

Visual tracking for augmented reality: No universal solution but many
powerful building blocks

Mario Becker, Gabriele Bleser, Alain Pagani, Yulian Pastarmov, Didier Stricker, Florent Vial,
Jens Weidenhausen, Cedric Wohlleber, Harald Wuest

Fraunhofer for Computer Graphics (IGD)
Fraunhoferstr. 5
64283 Darmstadt

Tel.: +49 (0)6151 155 124
Fax: +49 (0)6151 155 196

E-Mail: {firstname.lastname}@igd.fraunhofer.de

Abstract: In this paper, we present an overview of several visual tracking methods for industrial
augmented reality applications. We show that no universal algorithm can deal with the large
number of possible scenes, and that the different methods have to be seen as complementary
approaches that all have their strengths and weaknesses. The main difficulty, then, consists in
combining existing building blocks in the right manner so that the overall system enables stable
tracking. This paper addresses each phase of the tracking, i.e. Initialization, Tracking, Re-
Initialization, and proposes a first choice of appropriate algorithms. Finally, a global system is
designed, tested and evaluated with help of video sequences of different real environments.

Keywords: Systems, Augmented Reality, Visual Tracking, Tracking Architecture, Framework

1 Introduction

Tracking is a key technology for augmented reality applications, but still represents an
unresolved problem, especially in the context of industrial environments, for which the external
conditions, such as lighting, dust or scene occlusions, are uncontrolled and unpredictable. A lot
of work has been dedicated to camera tracking in the computer vision and robotic communities,
and many different approaches have been proposed. The first category of algorithms uses local
features [HS88] detected in the images and tracked over the video sequences [ST94]. The 3D
coordinates of the features are computed either during a preparation phase [GSN02] by
reconstruction, or using an existing 3D-VRML (or CAD) model of the scene [LVT03], or in real
time while tracking using structure and motion approaches [KPV99]. The second category takes
advantage of the shapes of the objects and scenes to be tracked [MZS03]. These solutions are
particularly interesting for objects without texture [CMC03]. The last category of approaches
concerns the algorithms combining several sensors, such as a camera with an inertial sensor

[YNA99], or inside-out with outside-in cameras [SUYT03]. The advantage of such multi-sensors
approaches consists in the combination of each component’s strength. For example, an inertial
sensor will be able to measure a fast rotational motion whereas the camera image will be blurred
and unusable.

Nevertheless, most of the above-referred works address particular aspects of tracking and
therefore provide a specific solution. But a tracking system should offer an overall approach, and
address all tracking issues at a time (Initialization, Tracking and Re-Initialization) in order to be
usable. Furthermore, it has to take into consideration many different scenes and situations, and
therefore be designed in a very flexible way.

In this paper, we present an approach that relies on the combination of different computer vision
algorithms. A generic tracking framework enables to choose and load different tracking actions
dynamically, and to combine them at starting time. In our (very first) experiences, this system
architecture seems to be appropriate and provides a solution to the large spectrum of augmented
reality applications. The paper is structured as follows. Section 2 presents the different tracking
algorithms – the building blocks - we envisaged. Section 3 describes the overall framework and
section 4 gives results of the tracking system. Section 5 concludes the paper.

2 Building blocks

2.1 Overview

A tracking system for AR has to deliver the position and the orientation in a given reference
coordinate system. Therefore, a priori knowledge about the scene acting as absolute reference
information is required. From a computer vision point of view, this means that the tracking
methods will have to rely on a given 3D representation of the scene, which can be a VRML
model [CMC03] or reference images associated to a pre-computed camera pose [LVT03, BPS05,
Str01]. An additional essential aspect of our approach is that we explicitly consider each step of
the tracking process. We define these steps as follows:

Initialization: The Initialization-step delivers the first position and orientation of the camera in
the defined scene coordinate system. It has to work without the intervention of the user and
requires therefore pattern recognition and matching with the scene model.

