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Abstract: In this paper, we present an overview of several visual tracking methods for industrial 
augmented reality applications. We show that no universal algorithm can deal with the large 
number of possible scenes, and that the different methods have to be seen as complementary 
approaches that all have their strengths and weaknesses. The main difficulty, then, consists in 
combining existing building blocks in the right manner so that the overall system enables stable 
tracking. This paper addresses each phase of the tracking, i.e. Initialization, Tracking, Re-
Initialization, and proposes a first choice of appropriate algorithms. Finally, a global system is 
designed, tested and evaluated with help of video sequences of different real environments. 
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1 Introduction 

Tracking is a key technology for augmented reality applications, but still represents an 
unresolved problem, especially in the context of industrial environments, for which the external 
conditions, such as lighting, dust or scene occlusions, are uncontrolled and unpredictable. A lot 
of work has been dedicated to camera tracking in the computer vision and robotic communities, 
and many different approaches have been proposed. The first category of algorithms uses local 
features [HS88] detected in the images and tracked over the video sequences [ST94]. The 3D 
coordinates of the features are computed either during a preparation phase [GSN02] by 
reconstruction, or using an existing 3D-VRML (or CAD) model of the scene [LVT03], or in real 
time while tracking using structure and motion approaches [KPV99]. The second category takes 
advantage of the shapes of the objects and scenes to be tracked [MZS03]. These solutions are 
particularly interesting for objects without texture [CMC03]. The last category of approaches 
concerns the algorithms combining several sensors, such as a camera with an inertial sensor 



[YNA99], or inside-out with outside-in cameras [SUYT03]. The advantage of such multi-sensors 
approaches consists in the combination of each component’s strength. For example, an inertial 
sensor will be able to measure a fast rotational motion whereas the camera image will be blurred 
and unusable. 

Nevertheless, most of the above-referred works address particular aspects of tracking and 
therefore provide a specific solution. But a tracking system should offer an overall approach, and 
address all tracking issues at a time (Initialization, Tracking and Re-Initialization) in order to be 
usable. Furthermore, it has to take into consideration many different scenes and situations, and 
therefore be designed in a very flexible way. 

In this paper, we present an approach that relies on the combination of different computer vision 
algorithms. A generic tracking framework enables to choose and load different tracking actions 
dynamically, and to combine them at starting time. In our (very first) experiences, this system 
architecture seems to be appropriate and provides a solution to the large spectrum of augmented 
reality applications. The paper is structured as follows. Section 2 presents the different tracking 
algorithms – the building blocks - we envisaged. Section 3 describes the overall framework and 
section 4 gives results of the tracking system. Section 5 concludes the paper. 

2 Building blocks 

2.1 Overview 

A tracking system for AR has to deliver the position and the orientation in a given reference 
coordinate system. Therefore, a priori knowledge about the scene acting as absolute reference 
information is required. From a computer vision point of view, this means that the tracking 
methods will have to rely on a given 3D representation of the scene, which can be a VRML 
model [CMC03] or reference images associated to a pre-computed camera pose [LVT03, BPS05, 
Str01]. An additional essential aspect of our approach is that we explicitly consider each step of 
the tracking process. We define these steps as follows: 

Initialization: The Initialization-step delivers the first position and orientation of the camera in 
the defined scene coordinate system. It has to work without the intervention of the user and 
requires therefore pattern recognition and matching with the scene model. 

Tracking: The Tracking-step propagates the camera pose from frame to frame, assuming a 
continuous video stream. Tracking relies on temporal coherence of the image content and can 
exploit information such as optical flow [ST94] to recover the image features and deduce the 
current camera pose. When abrupt motion arises, wide baseline matching algorithms are 
required. 



Re-Initialization: The Re-Initialization-step recovers the camera pose when the tracking fails. 
We made the distinction between Re-Initialization and Initialization, since at Re-Initialisation-
time new information about the scene may have been collected during the tracking phase what 
will facilitate the pose recovery. 

