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ABSTRACT
Digital pen signals were shown to be predictive for cognitive states,
cognitive load and emotion in educational settings. We investigate
whether low-level pen-based features can predict the difficulty of
tasks in a cognitive test and the learner’s performance in these tasks,
which is inherently related to cognitive load, without a semantic
content analysis. We record data for tasks of varying difficulty
in a controlled study with children from elementary school. We
include two versions of the Trail Making Test (TMT) and six draw-
ing patterns from the Snijders-Oomen Non-verbal intelligence test
(SON) as tasks that feature increasing levels of difficulty. We ex-
amine how accurately we can predict the task difficulty and the
user performance as a measure for cognitive load using support
vector machines and gradient boosted decision trees with different
feature selection strategies. The results show that our correlation-
based feature selection is beneficial for model training, in particular
when samples from TMT and SON are concatenated for joint mod-
elling of difficulty and time. Our findings open up opportunities for
technology-enhanced adaptive learning.
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1 INTRODUCTION
Digital pens enable the immediate digitization of handwritten texts
and drawings into digital pen data which typically includes time-
stamped spatial information and pressure grouped as pen strokes.
Digital pens can be utilized for digitalizing analogue processes in ed-
ucation by, e.g., multimodal learning analytics [20], which enables
technology-enhanced adaptive learning. Techniques that are de-
veloped for semantic annotation and interpretation of multimedia
content [10, 12, 25, 26, 31, 39], automatic analysis of handwritten
report forms [3] and gesture recognition for sketch-based inter-
faces [1, 2, 42] can be used for this purpose. In addition, signal-level
features extracted from digital pens were shown to correlate with
cognitive and affective states of a learner, e.g., expertise [21, 49],
emotions [9, 36] and cognitive load [48, 50]. Hence, digital pens
are a promising technology for scalable and real-time adaptive
learning systems, also because recent advances in digital pen hard-
ware for tablets1 and paper2 allow for an efficient and unobtrusive
integration in existing learning environments.

In this work, we investigate the relation between pen-based fea-
tures and task difficulty, as well as the learner’s performance in a
task. Other than the literature, we consider children as our target
group. Measuring perceived task difficulty in children turned out
to be challenging, as they might not have sufficient metacognitive
skills to provide reliable self-report assessment [4, 5]. Therefore,
behavioral and rather objective measures such as digital pen data
seem to be advantageous for this target group. In contrast to ret-
rospective measures, the online measures of the digital pen might
provide muchmore detailed insights into children’s task completion
processes. Further, the digital pen fits into a child’s familiar, natural
work environment and thereby reduces extra mental load [19]. Due
1https://www.samsung.com/de/tablets/galaxy-tab-s6-t860/SM-T860NZAADBT/
2https://www.neosmartpen.com/en/
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to the ongoing development of the prefrontal cortex and the related
executive functions, children have difficulties controlling their at-
tention and actions as well as inhibiting distracting impulses [6].
The non-intrusive measurement with a digital pen minimizes the
distraction caused by data recording and does not interfere with
task processing. The integrated sensors are not only more objective,
they cover a different spectrum of observable features.

We focus on modelling task difficulty and user performance for
two pen-based cognitive tests using support vector machines and
gradient boosted trees. We include the Trail Making Test (TMT) for
children [29, 30] and six drawing patterns from the Snijders-Oomen
Non-verbal intelligence test (SON) [14]. Input features are extracted
using a recently released feature library for digital pen data3 that
implements 165 features from the literature [24]. Prediction targets
include the difficulty levels of the tasks (classification) and the con-
tinuous user performance measures for the TMT and SON tasks
(regression): completion time for both tasks and the SON-specific
measure pattern coverage. We systematically train and evaluate
machine learning models using the nested crossvalidation para-
digm and different approaches for feature selection. Also, we test
the performance of our trained models on the respectively other
task to estimate the generalizability of our models. The dataset for
this work stems from a controlled lab study (𝑛 = 36): we asked
children to solve two versions of the TMT and six drawing patterns
of the SON test with increasing levels of difficulty. In addition, we
implement and use the automatic metric coverage for SON pat-
terns which encodes the proportion of the pattern that was solved
correctly based on a distance threshold. The original evaluation
scheme considers a manual and binary rating only.