Tracking: The Tracking-step propagates the camera pose from frame to frame, assuming a
continuous video stream. Tracking relies on temporal coherence of the image content and can
exploit information such as optical flow [ST94] to recover the image features and deduce the
current camera pose. When abrupt motion arises, wide baseline matching algorithms are
required.

Re-Initialization: The Re-Initialization-step recovers the camera pose when the tracking fails.
We made the distinction between Re-Initialization and Initialization, since at Re-Initialisation-
time new information about the scene may have been collected during the tracking phase what
will facilitate the pose recovery.

2.2 Initialization

Several initialization methods are possible:

Initializing with markers: Markers are often used in augmented reality applications. They are
well defined and can be easily found in images [KB99]. Ideally, just one marker has to be placed
in the scene in order to get the first camera pose of the tracking session. The markers are used as
anchors or absolute references, and allow so to determine the position and orientation of the
VRML/CAD-model in the scene. This information is then used and maintained during the
tracking phase (see paragraph 2.3 and 2.4)

Initializing with key frames: The basic idea of the initialization with key frames is to match in
real-time the current video image with pre-defined reference images of the scene, and so to
transfer 3D information about the scene to the current frame. The matching method can be
implemented in various ways. We base our approach on local SIFT features [Low04] matched
between the live video frame and the pre-calibrated reference images. At starting time, the
initialization procedure performs feature extraction from the reference frame and back-projects
all points onto the 3D model in order to obtain their 3D coordinates. The back-projection is done
by sending rays from the related camera position through the image plane and computing the
intersection points with the 3D model. Another possibility of back-projection is to render the
CAD/VRML model on the graphics card. Then the depth-buffer (Z-buffer) can be read in order
to retrieve the depth of the 2D image points and so the 3D coordinates. The result of both
methods is a set of 2D/3D corresponding points associated to image features describing their
local appearances. This information enables to compute the camera pose for the current image
frame and provides image features to the tracking procedure. Implementation details about this
approach can be found in [BPS05].

(a) (b)

Figure 1: Initialization with a line model: (a) initial coarse position/orientation (b) automatic
registration

Initializing with a geometry model: The last approach we developed applies only the
object/scene geometry model. The VRML model is converted into a line or contour model that is
automatically matched in the image. The initialization procedure works as follows. An initial
position/orientation of the model is defined. The user moves until the model approximately
overlays the object in the image as illustrated in Fig. 1 (a). With help of the local search, the line
model is accurately fitted into the image (Fig. 1 (b)). More details about the registration
algorithm are given in section 2.4.

All three approaches require user interaction and scene preparation. In the case of the first two
methods, the necessary engineering cannot be automated and represents time consuming work.
In the case of the markers, they have to be placed in the scene and carefully measured. The
initialization with key frames assumes a set of calibrated images for each object/scene view.
Furthermore, the key frame approach relies on the assumption that the scene geometry and
appearance is almost static. Strong illumination differences as it may occur for outdoor
environments, partial changes in the geometry, or deterioration of the object surfaces will limit
the initialization.

2.3 Tracking with local features

Tracking procedure: To obtain reliable 2D/3D correspondences from natural local features,
different types of feature detectors [Low04, Bau00], descriptors [Bau00, MS03, KS04, Low04],
alignment [ZGN04] and update methods [MTB04, MS03] can be applied. While the selection of
the tracking actions has to be adapted to the requirements of the given application, the overall
workflow of the tracking procedure remains the same. This one is represented in Fig. 2 and is
implemented as a pipeline of abstract actions instantiated at running time (see section 3).

enough

no

yes Current Pose

big

small

Error

Database
(Reference Data,
Previous Results)

Re-
Initialization

Current
Frame

Feature
Alignment

Features

Previous
Frame/Pose

2D/3D
corresp.