2.2 Initialization 

Several initialization methods are possible:  

Initializing with markers: Markers are often used in augmented reality applications. They are 
well defined and can be easily found in images [KB99]. Ideally, just one marker has to be placed 
in the scene in order to get the first camera pose of the tracking session. The markers are used as 
anchors or absolute references, and allow so to determine the position and orientation of the 
VRML/CAD-model in the scene. This information is then used and maintained during the 
tracking phase (see paragraph 2.3 and 2.4) 

Initializing with key frames: The basic idea of the initialization with key frames is to match in 
real-time the current video image with pre-defined reference images of the scene, and so to 
transfer 3D information about the scene to the current frame. The matching method can be 
implemented in various ways. We base our approach on local SIFT features [Low04] matched 
between the live video frame and the pre-calibrated reference images. At starting time, the 
initialization procedure performs feature extraction from the reference frame and back-projects 
all points onto the 3D model in order to obtain their 3D coordinates. The back-projection is done 
by sending rays from the related camera position through the image plane and computing the 
intersection points with the 3D model. Another possibility of back-projection is to render the 
CAD/VRML model on the graphics card. Then the depth-buffer (Z-buffer) can be read in order 
to retrieve the depth of the 2D image points and so the 3D coordinates. The result of both 
methods is a set of 2D/3D corresponding points associated to image features describing their 
local appearances. This information enables to compute the camera pose for the current image 
frame and provides image features to the tracking procedure. Implementation details about this 
approach can be found in [BPS05]. 

  
(a)                                        (b) 

Figure 1: Initialization with a line model: (a) initial coarse position/orientation (b) automatic 
registration 



Initializing with a geometry model: The last approach we developed applies only the 
object/scene geometry model. The VRML model is converted into a line or contour model that is 
automatically matched in the image. The initialization procedure works as follows. An initial 
position/orientation of the model is defined. The user moves until the model approximately 
overlays the object in the image as illustrated in Fig. 1 (a). With help of the local search, the line 
model is accurately fitted into the image (Fig. 1 (b)). More details about the registration 
algorithm are given in section 2.4. 

All three approaches require user interaction and scene preparation. In the case of the first two 
methods, the necessary engineering cannot be automated and represents time consuming work. 
In the case of the markers, they have to be placed in the scene and carefully measured. The 
initialization with key frames assumes a set of calibrated images for each object/scene view. 
Furthermore, the key frame approach relies on the assumption that the scene geometry and 
appearance is almost static. Strong illumination differences as it may occur for outdoor 
environments, partial changes in the geometry, or deterioration of the object surfaces will limit 
the initialization. 

2.3 Tracking with local features 

Tracking procedure: To obtain reliable 2D/3D correspondences from natural local features, 
different types of feature detectors [Low04, Bau00], descriptors [Bau00, MS03, KS04, Low04], 
alignment [ZGN04] and update methods [MTB04, MS03] can be applied. While the selection of 
the tracking actions has to be adapted to the requirements of the given application, the overall 
workflow of the tracking procedure remains the same. This one is represented in Fig. 2 and is 
implemented as a pipeline of abstract actions instantiated at running time (see section 3).  
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Figure 2: Overall architecture of the tracking procedure 

The tracking procedure always handles two successive frames, the current camera frame and the 
previous one. Additionally, it makes use of a database containing reference data (3D model of 
the scene, calibrated reference images, confident 3D features) and previous calculation results 
(previous pose, updated features). If the tracking fails due to too few matches or to a badly 
defined pose, the Re-Initialization is invoked automatically. A successfully calculated pose is 



always employed to update the database, e.g. by back-projecting new features onto the 3D model 
to obtain 3D coordinates, thus handling occlusions or light changes. An important point is the 
reading and writing access of the feature alignment module to the database for either aligning 
against or updating reference data. Thus, the tracking is not only done in an iterative manner but 
also against confident reference features in order to avoid drift. Several implementation of this 
approach have been achieved and are presented in the next two paragraphs.  

