

tain one of the HandlingCapabilities Grasp, Release, or
Position, according to the MTM terminology. Based on

the data from the bill of material in the instantiated

process, both these capabilities are instantiated with a

list of materials relevant in the current work step. The

grasp capability receives additional information about

the required material quantities to validate the removal

of the correct number of pieces.

4.2.2 Process Flexibility

Workflow and business process notations, such as BPMN,

were designed for modeling processes without much vari-

ation as known from mass production. Models described

in such flow-based, imperative process notations be-

come very confusing if many cases are modeled and

can end up in so called spaghetti models. Constraint-

based, declarative process notations are suited for the

modelling of flexible processes by focusing on rules and

constraints of the process instead on the actual flow.

In combination with BPMN, we use the Case Man-
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agement Model and Notation (CMMN) based on the

Guard-Stage-Milestone model. Modeling work steps in

such a flexible way, allows for the definition of tasks dur-

ing assembly without specific definition of their logical

or temporal relation to other tasks in one step. Work-

ers following such a flexible process can assemble the

product without satisfying a strict order. In addition,

the strictness of the model reflected in the formulated

constraints can be varied, e.g. based on the experience

level of the worker.

4.2.3 Activity-to-Model Correlation

In order to match an activity to an instance of a task

two approaches exist: cost-based and key-based match-

ing. Cost-based matching uses information about the

distance between an activity and a task instance based

on the task description and the time when the event oc-

curred. A strong content-based similarity between the

description of the activity and the task, and, on the

other side, a strong proximity between the occurrence

in time of both activity and task instance, indicate a

match. Key-based matching uses an identifier to corre-

late activities and task instances, thereby avoiding po-

tential matching errors as in the first approach. In the

following, we rely on key-based matching to achieve ro-

bustness against any form of matching errors.

4.2.4 Messages

Messages are divided into (a) instructions published

by the model controlling software components and (b)

activities published by software components detecting

material picking and placing or user input from the
WGS. Every message contains the business key iden-

tifying the process instance with an universally unique

identifier (UUID) and a time stamp. Thereby, key-based

matching is supported since the key is stored in the re-

ceiving Activity Detection application and sent back

when the activity was detected. Instructions are sub-

divided according to the destination (WGS/Activity-

Detection).

WGS instruction An instruction controlling the WGS

contains the mandatory property work step index (used

to gather descriptive information and media to explain

and present the current assembly task to the user), a

list of expected materials, its amount, and a list of ex-

pected orientations. Optionally, an error is set when the

list of found materials or found orientations does not

reflect the expected ones, e.g. when WrongMaterial or

WrongOrientation occurs. Then, a correction instruc-

tion is presented on the WGS:

{
"businessKey":"3af444fd

-5132 -4211 -9391 - b1d1a027a390",

"timestamp":"1488412740302",

"workStep":3,

"expectedMaterials":[{
"materialName":"

ConnectingBoard",

"amount":1},{
"materialName":"

ApplicationBoard",

"amount":1}],
"expectedOrientations":

["East","West"],

"error":{
"errorName":"WrongMaterial",

"foundMaterial":"Mainboard",

"foundAmount":1

}
}

ActivityDetection instruction An instruction controlling

the activity detection contains the expected materi-

als, orientations and the assembly activity, e.g., graspt,

insertt, or restt, where t is the reference time for one

activity. The time t can be used to measure the devia-

tion from the manufacturing time planned. To control

software components, we introduce the action property

that contains the state of the respective component,

e.g. “start” or “stop”. The sample message starting the

grasp detector can be seen in the following listing:

{
"businessKey":"3af444fd

-5132 -4211 -9391 - b1d1a027a390",

"timestamp":"1488412681045",

"material":"ConnectingBoard",

"activity":"grasp",

"action":"start"

}

ActivityDetection event is sent when the activity de-

tection was started by the controlling process instance

and an activity was detected. Then, the activity detec-

tion module delivers the properties material (expected

& detected), orientation (expected & detected), activ-

ity, and a type, which indicates if the source of the

detection was from an automatic (activity detection)

or manual (confirm button) origin. Since activity de-

tection might fail, it is always possible to confirm an

activity by pressing a button on the WGS screen as a
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fallback. In the following listing the message represent-

ing an automatically detected grasp into the material

box containing connecting boards is shown:

{
"businessKey": "3af444fd

-5132 -4211 -9391 - b1d1a027a390",

"timestamp": "1488412770298",

"expectedMaterials":[{
"materialName":"

ConnectingBoard",

"amount":1},{
"materialName":"

ApplicationBoard",

"amount":1}],
"foundMaterial":{

"materialName":"

ConnectingBoard",

"amount":1},
"activity":"grasp",

"type":"automatic"

}

5 Implementation

The implementation of the concept presented in the

previous section requires an example assembly workflow

which was set up in the lab (Subsection 5.1). It involves

an hybrid process model implemented in BPMN 2.0 and

CMMN 1.1 controlling and tracking this workflow (Sub-

section 5.2), and four activity detection modules detect-

ing material grasping, inventory changes, hands, and

material positioning realized in two approaches (Sub-
sections 5.3–5.8).

5.1 Assembly Workflow and Apparatus

To test and iteratively improve our system, we designed

an assembly workflow consisting of four assembly steps.

The product to be assembled consists of three printed

circuit boards (PCB) to be connected and placed in

one 3D-printed case. The four materials are provided

in small load carriers (SLC), boxes common in manu-

facturing when dealing with small parts. In steps 1 to

3, material is removed from the SLCs and assembled

in the work area on top of the workbench in front of

the worker. In step 1 the case is removed and placed

with the open side up in the work area. In step 2 one

PCB is removed and inserted into the case. In step 3

the two remaining PCBs are removed, connected and

inserted into the case. The removal of two parts in par-

allel is common practice to improve the efficiency in

assembly workflows. Finally, within step 4 the assem-

bled construct is removed from the work area and in-

serted into a slide heading to the back of the assembly

workstation. The whole workflow is supported by a ba-

sic worker guidance system (WGS) running on a touch

screen and showing textual instructions and photos of

the relevant materials and of the target state in the

respective assembly step.

The assembly workstation, shown in Figure 3, is

made from cardboard prototyping material and instru-

mented with two consumer-electronics RGB cameras: a

Logitech C920 HD Pro and a Logitech BRIO 4K Ultra

HD. The first camera is mounted on top of the assem-

bly station and pointed at the four SLCs loaded with

material. The second camera is mounted to the shelf

carrying the SLCs and is aimed at the work area. Four

Mettler Toledo weighting pads with a resolution of 1

mg are placed under the SLCs to permanently track

the material weight.

5.2 Process Model

A process model, modeled in the BPMN language and

shown on top of Figure 4, controls the execution of

an assembly order and the respective activity detection

modules and the WGS supporting the current order. It

consists of service, call, send and receive tasks. Service

tasks fetch order and work plan information and ini-

tialize a new work step setting the relevant parameters

necessary for the subsequent work step. Here, we set the

product ID, variant name, materials from the BOM and

the index i of the step. The call task referes to a CMMN

1.1 model describing the assembly of one work step in a

flexible way. Send tasks control components necessary

to execute the work step and generate instruction mes-

sages sent to a target component c. Receive tasks wait

for acknowledge events confirming an activity a in the

current work step. The model is instantiated for one

product and loops over all work steps defined in the

work plan.

The call task initializes the work step CMMN model

shown on the left of Figure 4. It consists of optional and

non-optional process tasks all linked to a specialized

BPMN process model controlling the activity detection

processes in detail (models on the right). In the case

model for a work step, grasp validation is modeled as an

optional task. The release and position validation tasks

are modeled as mandatory tasks, since they are used to

ensure the quality of the final product. Reflecting the

fact that the worker has to confirm the assembly state

manually by placing her hands before the material state

is checked, hand detection has to occur before material
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(b) Light scenes(a) Material states
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Fig. 3 Assembly workstation equipped with 1 touch screen, 2 cameras and 6 light sources (middle); example material states
(of the 38) and 7 light scenes for one part (left); inventory control with weighting pad, and grasp detection using background
subtraction with the ‘U’-shaped activity zones (right).

detection can be conducted. This is expressed by the

entry criterion (rhombus) interconnecting both tasks.

Each activity detection module, except grasp detec-

tion which is combined with inventory control, is con-

trolled by one BPMN process model consisting of send

and receive tasks. Within a send task of type start, the

activity to observe is defined. When an activity occurs,

two options exist: (1) the correlated event occurs as ex-

pected and the activity is stopped by the subsequent

send task, or (2) a correlated activity occurs that de-

tects a behavior that does not match the expected state.