Our main contributions are: (1) conducting a controlled experi-
ment with children for collecting digital pen data from tasks with
varying difficulty and (2) systematically modelling the relation of
digital pen features to task difficulty and learner performance us-
ing combinations of two machine learning algorithms and generic
feature selection approaches. Also, we discuss the impact of feature
selection on the machine learning performance.

2 RELATEDWORK
We describe related work on inference of users’ cognitive states
using digital pens, applications of digital pens in education, in
particular for children in elementary school, and feature extraction
methods for digital pens. We describe the background on the two
cognitive tests used in this work, the TMT and SON tests.

2.1 Digital Pen Data and Cognitive States
Previous works investigated the relation between digital pen fea-
tures and cognitive states of a user. Zhou et al. [49] investigated
the performance of machine learning models for predicting domain
expertise of a user and the dominant domain expert in a group of
users for the Math Data Corpus [17]. They found that features based
on average stroke distance, duration, pressure, and speed could ef-
fectively separate experts from non-experts in mathematics. A more
detailed analysis of this experiment can be found in [21]. Frommel
et al. [9] trained machine learning models that predict a user’s af-
fective state in a learning game using pen data from a digitizing
3https://github.com/DFKI-Interactive-Machine-Learning/ink-features

tablet and in-game performance as input, and self-reported emo-
tions as prediction target. Schrader and Kalyuga [36] determined
that pen pressure can indicate emotions such as enjoyment and
frustration. They state that the relation between pen pressure and
writing performance is negotiated by the students’ engagement.

Pen features can be used for diagnosis support in the medical
domain [38]. Prange and Sonntag [27] used digital pens for auto-
matic scoring of the clock drawing test for dementia diagnosis. An
end-to-end approach for this was presented by Souillard-Mandar
et al. [41]. Werner et al. [43] used signals from digital pens to differ-
entiate between mild cognitive impairment and mild Alzheimer’s
disease. Other usecases include the diagnosis of Parkinson’s dis-
ease [8], the improvement of the identification of children suffering
from developmental disorders, e.g., coordination disorder [33], dys-
graphia [32] or high-functioning autism spectrum disorder [34], by
detecting deviant handwriting characteristics.

Other works focused on the relation of handwriting behavior and
mental workload. Luria and Rosenblum [16] collected handwriting
data for three tasks of increasing difficulty using a digitizing tablet
(complete numerical progressions). They found differences in pen
features based on temporal, spatial and angular velocity, but not on
pressure, for the different levels of difficulty. Yu et al. [48] aimed
at predicting the mental workload during sentence composition
using curvature and velocity-based features. In previous research,
they could also confirm an indicating function for pressure and pen
orientation [46, 47]. Lin et al. [15] used three difficulty levels of an
English sentence-making training to induce differences in cogni-
tive load. By means of feature selecting techniques and machine
learning, they successfully classified the resulting three levels of
cognitive load through writing features. A cross-validation accu-
racy of 76.27%was reached by a subset of features including average
pressure, azimuth, velocity in Y-direction, count of sensible pauses
and maximum pressure. Zhou et al. [50] summarize further pen-
based approaches for cognitive load estimation and describe the
relation to the cognitive load theory and approaches based on other
modalities. Similar to [16], we aim at differentiating the performed
tasks using pen-based features under the assumption that the task
difficulty has an observable effect on the handwriting behavior.
However, we focus on cognitive tests that are performed by chil-
dren and include more features. We concentrate on the sketching
behavior which might differ from writing texts or digits [21, 45].

2.2 Digital Pens in Education
Digital pens can be applied to support students through interactive
functions or to monitor their writing activity. An example of sup-
portive interaction is the usage of the pen as assistive technology:
Students with learning disabilities can benefit from digital pens
providing an audio function [22]. Rawson et al. [28] investigated
the use of the digital pen as monitoring device. They tracked stu-
dent’s homework activity using digital pen technology and found
the productive use of homework time to be related to the course
grade. Pen data can be used in multimodal learning analytics (MLA).
The goal is to enable student-centered learning environments that
support learning activities by modelling, predicting and reacting to
(real-time) learning behavior and progress, e.g., cognitive load or
domain expertise (see [18] for an overview).

https://github.com/DFKI-Interactive-Machine-Learning/ink-features
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Figure 1: Shortened example pattern of the TMT-B task.