Feature
Extraction

Pose
Estimation

Update

Figure 2: Overall architecture of the tracking procedure

The tracking procedure always handles two successive frames, the current camera frame and the
previous one. Additionally, it makes use of a database containing reference data (3D model of
the scene, calibrated reference images, confident 3D features) and previous calculation results
(previous pose, updated features). If the tracking fails due to too few matches or to a badly
defined pose, the Re-Initialization is invoked automatically. A successfully calculated pose is

always employed to update the database, e.g. by back-projecting new features onto the 3D model
to obtain 3D coordinates, thus handling occlusions or light changes. An important point is the
reading and writing access of the feature alignment module to the database for either aligning
against or updating reference data. Thus, the tracking is not only done in an iterative manner but
also against confident reference features in order to avoid drift. Several implementation of this
approach have been achieved and are presented in the next two paragraphs.

Abrupt camera motion: Tracking of a head mounted display in the context of a mobile AR-
application is very challenging. Rapid camera movements in connection with high motion
velocity generate large feature displacements, whereat no meaningful motion model can be
assumed to give a good prediction of the current camera pose. In this case, it is essential to use
robust feature detectors and descriptors that are invariant to Euclidian [Low04] or even affine
transformations [MS02]. As the described boundary conditions are very similar to those defined
for tracking-initialization, we apply again robust SIFT features matched between successive
frames and – in order to prevent drift - additionally matched against confident features of
previous frames. Those are dynamically cached within the database, every time the pose is well
defined. As feature matching generally produces outliers, the initial set of 2D/3D
correspondences is filtered using the well-known RANSAC (Random Sampling Consensus)
algorithm. Details can be found in [BPS05].
While this approach is very robust, the computation of the SIFT features, the matching and the
outlier rejection lead to high computational costs. A high-quality pose prediction (e.g. from an
inertial sensor) allows not only to deal with rapid camera movements with less robust and faster
methods, but also enables to transform the feature descriptors with respect to the predicted pose
and to center the search area at the expected position. This approach has been implemented for
planar patches and provided very stable results. Pre-defined image patches defined as 3D planar
surfaces are warped by a homography with help of the predicted pose onto the current image.
The patch position is then refined with simple block matching (such as L1- or L2-Norm). As the
image textures are never updated, the tracking does not drift at all.

Continuous camera motion: If the camera motions are continuous and the temporal coherence is
fulfilled, in particular for stationary systems, small feature windows can be tracked directly. In
this case, we use the well-known Kanade-Lucas tracker enhanced by several extensions
[ZGN04] like building an image pyramid for coarse-to-fine tracking, estimating affine
transformation parameters to detect outliers and prevent drift. As most outliers are already
detected at feature level, we use the complete set of 2D/3D correspondences for pose estimation
rather than applying a further filtering. This approach is very fast at the expense of robustness
against rapid camera movements.

2.4 Tracking with line models

For industrial applications, poorly textured objects with sharp edges have to be handled.
Contour-based tracking approaches turned out to be suitable for such scenarios [CMC03].

Camera pose estimation by registering a 3D line model onto the image gradient can be done with
or without explicitly extracting the image line features. In the first case, the camera pose
computation is achieved by minimizing the distances between the lines of the projected 3D
model and the corresponding image line features. A widely used technique to avoid the
computationally expensive extraction of image line features is to perform a search for gradient
maxima in the image only for several sample points of a line in a perpendicular direction to that
line. In our work, we focus on a tracking approach for which the camera pose is estimated by
minimizing the distance between sample points on a projected line of the given 3D model and
the corresponding maxima of the image gradient.

Multiple hypotheses: The challenge of the tracking system is to find the maximum of the
gradient that corresponds to the sample point of a line, as there can be many candidate matches
for one sample point (Fig. 3). We apply here the edge tracking method of [VLF04] that uses
multiple hypotheses for assigning a 2D feature to a 3D sample point of a line model together
with the Tukey Estimator [RL87] as a robust estimator function.