Abrupt camera motion: Tracking of a head mounted display in the context of a mobile AR-
application is very challenging. Rapid camera movements in connection with high motion 
velocity generate large feature displacements, whereat no meaningful motion model can be 
assumed to give a good prediction of the current camera pose. In this case, it is essential to use 
robust feature detectors and descriptors that are invariant to Euclidian [Low04] or even affine 
transformations [MS02]. As the described boundary conditions are very similar to those defined 
for tracking-initialization, we apply again robust SIFT features matched between successive 
frames and – in order to prevent drift - additionally matched against confident features of 
previous frames. Those are dynamically cached within the database, every time the pose is well 
defined. As feature matching generally produces outliers, the initial set of 2D/3D 
correspondences is filtered using the well-known RANSAC (Random Sampling Consensus) 
algorithm. Details can be found in [BPS05].  
While this approach is very robust, the computation of the SIFT features, the matching and the 
outlier rejection lead to high computational costs. A high-quality pose prediction (e.g. from an 
inertial sensor) allows not only to deal with rapid camera movements with less robust and faster 
methods, but also enables to transform the feature descriptors with respect to the predicted pose 
and to center the search area at the expected position. This approach has been implemented for 
planar patches and provided very stable results. Pre-defined image patches defined as 3D planar 
surfaces are warped by a homography with help of the predicted pose onto the current image. 
The patch position is then refined with simple block matching (such as L1- or L2-Norm). As the 
image textures are never updated, the tracking does not drift at all.  

Continuous camera motion: If the camera motions are continuous and the temporal coherence is 
fulfilled, in particular for stationary systems, small feature windows can be tracked directly. In 
this case, we use the well-known Kanade-Lucas tracker enhanced by several extensions 
[ZGN04] like building an image pyramid for coarse-to-fine tracking, estimating affine 
transformation parameters to detect outliers and prevent drift. As most outliers are already 
detected at feature level, we use the complete set of 2D/3D correspondences for pose estimation 
rather than applying a further filtering. This approach is very fast at the expense of robustness 
against rapid camera movements. 

2.4 Tracking with line models 

For industrial applications, poorly textured objects with sharp edges have to be handled. 
Contour-based tracking approaches turned out to be suitable for such scenarios [CMC03]. 



Camera pose estimation by registering a 3D line model onto the image gradient can be done with 
or without explicitly extracting the image line features. In the first case, the camera pose 
computation is achieved by minimizing the distances between the lines of the projected 3D 
model and the corresponding image line features. A widely used technique to avoid the 
computationally expensive extraction of image line features is to perform a search for gradient 
maxima in the image only for several sample points of a line in a perpendicular direction to that 
line. In our work, we focus on a tracking approach for which the camera pose is estimated by 
minimizing the distance between sample points on a projected line of the given 3D model and 
the corresponding maxima of the image gradient. 

Multiple hypotheses: The challenge of the tracking system is to find the maximum of the 
gradient that corresponds to the sample point of a line, as there can be many candidate matches 
for one sample point (Fig. 3). We apply here the edge tracking method of [VLF04] that uses 
multiple hypotheses for assigning a 2D feature to a 3D sample point of a line model together 
with the Tukey Estimator [RL87] as a robust estimator function. 

 

Figure 3: Search segment and multiple hypotheses 

The given 3D line model is projected into the image plane with the camera pose of the previous 
frame. For each projected edge E of the 3D model, equally spaced sample points pi are 
determined. At every sample point pi, a perpendicular search for the points qi,j is performed on 
both sides of the projected edge. The points qi,j are possible candidates for points on the desired 
edge.  