2.3 Feature Extraction from Digital Pen Data
Machine learning models require a representative encoding of
sketches with respect to the prediction target, e.g., shapes or ges-
tures. A common approach for signal analysis of digital pens is to
devise a handcrafted set of geometric or temporal features includ-
ing, e.g., stroke length, curvature and velocity. Different feature
sets are proposed in the literature [7, 35, 40, 44] which were shown
to be effective for training machine learning models. We integrate
the comprehensive collection of hand-crafted features proposed
in [24]. Alternatively, sketch representations can be learned from
large-scale sketch datasets: Ha and Eck [11] presented the sketch
dataset QuickDraw and the variational autoencoder sketch-rnn
that learns to encode a sketch in a dense vector 𝑧 for the purpose of
reconstructing it. Kaiyrbekov and Sezgin [13] implemented a simi-
lar model, stroke-rnn, that encodes each stroke separately. They
use the learned features (𝑧 vector) as input to a classification-based
sketch segmentation model. However, both approaches remove
timestamps and pressure data, which were shown to relate to cog-
nitive states of a user [21, 36].

2.4 Cognitive Tests
The Trail Making Test for children is a standardized cognitive test
that aims at measuring individual differences in the general execu-
tive function [29]. It includes two parts (A and B), each showing
15 encircled objects on a sheet of paper that shall be connected by
drawing lines with a pen in the correct order and as quickly as pos-
sible. The performance indicator is the total completion time. TMT-A
involves number sequencing (1 to 15), whereas TMT-B includes set-
shifting: it requires the children to alternate between numerical
and alphabetic sequences (1–A–2–B–3. . . ). Completion times are
expected to be higher in TMT-B since this condition places increased
cognitive demands on children (see Figure 1 for an example).

The SON-R 5½-17 [37] is an adaptive, non-verbal intelligence test
for children between five and a half and 17 years of age. It includes
seven sub-tests in four categories: abstract reasoning tests, concrete
reasoning tests, spatial tests, and perceptual tests. We use a set of
items from the sub-test “patterns” which is a spatial test. It includes
18 repeating patterns consisting of one or two lines that correspond
to 9 levels of difficulty. In the middle of each pattern, a small part
is left out which has to be completed. It includes two items per
level of difficulty, to allow for an adaptive testing procedure. The
difficulty of a pattern results from the pattern’s complexity (e.g.,
asymmetry, number of lines going backwards), the number of lines,
and the width of the missing part (see Figure 2).

3 METHOD
In this section, we describe our approaches for modelling task diffi-
culty and user performance using low-level features from digital
pen data and our user study. We use classification for differentiating
between multiple levels of difficulty and regression algorithms for
estimating the task-related and continuous user performance met-
rics. In particular, we describe the feature extraction, the classifica-
tion and regression problem, the feature selection approaches, and
the details on model training. Further, we describe our user study
and formulate research questions and corresponding hypotheses
that guide our machine learning experiments.

3.1 Feature Extraction
The input to our machine learning models are digitized hand-drawn
sketches 𝑆 from digital pens. A single sketch 𝑠 ∈ 𝑆 includes all pen
strokes, i.e., time-stamped points in a 2-dimensional coordinate
system and pressure values, that were drawn to solve one of the
described tasks. For machine learning, sketches are commonly en-
coded using a set of hand-crafted features. We use of a recently
published comprehensive collection of 165 features [24] that in-
cludes most of the previously proposed feature sets [7, 35, 40, 44].
Small feature subsets were already used for modelling cognitive
states [21, 36, 49], but there is no explorative analysis that includes
all features. We calculate the six additional features described in
[49]: the average of the number of pen strokes, the average of the
stroke distance and duration, the average of writing speed and pres-
sure, and the total writing time. Finally, we represent each sketch 𝑠
as a feature vector 𝑓 (𝑠) ∈ R171. For model training and inference,
all sketches of a task 𝑆𝑇𝑎𝑠𝑘 are encoded into a feature matrix 𝑋𝑇𝑎𝑠𝑘
where each columns corresponds to one feature:

𝑋𝑇𝑎𝑠𝑘 = 𝑓 (𝑆𝑇𝑎𝑠𝑘 ) =


𝑓 (𝑠1)⊤
.
.
.