Then, the exception handling is started, instructing the

worker to correct his activity. Again, a call task in the

BPMN refers to a CMMN model handling the error

in case the wrong material or the wrong quantity was

grasped or in case a wrong material was detected after

positioning and releasing it. Finally, when the process

ends, the process task in the CMMN is informed and

continues. Figure 4 on the right shows the model con-

trolling hand, material and grasp detection with inven-

tory control. The case models for exception handling

can be seen on the left.

Error handling is important when processes and sen-

sors are tightly correlated and allows the system to in-

tervene when states are detected that have been classi-

fied as erroneous. In total 38 classes cover all relevant

states including errors that may occur during assembly

at this work station with the existing material parts by

rotating parts on their positions. Thereby, every assem-

bly state is covered and can be handled by the process.

For training, every state can be generated walking step

by step through the process to gather all data required

for this classification task. The BPMN model was re-

designed to instruct the user about the arrangement of

materials in the training phase of the system. Within

each instruction step the material state is confirmed

such that images of this state can be taken under a

variety of lighting conditions automatically generated.

5.3 Grasp Detection

The activity zones, shown in Figure 3, are marked out-

side the interior of the container boxes because a back-

ground subtraction algorithm adapts to a changing back-

ground. The background (interior of the box) changes,

when a part is removed from its container box. The

activity zones are ‘U’-shaped since the direction of ap-

proach of the hand is not always perpendicular to the

breadth of the container box. The red regions are marked

a single time during system setup and the yellow activ-
ity zones are automatically identified as a corollary.

Given a video sequence V (t), the frame denoted as

I(t) is compared pixel-wise against a pixel-wise model

built by the background subtraction algorithm by Zivkovic

and Van Der Heijden (2006). The model is updated

every frame so that it captures the recent history of

values taken by the pixels. This history is controlled

by the parameter α. The background subtraction algo-

rithm shown in Algorithm 1 marks each pixel as active

or inactive. The procedure of detecting the start and

end of a grasping activity is as follows: by default there

is inactivity in the activity zones. When the number of

foreground pixels |F (t)| (pixels classified as active) ex-

ceeds the total number of pixels P in the activity zone

a by a certain user-defined value (pa = 40%), activity

is said to occur in the respective zone. To filter noisy

signals, the start and end of an activity is detected once

there is a considerable number of video frames with ac-

tivity/inactivity respectively. Hence in a user defined

recent history of frames (set to 10) denoted by the pa-
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Fig. 4 Assembly workflow (top) and activity detection processes (bottom right) modeled in BPMN; validation of work steps
and error handling modeled in CMMN (bottom left).

rameter HF (note that this history is different from

that defined by the parameter α), only when a certain

user-defined percentage pH(60%) of frames contains ac-

tivity or inactivity, grasp start or end is indicated. The

variable ca counts the number of frames where activity

is detected and ci counts the number of frames where

a lack of activity is detected after a grasp start event.

The activity flag, keeps track of the state of the system.

5.4 Inventory Control

Selecting the appropriate weighting sensor to gather ac-

curate weight values requires the consideration of the

target environment, whether it is dry, dusty, or wet.

Further, range of weights to be covered (min and max

value), and the weighing tolerance. Once the appropri-

ate sensor is selected, the software needs to provide ba-

while hasNext(V (t)) do
if (|F (t)| > pa ∗ |P (a)|) then

ca++;
ci = 0;
if (ca > pF ∗HF |) then
send(graspstart), activity=true;

end
else if (activity) then

ci++;
ca = 0;
if (ci > pF ∗HF ) then
send(graspend), activity=false;

end

end

Algorithm 1: Background subtraction algorithm to

detect start and end of grasping material.

sic functionality to zero the scale, gather the tare value

and the number of reference pieces to enable counting
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of material based on the relative measurement. After

configuration, the software fetches weight values from

a set of scale pads in a fixed clock cycle.

σ̂t(n) =

√√√√ 1

n− 1

n−1∑
i=0

(wt−i − µ̂t(n))2 (1)

When a worker grasps into the box, the weight value

rises caused by the pressure forced by the worker’s hand

collecting the material parts from the box, which in-

duces noise. If no noise is generated by grasping, the

new number of materials can be immediately adapted.