Figure 3: Search segment and multiple hypotheses

The given 3D line model is projected into the image plane with the camera pose of the previous
frame. For each projected edge E of the 3D model, equally spaced sample points pi are
determined. At every sample point pi, a perpendicular search for the points qi,j is performed on
both sides of the projected edge. The points qi,j are possible candidates for points on the desired
edge.

Adaptive sample points: To improve the robustness of the tracker, we implemented an adaptive
system using only gradient maxima that most likely correspond to the considered line sample
point. In order to know which gradient maximum is the one on the wanted edge in the image, a
state of the visual properties of a sample point on an edge has to be maintained. Therefore, a
temporal low pass filter is applied on the visual properties of every sample point of an edge. As
the visual perspective, the lighting conditions and the background in an image sequence are not
constant over time, the appearance of an object edge can change considerably. Therefore, it is
not sufficient to describe the visual state with a single Gaussian distribution. By using a mixture
of Gaussians it is possible to describe a single sample point with several visual properties.

Choice and visibility of the sample points: The number of sample points on a projected line is
chosen in such a way that the sample points are evenly distributed in the image. The test, if a
sample point of a line feature is visible, is performed in hardware using a GL extension. A
VRML model of the tracked object is needed for this visibility test.

2.5 Re-Initialization

The goal of the re-initialization is to recover the current pose, when the tracking failed. Here we
take advantage of the information collected during the tracking. The current implementation
checks the pose quality on base of the re-projection error in the image and the covariance
matrices of the camera pose and stores robust features (SIFT). At re-initialization time the
features of the current frame are matched with the features cached preliminarily. The problem
can then be seen as a wide baseline matching problem intensively investigated in the computer
vision community [Bau00, LVT03, Low04].

3 Arranging the building blocks: A generic framework "VisLib2"

Since the objects to be tracked depend on the scenarios, it should be possible to easily (re)-
configure the tracking system even at running time. For this purpose, we developed a modern
and flexible C++ based library that offers a high level of abstraction. The fundamental concept
of our implementation relies on an explicit and systematic separation of data and algorithms.
Data are stored in a shared memory region called DataSet that offers access to data objects by
name over well-defined keys. Algorithms are encapsulated in Actions with an unified interface.
This interface is reduced to four simple functions, one for setting the data keys, one for applying
the action to the data and two for reading from and writing to an XML file all internal parameters
and keys needed for execution. All available actions are registered in the so-called TypeFactory
that allows instantiation (by name) at run-time. The instantiation of actions and data enables
completely dynamic system configuration and extension. New actions are developed as
additional DLLs and - with the TypeFactory mechanism – they are simply added to the
algorithm pool at system start. Actions can be combined to ActionPipes, which perform the
sequential execution of all added actions in a loop. As ActionPipes are actions themselves,
whole action combinations, e.g. the realization of a tracking system, can be saved and loaded via
xml once they have been composed. As a nice analogy, one can say that VisLib2 configurations
are read from XML files like C programs are built up from source code. For visual assembling,
loading, saving and executing of VisLib2 ActionPipes, a user interface named PicMod has been
developed. As the pipes only support sequential execution of actions, the integration of more
complex control structures based on complete graphs is under development.

4 Evaluation

We defined several scenarios in the field of industrial maintenance and cultural heritage, each
one of them having different boundary conditions and requirements due to varying target objects,
scenes, camera motions and lighting changes. For example, we use as non-planar test objects a
poorly textured BMW armrest, a machine command and the engine of a BMW. A (well textured)
poster serves as a planar test object and a whole room as a larger test scene. From those target
scenes, we captured video sequences (320x240) with a Firewire camera performing rapid camera
movements as well as continuous ones and switching on and off the lights. As an outdoor
scenario, a video of the ruins of Sagalassos has been recorded with a camcorder being fixed to a
tripod, thus performing only rotational motions. Then, we defined different instances of the
tracking framework (MA-MD) by combining appropriate tracking actions according to the
requirements of the scenarios:

Method Initialization Tracking Re-Initialization

MA Local SIFT features Local SIFT features Local SIFT features

MB Marker Local KLT features Marker

MC Marker Line model Marker

MD Local SIFT features Texture Patches Local SIFT features

Table 1: Instances of the tracking framework

Results of the different methods are given in Fig. 4. All methods have been tested on a 1.7 GHz
processor with the accordant parameters (e.g. search ranges, number of features) being optimized
for yielding sufficiently stable results. We did not correct for radial distortion. Scenario (a)-(c)
shows the machine command with obvious light changes and occlusions. It has been calibrated
using method MA (SIFT). The BMW engine (d)-(f) has been processed with the same approach.
Images (g)-(i) (engine command, armrest, room) show results from the tracking with line models
(MC). The poster (k)-(l) has been calibrated successfully with method MD (texture patches).
Again, these images show obvious light changes and large motions. Frames (m)-(o) show the
outdoor environment and could be handled with the same approach due to pure rotational camera
movements. The analysis below sheds light on the strengths and weaknesses of the different
methods. Precision, robustness and speed are chosen as criteria for the validation of their
capability with respect to the given scenarios.

Method MA (SIFT) is very robust against rapid camera movements, light changes (Fig. 4 (b))
and partial occlusions (Fig. 4 (a),(c)). In particular, this method is very stable with highly
textured as well as with poorly textured objects, respectively the command machine (Fig. 4 (a)-
(c)) and the BMW engine compartment (Fig. 4 (d)-(f)). Poorly textured objects with clear
contours are well suited to the line model method. The BMW armrest (Fig. 4 (h)), the room (i)
and also the machine command (g) fit this requirement and are well tracked over long sequences.

As the computation of the Euclidian invariant SIFT features is computationally very expensive,
method MA (12 Hz) is appropriate for challenging scenarios with rapid camera movements and
uncontrolled lighting, whereat the target object is small and exhibits no strong contours.
Approach MC reaches a higher speed (20 Hz) and is the most appropriate one to use if we
consider objects with dominant contours or larger test scenes.

If the target object is planar and highly textured like the poster, we do not have to spend much
time computing invariant features, and reach very good results with method MD (Fig. 4 (j)-(l)).
Rapid camera movements are also handled, as our implementation reaches a high framerate (25
Hz) and the texture patches are always transformed by a homography into a convenient view.
Even light changes (Fig. 4 (l)) and a large change in depth (Fig. 4 (j),(k)) are managed. As the
homography warping is also valid for purely rotational camera motions combined with non-
planar target scenes, we obtained good results applying this method to the video of the outdoor
environment (Fig. 4 (m)-(o)) by assuming the whole scene lies on a single plane. If the target
scene is sufficiently textured and the camera motions are expected to be continuous without
many rapid movements, method MB is the most appropriate one, as it is very fast (30 Hz) and
delivers a smooth camera trajectory. A continuous image sequence of the engine command could
be calibrated very precisely using this approach.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4: Different scenarios have been calibrated with appropriate instances of our tracking
framework: For optical verification of the current pose, the video frames are augmented with
either the axis of the world coordinate system or the CAD model of the target object or scene.

5 Conclusion

We have presented an overview of different tracking approaches and stressed their strengths and
weaknesses in the context of visual tracking for augmented reality. We showed how to combine
them as building blocks of a general framework. In particular, we proposed an improved line
model tracking algorithm with multi-hypothesis matching, and introduced adaptive learning of
the edge properties. On the one hand, this approach enables a better identification of the most
likely edge, and on the other hand, avoids local minima by excluding wrong hypotheses. This
method is used for initialization as well as for tracking. The different feature-based methods

provides stratifying results for fast and robust tracking. The matching with pre-defined reference
features removes drift and thus enables tracking of very long sequences with a high accuracy.

None of the presented combinations leads to the best results in all the tested scenes. Nevertheless
we could always find at least one sensible combination of tracking actions for every target
application that optimizes precision and speed yielding the necessary robustness.