𝑓 (𝑠𝑛)⊤


Due to the high amount of available features, we implement and
evaluate different feature selection strategies and discuss the result-
ing model performances. Including all features for model training
might result in good prediction performance within a task, but is
likely to overfit to the specific dataset. For all experiments, we re-
move three features that directly encode the completion time (one
of our prediction targets) and one feature that, in our experiment,
has zero variance4. 167 features remain for our experiments.

3.2 Classification of Task Difficulty
We consider task difficulty as a measure for mental effort that is
required for solving a task: Our goal is to predict the task level
and its inherent difficulty using data from the digital pen that was
used for solving it. The TMT features two levels of difficulty, TMT-A
(easy) and TMT-B (difficult). For SON, our tasks include six levels of
difficulty, SON-1 (easy) to SON-6 (difficult). As we are interested in
the generalizability of our models, we merge the patterns SON-1 to
SON-3 (easy) and the patterns SON-4 to SON-6 (difficult). This allows
an evaluation of our models across tasks and joint model training
4we exclude rubine-13-duration, willems-24-duration and the
average-writing-time from [49] because they directly encode the completion time
and hbf49-36-2dhistogram due to its zero variance.



by concatenating samples from both tasks. We hope to find features
and weights that also estimate the difficulty of unseen pen-based
tasks. The prediction target, difficulty, is defined per sketch 𝑠 as:

𝑑 (𝑠) =
{
0 if 𝑠 is easy
1 if 𝑠 is difficult

The vector 𝑦𝑑 includes the difficulty levels of all sketches and is
used for supervised learning and evaluation. We consider support
vector classification using the radial basis function as kernel (SVC)
and gradient boosted decision trees (GBDT) as machine learning
algorithms. To merge the SON patterns, we extract the features
separately for each sketch and use their element-wise mean. We
report the performance of our classification models in terms of
accuracy, the receiver operator characteristic (ROC) and the area
under the ROC curve (AUC).

3.3 Estimating the User Performance
Similar to the classification setting, we consider the user perfor-
mance metrics of both tasks as a measure for mental effort. The
metrics include time for TMT and SON, as well as coverage for
SON. The prediction target vectors used for supervised learning
are 𝑦𝑡𝑖𝑚𝑒 and 𝑦𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 . We consider two regression algorithms for
modelling the continuous metrics: support vector regression using
the radial basis function as kernel (SVR) and a gradient boosted
regression tree (GBRT). As the time metric is available for both
tasks, we also consider a cross-task evaluation and joint modelling
for estimating the generalizability of our models. We train separate
regression models for predicting the coverage metric. The perfor-
mance of our regression models are reported using the 𝑅2 metric,
i.e., the proportion of the variance in the prediction target that is
explained by our features, and the mean squared error (MSE).

3.3.1 SON coverage. The assessment metric for SON is described in
the administration manual [37]. It considers whether the reference
pattern of the given task can be matched to the hand-drawn strokes
or not. For this, the experimenter has to manually compare the
drawn strokes with a reference pattern printed on a transparent foil.
An item is solved, if the drawn pattern is complete and precise: the
distance between a drawn stroke and the reference pattern may not
exceed a maximum threshold defined by the diameter of a circle that
is also printed on the foil. We implement an automatic assessment
algorithm based on this principle. It takes the digitized sketch,
the corner-points of the reference pattern in the same coordinate
system and a distance threshold as input. We determine all parts
of the reference model for which a pen signal exists that is closer
than the distance threshold. We sum up the length of the parts
of the reference pattern that are covered by the sketch. The ratio
between this sum and the total length of the reference pattern
(summed distances between the corner points) is our automatic
metric coverage. The advantages of our metric are that it is much
faster and more convenient to apply, and it is fully objective and
more fine-grained than the manual evaluation. Figure 2 shows a
SON-like example with overlaid digital pen data (original patterns
may not be distributed). The reference pattern is visualized by their
numbered corner points, green lines, if there is a successful match,
and red lines, if there is no matching stroke data.

1 2

3 4

5 6

7 8

9

10 11

12 13

Figure 2: Example visualization of the SON coverage.

Table 1: Parameters used for hyper-parameter optimization
by means of a grid search.