Otherwise, to filter out the noise generated by this ac-

tivity and to detect the step from one amount of pieces

to another, statistics can be applied to the time series

of weight values. Therefore, the rolling standard devia-

tion σ̂ is computed for windows with width n = 2 using

the 2 most recent weight observations wt and wt−1. If

the value of σ̂ comparing these to observations exceeds

a certain threshold motion is detected. The threshold is

set to the weight of one reference piece. During motion,

the old number of pieces is kept. When motion ends,

the number of pieces is updated.

Compared to grasp detection the motion signal de-

livers similar information about when a worker enters a

material box. Since the effect on the weight occurs only

when pressure is measurable, grasp detection will lead

to more accurate time information about when a worker

actually enters and leaves the area defined around the

box. In combination, both systems deliver detailed data

about grasping material.

5.5 Hand Detection

After the user has assembled the grasped material, he or

she actively confirms the work step by putting his hands

on designated areas of the workstation close to the as-

sembly area, which have electrically conductive metal

plates integrated into the assembly worktop. Those plates

are connected to a capacitive sensor. The sensor mea-

sures the capacitance of the capacitor, which is formed

by the electrodes “metal plate” and “operator”. By lay-

ing down both hands, the measured capacity reaches a

characteristic value, which initializes the manual confir-

mation of the operator’s work step and forms the point

in time when the photo for material detection is taken.

This kind of work step confirmation is a common pro-

cedure in manual assembly and helps in the our imple-

mentation to avoid occlusion and motion blur during

material detection. As these metal plates are integrated

directly next to the assembly area, there is no need to

reach distant displays or buttons.

Fig. 5 3D model of the hand detection controller (right)
wired to 2 capacitive sensor plates (left).

The prototype hand detection assembly shown in

Figure 5 controls the confirmation process of the op-

erator’s currently active work step. The controller unit

Printed Circuit Board (PCB) was designed in Autodesk

EAGLE and packaged - as well as the sensor plates -

into 3D modelled casings which were designed in Au-

todesk Fusion 360, and 3D-printed.

5.6 Process-based Gathering of Image Data

For the system described in this paper, it is essential

to validate the assembly state as correct or identify an

error as a part of quality control. We used the BPMN

model to automatically label the assembly steps: a cus-

tom model which, in combination with the worker guid-

ance system, not only instructed the participant to per-

form the usual assembly steps, but also directed her to

generate erroneous states (i.e. wrong part placement or
orientation). This made it possible to semi-automatically

(the participant still had to place her hands next to

the workpiece after each step) take a picture of every

state of the BPMN-model and label it at the same time.

Since different lighting conditions easily occur in a real

life setting, we also took these into account during the

training data acquisition: to simulate various lighting

condition, six Philips Hue lights were placed in differ-

ent positions around and on the assembly workstation.

Using the Philips Hue API, we programatically changed

the lighting by switching different bulbs on and off or

changing their color and intensity, which results in dif-

ferent shadows and highlights on the pictures of the

workpieces. Whenever the participant placed the hands

next to the workpiece, we captured a total of 7 images

using different light scenes. This automatic light ad-

justment dramatically speeds up the capturing of train-

ing data including a wide variety of lighting conditions,

thereby improving the robustness towards light changes

in the resulting system.
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5.7 Image Classification

One approach to detect the current state is Image Clas-

sification, which learns a function taking as input an im-

age captured as defined above and outputs the current

state in the BPM. Vast improvements in image clas-

sification results using deep convolutional neural net-

works have been achieved in recent years; therefore, we

decided to also use convolutional neural nets for our

task. Since our task is comparatively simple, we do not

apply complex and extremely deep convolutional net-

works like ResNet (He et al., 2016), but instead design

our own very simple network: we use 5 (convolutional,

convolutional, max pooling) blocks with filter size of 3

by 3, pool size of 2 by 2, and relu activation, followed

by a dense layer of 512 (relu activation), and the final

classification dense layer performing softmax. Dropout

is used to reduce overfitting.