Adaptive sample points: To improve the robustness of the tracker, we implemented an adaptive 
system using only gradient maxima that most likely correspond to the considered line sample 
point. In order to know which gradient maximum is the one on the wanted edge in the image, a 
state of the visual properties of a sample point on an edge has to be maintained. Therefore, a 
temporal low pass filter is applied on the visual properties of every sample point of an edge. As 
the visual perspective, the lighting conditions and the background in an image sequence are not 
constant over time, the appearance of an object edge can change considerably. Therefore, it is 
not sufficient to describe the visual state with a single Gaussian distribution. By using a mixture 
of Gaussians it is possible to describe a single sample point with several visual properties.   



Choice and visibility of the sample points: The number of sample points on a projected line is 
chosen in such a way that the sample points are evenly distributed in the image. The test, if a 
sample point of a line feature is visible, is performed in hardware using a GL extension. A 
VRML model of the tracked object is needed for this visibility test. 

2.5 Re-Initialization 

The goal of the re-initialization is to recover the current pose, when the tracking failed. Here we 
take advantage of the information collected during the tracking. The current implementation 
checks the pose quality on base of the re-projection error in the image and the covariance 
matrices of the camera pose and stores robust features (SIFT). At re-initialization time the 
features of the current frame are matched with the features cached preliminarily. The problem 
can then be seen as a wide baseline matching problem intensively investigated in the computer 
vision community [Bau00, LVT03, Low04]. 

3 Arranging the building blocks: A generic framework "VisLib2" 

Since the objects to be tracked depend on the scenarios, it should be possible to easily (re)-
configure the tracking system even at running time. For this purpose, we developed a modern 
and flexible C++ based library that offers a high level of abstraction. The fundamental concept 
of our implementation relies on an explicit and systematic separation of data and algorithms. 
Data are stored in a shared memory region called DataSet that offers access to data objects by 
name over well-defined keys. Algorithms are encapsulated in Actions with an unified interface. 
This interface is reduced to four simple functions, one for setting the data keys, one for applying 
the action to the data and two for reading from and writing to an XML file all internal parameters 
and keys needed for execution. All available actions are registered in the so-called TypeFactory 
that allows instantiation (by name) at run-time. The instantiation of actions and data enables 
completely dynamic system configuration and extension. New actions are developed as 
additional DLLs and - with the TypeFactory mechanism – they are simply added to the 
algorithm pool at system start. Actions can be combined to ActionPipes, which perform the 
sequential execution of all added actions in a loop. As ActionPipes are actions themselves, 
whole action combinations, e.g. the realization of a tracking system, can be saved and loaded via 
xml once they have been composed. As a nice analogy, one can say that VisLib2 configurations 
are read from XML files like C programs are built up from source code. For visual assembling, 
loading, saving and executing of VisLib2 ActionPipes, a user interface named PicMod has been 
developed. As the pipes only support sequential execution of actions, the integration of more 
complex control structures based on complete graphs is under development. 



4 Evaluation 

We defined several scenarios in the field of industrial maintenance and cultural heritage, each 
one of them having different boundary conditions and requirements due to varying target objects, 
scenes, camera motions and lighting changes. For example, we use as non-planar test objects a 
poorly textured BMW armrest, a machine command and the engine of a BMW. A (well textured) 
poster serves as a planar test object and a whole room as a larger test scene. From those target 
scenes, we captured video sequences (320x240) with a Firewire camera performing rapid camera 
movements as well as continuous ones and switching on and off the lights. As an outdoor 
scenario, a video of the ruins of Sagalassos has been recorded with a camcorder being fixed to a 
tripod, thus performing only rotational motions. Then, we defined different instances of the 
tracking framework (MA-MD) by combining appropriate tracking actions according to the 
requirements of the scenarios: 