Model Parameter Ranges

𝑆𝑉𝐶 and 𝑆𝑉𝑅 𝐶 ∈ {1, 10, 100, 1000}
𝑔𝑎𝑚𝑚𝑎 ∈ {10−3, 10−4 }

𝐺𝐵𝐷𝑇 and𝐺𝐵𝑅𝑇 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ∈ {100, 500}
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ {3, 4}
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∈ {.1, .01}

3.4 Feature Selection and Model Training
The goal of feature selection is to optimize the prediction per-
formance of a model by selecting suitable features for a dataset.
We consider two feature selection methods: the correlation-based
method 𝜑𝑐𝑜𝑟𝑟 and 𝜑𝑣𝑖 𝑓 based on the variance inflation factor. We
compare them to a baseline that includes all features. We also test
compositions of the two feature selection methods: 𝜑𝑐𝑜𝑟𝑟 ◦𝜑𝑣𝑖 𝑓 and
𝜑𝑣𝑖 𝑓 ◦𝜑𝑐𝑜𝑟𝑟 . For𝜑𝑐𝑜𝑟𝑟 , we calculate the Pearson correlation between
features and prediction target for TMT and SON, e.g., for 𝜑𝑑𝑐𝑜𝑟𝑟 , we
compute the correlation between 𝑋𝑇𝑀𝑇 and 𝑦𝑑

𝑇𝑀𝑇
, and between

𝑋𝑆𝑂𝑁 and𝑦𝑑
𝑆𝑂𝑁

. The features with a correlation of 𝑟 > 0.2 for both
datasets are used for training. The VIF-based method 𝜑𝑣𝑖 𝑓 removes
linear dependent features: features that cause multicollinearity in
the training data 𝑋 (independent from the prediciton target). We
iteratively remove the features with the highest 𝑉 𝐼𝐹 score until no
feature exceeds a threshold of 10.

All models are implemented as a scikit-learn [23] pipeline that
applies two preprocessing steps: imputation of missing values us-
ing the mean value of a feature as replacement and robust data
scaling (removes the median and scales the data based on the range
between the first quartile and the third quartile). For training and
evaluation, we use a 5x2 nested crossvalidation (CV): the inner
loop performs a grid search (2-fold CV) for optimizing the model
parameters, the outer loop (5-fold CV) estimates the generalization
error of the trained model. The range of model parameters for the
grid search is summarized in Table 1. To estimate how well a model
generalizes across tasks, we consider two approaches: In case we
train on samples from a single task (e.g., TMT), we compute the
performance metrics for that model using samples from the respec-
tively other task (e.g., SON). Alternatively, we can concatenate the
task-specific datasets and regard the generalization error of the
CV as generalization error. This requires that the datasets of both
tasks include the same features and the prediction target has to be
encoded equally. Concatenating the two datasets before training
should improve the generalization capability of the model, because
it can learn from samples of both tasks.



3.5 User Study
For our machine learning experiments, we use data from a con-
trolled lab study: Elementary school children are provided with
digital pens and instructed to perform two types of standardized
cognitive tests (TMT and SON) involving drawing tasks. For both,
we vary the difficulty of the sub-tasks and record the digital pen data
and conventional performance measures (e.g., completion time).
The labelled data is used in our machine learning experiments, i.e.,
for modelling the task difficulty and user performance based on
digital pen data.

3.5.1 Participants. A total of 36 children (61% female) participated
in this study. We invited students aged seven to eleven years (𝑀 =

10.04, 𝑆𝐷 = 1.3), because our target group are third and fourth
grade elementary school children. The students attended the ex-
perimental setting in small groups of up to seven participants and
were instructed simultaneously.

3.5.2 Study Design and Task Manipulation. In a within-subjects
design, the factor task difficulty is varied in both cognitive tests.
For the TMT, two difficulty levels are realized by providing each
child with the TMT-A (easy) and TMT-B (difficult). For the sub-test
“patterns” of SON, a set of six items, representing the first six of
the nine levels of difficulty, is used. The children are instructed to
complete all six items successively, beginning with the easiest one.

3.5.3 Procedure. First, the subjects receive information on the
course of the experiment as well as on correct handling of the
digital pen. Then, they are asked to note down their birth date, sex
and handedness. After a standardized verbal task introduction, sub-
jects solve the TMT as quickly as possible. Half of the participants
start with TMT-A, the other half completes the TMT-B first. Each
TMT part is preceded by visual demonstration and a sample trail.
The subsequent SON-based task is explained by means of a sample
pattern. Then, participants complete one of two randomly assigned
parallel series of six incomplete patterns. The patterns of increasing
difficulty are extracted and adapted from the SON-R 5½-17.