To minimize the amount of images required to achieve

high classification accuracies, we perform an initial train-

ing procedure based on parts of the ImageNet dataset (Rus-

sakovsky et al., 2015). For this, we downloaded a total

of 419 classes of the set, including 178 classes we consid-

ered roughly related to PCB assembly, such as ‘electri-

cal circuit’, ‘printed circuit’, and ‘circuit board’. We re-

size all images to 224 x 224 pixels and train the network

for 300 epochs using a batch size of 64, RMSProp opti-

mization, and a learning rate of 0.0001. These weights

are stored and used as a basis for the training process

on the images specific to our assembly task. This pre-

training should reduce the amount of images required,

as basic features like edges, shapes, and colors can al-

ready be learned from the ImageNet data. The dense

and classification layers at the end are randomly initial-

ized when fine-training on our dataset, as these can be

considered specific to the ImageNet data.

5.8 Object Detection

One of the oldest and highly successful object detec-

tors was proposed in 2001 by Viola and Jones (2001).

Though it was demonstrated initially for faces, the frame-

work was later used to propose accurate classifiers for

other classes of objects like cars and pedestrian detec-

tion (Lee and Kanade, 2007; Monteiro et al., 2006).

Even though the field of object detection/classification

has progressed vigorously to state-of-the-art performance

by Neural Nets, we decided to start with the approach

from Viola and Jones since we considered a small scale

task with a controlled scenario. The approach also had

some additional benefits: (1) the interpretability of the

features learnt; (2) the existence of highly optimized

training and testing codes (OpenCV).

Training and detection times are important char-

acteristics of any learning based application. Here, we

train an object detector for each part and hence the

training time is directly proportional to the number of

parts. In our scenario, due to the small number of parts,

fast training times are irrelevant, however in theory the

number of parts could be much higher. Hence another

application could benefit from fast training times. Fast

detection time is however critical irrespective of the

quantity of parts and therefore also relevant for our use

case. The final application is expected to fire a result

with minimal delay after the part has been assembled.

So a fast detector helps in minimizing this time delay.

Given the above described requirement, even though

the original Viola-Jones detector used Haar wavelet like

features, we decided to explore the Local Binary Pat-

tern (LBP) based variation proposed by Ahonen et al.

(2006). This LBP-based approach, though less accurate

(still the overall accuracy is above 90%), provides fast

training and test times.

6 Evaluation

We conduct an evaluation, testing the individual parts

of the activity detection module and analyzing to what

extent these can be used to automatically gather in-

sights into the assembly process to optimize it in later

steps.

6.1 Grasp and Hand Detection

The grasp and hand detection is evaluated using a series

of experimental runs involving 6 users (1 f, 5 m) with

different hand sizes (circumference: x̄ = 21.58, σ = 1.64

cm; length: x̄ = 18.83, σ = 1.77 cm; span: x̄ = 21.67,

σ = 2.29 cm). During the experiment, the user grasps a

part, places it on the worktable and confirms by resting

the hands. The user then returns the part and confirms

by resting the hands. This procedure is repeated for

each part and box with right and left hand alternat-

ing 2 times per part in four repetitions comprising all

parts. This leads to a 2 (hands) ∗ 2 (remove and return

part) ∗ 4 (parts) ∗ 4 (repetitions) = 64 grasp start, stop

and rest events. The activity start and stop events are

monitored by a supervisor with an annotating appli-

cation to generate ground truth information. The rest

detection failed only in 2 cases where two users curved

their palms, leading to no sensor response. In total, an

accuracy of 99.22% was achieved. For grasp detection,

2 pairs of start and stop events failed where one user

approached from angles where the activity zone is least

disturbed, such that the threshold of 40% foreground
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Fig. 6 Excerpt of the validation of weight values using a
sliding standard deviation with n=2 counting steel nuts.

pixels was not reached in the activity zone. In total, an

accuracy of 99.48% was achieved for grasp detection.

6.2 Inventory Control

The scales in the setup were designed to support a

relative measurement necessary for inventory control.

Therefore, a simple validation of the counting of bulk

material was conducted with two parts: 100 steel nuts,

class 4, zinc-plated, size M4x0.7 mm, and 46 black-oxide

screws, size M3x0.5 mm, 25 mm long. At the beginning

of each run, all parts were filled into the box and used

as reference parts. Afterwards, we started removing 10

parts one-by-one, 5 times first 1 then 2 parts, and 5

times first 2 then 4 parts, in total grasping 55 pieces

per material with ca. 5 second between each grasp. The

screws were refilled before running empty after the sec-

ond time grasping the 2-4-pair.