Method Initialization Tracking Re-Initialization 

MA Local SIFT features Local SIFT features Local SIFT features 

MB Marker Local KLT features Marker 

MC Marker Line model Marker 

MD Local SIFT features Texture Patches Local SIFT features 

Table 1: Instances of the tracking framework 

Results of the different methods are given in Fig. 4. All methods have been tested on a 1.7 GHz 
processor with the accordant parameters (e.g. search ranges, number of features) being optimized 
for yielding sufficiently stable results. We did not correct for radial distortion. Scenario (a)-(c) 
shows the machine command with obvious light changes and occlusions. It has been calibrated 
using method MA (SIFT). The BMW engine (d)-(f) has been processed with the same approach. 
Images (g)-(i) (engine command, armrest, room) show results from the tracking with line models 
(MC). The poster (k)-(l) has been calibrated successfully with method MD (texture patches). 
Again, these images show obvious light changes and large motions. Frames (m)-(o) show the 
outdoor environment and could be handled with the same approach due to pure rotational camera 
movements. The analysis below sheds light on the strengths and weaknesses of the different 
methods. Precision, robustness and speed are chosen as criteria for the validation of their 
capability with respect to the given scenarios.  

Method MA (SIFT) is very robust against rapid camera movements, light changes (Fig. 4 (b)) 
and partial occlusions (Fig. 4 (a),(c)). In particular, this method is very stable with highly 
textured as well as with poorly textured objects, respectively the command machine (Fig. 4 (a)-
(c)) and the BMW engine compartment (Fig. 4 (d)-(f)). Poorly textured objects with clear 
contours are well suited to the line model method. The BMW armrest (Fig. 4 (h)), the room (i) 
and also the machine command (g) fit this requirement and are well tracked over long sequences. 



As the computation of the Euclidian invariant SIFT features is computationally very expensive, 
method MA (12 Hz) is appropriate for challenging scenarios with rapid camera movements and 
uncontrolled lighting, whereat the target object is small and exhibits no strong contours. 
Approach MC reaches a higher speed (20 Hz) and is the most appropriate one to use if we 
consider objects with dominant contours or larger test scenes.  

If the target object is planar and highly textured like the poster, we do not have to spend much 
time computing invariant features, and reach very good results with method MD (Fig. 4 (j)-(l)). 
Rapid camera movements are also handled, as our implementation reaches a high framerate (25 
Hz) and the texture patches are always transformed by a homography into a convenient view. 
Even light changes (Fig. 4 (l)) and a large change in depth (Fig. 4 (j),(k)) are managed. As the 
homography warping is also valid for purely rotational camera motions combined with non-
planar target scenes, we obtained good results applying this method to the video of the outdoor 
environment (Fig. 4 (m)-(o)) by assuming the whole scene lies on a single plane. If the target 
scene is sufficiently textured and the camera motions are expected to be continuous without 
many rapid movements, method MB is the most appropriate one, as it is very fast (30 Hz) and 
delivers a smooth camera trajectory. A continuous image sequence of the engine command could 
be calibrated very precisely using this approach.  
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Figure 4: Different scenarios have been calibrated with appropriate instances of our tracking 
framework: For optical verification of the current pose, the video frames are augmented with 
either the axis of the world coordinate system or the CAD model of the target object or scene. 

5 Conclusion  

We have presented an overview of different tracking approaches and stressed their strengths and 
weaknesses in the context of visual tracking for augmented reality. We showed how to combine 
them as building blocks of a general framework. In particular, we proposed an improved line 
model tracking algorithm with multi-hypothesis matching, and introduced adaptive learning of 
the edge properties. On the one hand, this approach enables a better identification of the most 
likely edge, and on the other hand, avoids local minima by excluding wrong hypotheses. This 
method is used for initialization as well as for tracking. The different feature-based methods 



provides stratifying results for fast and robust tracking. The matching with pre-defined reference 
features removes drift and thus enables tracking of very long sequences with a high accuracy.  

None of the presented combinations leads to the best results in all the tested scenes. Nevertheless 
we could always find at least one sensible combination of tracking actions for every target 
application that optimizes precision and speed yielding the necessary robustness. 

Future work will concentrate on the management and tracking of dynamic scenes. Furthermore, 
additional methods for automatic tracking initialization have to be found in order to avoid any 
kind of user interaction or scene engineering.  
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