3.5.4 Apparatus. The study is conducted using seven instances of
the Neo Smartpen M1 as digital pens. Each pen is connected to an
Android mobile device via Bluetooth that runs a custom record-
ing software based on the official Android SDK5. Our application
visualizes the pen signal in real-time and streams it to a central
recording server via local network or the internet (see Figure 3). The
digital pen resembles a fountain pen in appearance, but is equipped
with a standard ball pen tip, which facilitates writing on paper. The
Neo Smartpen M1 uses an optical sensor for digitizing hand-drawn
sketches including meta data such as the type of paper and the page.
This requires that a subtle micro-dot pattern, Ncode, needs to be
printed on the paper. We use the plain Ncode PDF-templates with
page information for this study6. The digital pen provides strokes
including high resolution pressure information. Based on the page
and predefined bounding boxes for each task, we cluster the strokes
into sketches that correspond to this task, e.g., the first SON pattern.
Per participant, we store all raw data from the pen together with
the task assignment using the human-readable JSON data format.

5https://github.com/NeoSmartpen/Android-SDK2.0
6https://www.neosmartpen.com/en/ncode-pdf/

     

   

 

 

 

 

 
 

 
 

     

   

 

 

 

 

 
 

 
 

Figure 3: Technical architecture of the recording equipment.

3.5.5 Data Cleaning. We completely removed data from three par-
ticipants, leaving data from 33 participants for our machine learning
experiments. The data from participant 2 was removed, because of
its age of 14 years (it is not part of our target group). Participant 4
showed no intention to solve the tasks correctly during the study:
the participant was clearly scribbling for more than half of the tasks.
The parents of participant 14 aborted the participation. Further, we
observed that three participants either started too early or started
within the bounding box of another task, both causing a long phase
of inactivity in the beginning of individual sketches. This was pos-
sible due to the real-time visualization of the drawings that were
observed by one of the experimenters. We manually removed the
respective strokes in order to remove these inactivity phases. We
excluded the data from participant 16 for the SON tasks, because
the pen disconnected while recording them.

3.6 Machine Learning Experiments
We aim at modelling the difficulty 𝑑 of a task and the user’s perfor-
mance, in terms of 𝑡𝑖𝑚𝑒 and 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 , in that task using features
from a digital pen that was used for solving it. We investigate
whether classification models can accurately differentiate between
easy and difficult task levels of sketches 𝑠 ∈ 𝑆𝑇𝑀𝑇 and 𝑠 ∈ 𝑆𝑆𝑂𝑁 .
We hypothesize that models perform well within a task in terms of
accuracy (H1.1), but do not generalize well to other tasks because
some features might be highly indicative for one of the tasks (H1.2).
Further, we investigate the impact of the correlation-based feature
selection 𝜑𝑑𝑐𝑜𝑟𝑟 . The underlying assumptions are that (1) features
that do not correlate with the prediction target 𝑦𝑑 do not facilitate
good predictions (garbage in, garbage out), and (2) features that
correlate with the prediction target for only one of the tasks could
cause overfitting for that task and, hence, reduce the generalizabil-
ity. We expect that 𝜑𝑑𝑐𝑜𝑟𝑟 has a positive effect on accuracy (H1.3).
However, we are not sure about the effect on the generalizability
between the two considered tasks, because the weights of the model
are not influenced by samples of the respectively other task. There-
fore, we consider model training and evaluation on concatenated
datasets that include samples from both tasks: 𝑆𝑇𝑀𝑇+𝑆𝑂𝑁 . Our hy-
pothesis is that we can achieve a similar accuracy than for single
task models and that the model benefits from 𝜑𝑑𝑐𝑜𝑟𝑟 (H1.4).