Figure 6 shows an excerpt of the nut grasping exper-

iment. The red line indicates the non-validated number

of pieces and the black line the validated number of

pieces. It can be seen that after stabilization, when two

almost equal measurement points exist, the number of

pieces is reduced to the new validated value. Since no

surprising behavior was observed, we stopped our study

at this point. Due to the time it takes for the scale

to stabilize after a hand motion inside a box, the tim-

ings recognized using grasp detection are more accurate

than using the timings of the scale directly.

6.3 Process-based Gathering of Image Data

During data gathering of images for state classifica-

tion, the remaining lighting conditions were kept stable

(shutter closed, room and workstation lights on). We

used seven different simulated lighting conditions (in-

cluding all lights off, i.e. room lighting) per assembly

state. The rationale behind this was to allow for differ-

ent lighting preferences of the individual workers. Each

iteration consisted of 19 states, generating 19∗7 images

and with a duration of approximately 8 minutes (25 sec-

onds per assembly step). Two types of iterations were

considered, orienting all parts in two directions (left

and right) leading to 38 classes in total. These classes

cover all possible assembly states due to the assembly

area where the parts are inserted oriented to the left or

right.

With this setting, we were able to generate 3990

images in 30 runs within 4 hours. To avoid irrelevant

parts of the surroundings, such as hands or tools being

present in the image, the camera was fixed and the as-

sembly area was cropped from each image. Overall the

goal of state classification (the following two sections) is

to quantify how well the approach works to determine

whether material was assembled correctly. For this, we

use 50% of the labeled image data for training, 25% for

validation, and 25% for testing.

6.4 Image Classification

As described in Section 5.7, the neural network used to

classify the various assembly states was pre-trained on

a subset of ImageNet, and then all except for the dense

layers are fine-tuned on the training data specific to our

task. For this, we again resize all input images to 224

by 224 pixels and train for 25 epochs using a batch size

of 8. As expected due to the simple nature of the prob-

lem (in comparison to competitions like the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC)),

the classification performance is very good: a test accu-

racy of 99.25% was achieved on this 38-class problem.

6.5 Object Detection

An object detector is trained for each relevant part in its

19 states in each orientation. For the detector for each

state, the images belonging to all the other states were

considered as negatives. The images from one orienta-

tion are rotated to match with the other orientation.

Thereby, the same classifier can be used on the flipped

input image to detect the two different orientations. If

the part was detected in the image and the location of

the part fits the target location the result indicates a

correct assembled material part. The result of the ob-

ject detection combined with the information from the
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process about the correctness of the last state results

in the correctness of the current assembly state.

To prepare the training data, the material parts

were cropped from the images automatically possible

due to the fixed position of the camera and assem-

bly area, and labels from the training process. Informal

tests resulted in difficulties detecting ApplicationBoard

and ConnectingBoard. Therefore, data augmentation

has been integrated. In a first step, the part images of

ApplicationBoard and ConnectingBoard were rotated

about the three axis (X and Y along the width and

height, and Z into the plane of the image), scaling the

images and changing the brightness. These are standard

ways for data augmentation. The distorted images were

then placed in varying background images, as can be

seen in Figure 7. The result was used to train the cas-

cade classifier based on the unifying features found in

these images. As negative images, background images

and object images (in total 4000) downloaded from var-

ious databases based on Fei-Fei et al. (2007) were used

for training object detectors. For each part about 1000

cropped images of the other three parts were added as

negatives.

Fig. 7 Steps in ConnectingBoard training images genera-
tion.

The detection accuracy for the states within the first

two work steps (involving the TopCasing and Main-

board assembly) were above 95%. The detection for

the states in the next work step involving Connect-

ingBoard and ApplicationBoard were challenging, since

these parts have a lot of reflecting feature points in

them and were often confused with one another. To

tackle this challenge, we focused on these two parts.

After careful augmentation with respect to part orien-

tation, degree of rotation, and range of scaling, a test

accuracy of 95% was achieved for the states within this

work step.