Future work will concentrate on the management and tracking of dynamic scenes. Furthermore,
additional methods for automatic tracking initialization have to be found in order to avoid any
kind of user interaction or scene engineering.

6 References

[Bau00] Baumberg, A.: Reliable Feature Matching Across Widely Separated Views. Proc.
CVPR, Volume(1), 2000

[BPS05] Bleser, G., Pastamorv, Y., Stricker, D.: Real-time 3d camera tracking for
industrial augmented reality applications. Proc. WSCG, pp. 47-53, Plzen, 2005.

[CMC03] Comport, A.I., Marchand, E., and Chaumette, F.: A real-time tracker for
markerless augmented reality. Proc. ISMAR, pp. 36-45, Tokyo, Japan, 2003

[GSN02] Genc, Y., Riedel, S., Souvannavong, F., Navab, N.: Markerless tracking for
augmented reality: A learning-based approach. Proc. ISMAR, 2002

[HS88] Harris, C., Stephens, M.J.: A combined corner and edge detector. Proc. Fourth
Alvey Vision Conference, pp. 147-151, Manchester, 1988

[KB99] Hirokazu K. and Mark B.: Marker tracking and hmd calibration for a video-based
augmented reality conferencing system. Proc. IWAR, pp. 85-94, October 1999

[KPV99] Koch, R., Pollefeys, M., Van Gool, L.: Realistic 3D Scene Modeling from
Uncalibrated Image Sequences. Invited contribution to special session on Image
Analysis and Synthesis, 1999

[KS04] Ke, Y., Sukthankar, R.: PCA-SIFT: A More Distinctive Representation for Local
Image Descriptors. Proc. CVPR, 2004

[Low04] Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision, 2004

[LVT03] Lepetit, V., Vacchetti, L., Thalmann, D. and Fua, P.: Fully Automated and Stable
Registration for Augmented Reality Applications. Proc. ISMAR, 2003

[MS02] Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. Proc.
ECCV, 2002

[MS03] Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. Proc.
CVPR, pp. 257-264, 2003

[MTB04] Matthews, I., Takahiro, I., Baker, S.: The Template Update Problem. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 810-815, 2004

[MZS03] Mikolajczyk, K., Zisserman, A., Schmid, C.: Shape recognition with edge based
features. Proc. British Machine Vision Conference, 2003

[RL87] Rousseeuw, P., Leroy, A.: Robust Regression and Outlier Detection, Wiley, 1987

[Str01] Stricker, D.: Tracking with Reference Images: A Real-Time and Markerless
Tracking Solution for Out-Door Augmented Reality Applications. Proc. of VAST,
2001

[ST94] Shi, J., Tomasi, C.: Good features to track. Proc. CVPR, pp. 593-600, Seattle,
Washington, 1994

[SUYT03] Satoh, K., Uchiyama, S., Yamamoto, H., Tamura, H.: Robust Vision-Based
Registration Utilizing Bird's-Eye View with User's View. Proc. ISMAR, pp. 46-
55, 2003

[VLF04] L. Vacchetti, V. Lepetit, and P. Fua. Combining edge and texture information for
real-time accurate 3d camera tracking. Proc. ISMAR, 2004.

[YNA99] You, S. Neumann, U., Azuma, R.: Hybrid Inertial and Vision Tracking for
Augmented Reality Registration," Proc. IEEE Virtual Reality, IEEE CS Press, pp.
260-267, Los Alamitos, California, 1999

[ZGN04] Zinßer, T., Gräßl, C., Niemann, H.: Efficient Feature Tracking for Long Video
Sequences. Proc. DAGM Symposium, 2004

	Introduction
	Building blocks
	Overview
	Initialization
	Tracking with local features
	Tracking with line models
	Re-Initialization

	Arranging the building blocks: A generic framework "VisLib2"
	Evaluation
	Conclusion
	References