7 Discussion

7.1 Material Detection

The results indicate the competitiveness of both ap-

proaches object detection and image classification. Even

this very simple convolutional neural network achieved

high accuracies, however, for tasks with even more classes

than our test case one might need to increase the depth

of the network. The object detection approach has the

added advantage of providing localization, however, in

an application of the type discussed localization is not

necessary. Nevertheless, in tasks where the assembly

area is not fixed, the detection approach could have ad-

vantages compared to the classification approach. Us-

ing a different Neural Network architecture like MaskR-

CNN (He et al., 2017) would also allow localization, and

one could use the same data as for the current object

detection approach, or use the same simple gathering

procedure and data augmentation techniques to acquire

more data. Also the class of functions offered by Neural

Network is much bigger than Cascade Detectors/Classi-

fiers and hence more scalable for more states and parts.

This is a very important aspect since we aim for a solu-

tion for a dynamic factory scenario. With the detector

approach though high accuracy results can be achieved,

a lot of effort is involved in training detectors. When

scenarios occur where different states are quite similar,

additional effort is required as in the case of the parts

ApplicationBoard and ConnectingBoard in the use case

at hand. Here, our image classification approach did not

have such strong problems and was a lot easier to train.

Comparing object detection with image classifica-

tion one major drawback of object detection is the strong

dependence on previous detections. While an image clas-

sifier checks the whole assembly state in each run, the

object detector validates the position of objects and

assumes the previous states as stable. Errors may be

propagated through the process and have to be cor-

rected manually.

7.2 Other Parts of the Pipeline

Furthermore, we see that many steps of the overall de-

tection process can be easily realized using sensors like

capacitive sensors, high-precision scales, or simple back-

ground subtraction upon camera images. While we see

how machine learning and specifically deep learning can

yield very good results on more complex problems like

material detection, there simply is no need to use such

approaches for other parts of the pipeline. The process-

based combination of sensors, as suggested for grasp

detection in combination with inventory control, lead
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to very precise results and provides interesting details

about the assembly process.

7.3 Link between Process and Data

Using a very simple data gathering procedure, which

could also be conducted during day-to-day work, we

were able to train a system that can be used to get

accurate timings for the individual steps in the process

model, and to also automatically detect which state the

worker is currently in, including error states. Thus, it

can be used to (a) perform process optimization based

on the timings, (b) analyze commonly occurring errors

and figure out options to avoid these errors or at least

provide aid to the worker on how to resolve the error.

The correlation between processes and activity de-

tection based on capability descriptions and the mod-

elling of specific process snippets allows process mod-

elers to reuse the models and quickly combine them to

new processes. Flexible process validation, for exam-

ple to support experienced workers, can be achieved by

combining CMMN and BPMN models. This allows a

dynamic variation of the process strictness adapting to

the worker’s skill (Ullrich et al., 2016) in the particular

task for an efficient human-process interaction.

7.4 Limitations

A limitation of our analysis is that we only explored

the approach for the production of a single item. While

we believe that the chosen test case is reasonably com-

plex to realistically evaluate the advantages and dis-

advantages of our approach, we will explore more test

cases in the future. Furthermore, while we tested our

approach on a separate test set, we did not explore it

in the wild with real working conditions and potential

problems arising from this.

Since flexible processes are rather new, the CMMN

support is not fully covered in process engines avail-

able on the market by now. In addition, the power

of a business process engine controlling manufacturing

workflows is limited when it comes to real-time critical

processes.

8 Conclusion

Methods from AI, such as computer vision and ma-

chine learning, can be tailored to an Industry 4.0 use

case and may increase an organization’s competitive-

ness through awareness of error rates and timepass en-

abling backtracking and intermediate intervention in

manual assembly workflows. We have shown that an

easy-to-set-up tool set of two cameras, one capacitive

sensor, four scales, six light sources and activity detec-

tion software trained within four hours of assembly has

the ability to generate accurate sensor events. Viewing

this data through a “process lens,” the measurement

of time and quality in manual assembly workflows, and

thus the optimization of processes, is enabled.

In the future, we will investigate the potential of un-

supervised methods in combination with our approach

to discover workflows automatically. This leads to a

novel concept of ‘sensor-to-model’, which deduces the

overall process based on data gathered by the sensors.

New methods to discover assembly workflows in plan-

ning and construction phases, and to monitor or check

their conformance online and offline, will provide valu-

able input for process mining.
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