For the regression models estimating the user performance met-
ric 𝑡𝑖𝑚𝑒 , we perform analogue tests to the classification problem

https://github.com/NeoSmartpen/Android-SDK2.0
https://www.neosmartpen.com/en/ncode-pdf/


with similar hypotheses: We expect that regression models trained
for one task can effectively predict the target 𝑡𝑖𝑚𝑒 for that task
(H2.1), but they do not generalize to the respectively unseen task
(H2.2), and the 𝜑𝑡𝑖𝑚𝑒

𝑐𝑜𝑟𝑟 feature selection improves the performance
of regression models in terms of the 𝑅2 and𝑀𝑆𝐸 metrics (H2.3). In
addition, we hypothesize that the completion time can be estimated
well for both tasks, if 𝑆𝑇𝑀𝑇+𝑆𝑂𝑁 is used for training and that these
models also benefits from the 𝜑𝑡𝑖𝑚𝑒

𝑐𝑜𝑟𝑟 feature selection (H2.4). Con-
cerning 𝑆𝑆𝑂𝑁 , we also aim at predicting the metric 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 . Our
hypothesis is that one of the considered models is able to learn the
relation between 𝑦𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 and 𝑋𝑆𝑂𝑁 (H2.5).

For all classification and regressionmodels, we investigatewhether
removing collinear features from the feature set improves the model
performance: We apply the VIF-based feature filter to all generated
datasets and repeat the model training. We also test whether the
order application of the VIF-based and the correlation-based feature
filter makes a difference. We assume that, to a certain degree, the
model quality can be traded off against the number of features.

4 RESULTS
The results of the machine learning experiments for classification
(predict the level of difficulty) are summarized in Table 2. We ob-
serve high accuracies for models that are trained and tested on
samples from the same task using all features: The 𝑆𝑉𝐶 achieves an
accuracy of 83.19% for𝑋𝑇𝑀𝑇 and 90.99% for𝑋𝑆𝑂𝑁 . The𝐺𝐵𝐷𝑇 mod-
els perform better with accuracies of 100% and 97.03%, respectively.
The 𝜑𝑑𝑐𝑜𝑟𝑟 feature selection selects 52 features from the initial set of
167. On average, we observe a better accuracy for all four models, if
the 𝜑𝑑𝑐𝑜𝑟𝑟 feature selection is applied: the 𝑆𝑉𝐶 accuracies increase
around 8.46%, while the accuracies for the 𝐺𝐵𝐷𝑇 models slightly
decrease by around 1.49%. However, all of these models perform
poor for the respectively unseen task (around 50% or worse). If we
perform the crossvalidation with data from both tasks (𝑋𝑇𝑀𝑇+𝑆𝑂𝑁 ),
we observe similar accuracy values compared to the single task
models. Further, the 𝜑𝑑𝑐𝑜𝑟𝑟 feature selection yields an improvement
of 9.8% for 𝑆𝑉𝐶 and a marginal improvement of 0.74% for 𝐺𝐵𝐷𝑇 .
The 𝜑𝑣𝑖 𝑓 feature selection is applied to each dataset 𝑋 separately
and reduces the number of features to 25 for 𝑋𝑇𝑀𝑇 , to 29 for 𝑋𝑆𝑂𝑁

and to 46 for𝑋𝑇𝑀𝑇+𝑆𝑂𝑁 . Overall, all accuracies are lower compared
to their counterparts from the 𝜑𝑑𝑐𝑜𝑟𝑟 feature selection. In a second
run, we applied the 𝜑𝑣𝑖 𝑓 feature selection after 𝜑𝑑𝑐𝑜𝑟𝑟 resulting in
11 features for 𝑋𝑇𝑀𝑇 and 𝑋𝑆𝑂𝑁 and 13 features for 𝑋𝑇𝑀𝑇+𝑆𝑂𝑁 .
Compared to the 𝜑𝑣𝑖 𝑓 -based selection only, all accuracies are better.
Despite the lower number of features that were used for training,
the accuracies are close to the results from the 𝜑𝑑𝑐𝑜𝑟𝑟 -based feature
selection and even better in case of 𝑋𝑇𝑀𝑇 . When applying 𝜑𝑑𝑐𝑜𝑟𝑟
after 𝜑𝑣𝑖 𝑓 feature selection, the number of features can be reduced
further (2, 3, and 7 features for 𝑋𝑇𝑀𝑇 , 𝑋𝑆𝑂𝑁 , and 𝑋𝑇𝑀𝑇+𝑆𝑂𝑁 , re-
spectively), but at the cost of the model accuracies. Only the 7
remaining features for 𝑋𝑇𝑀𝑇+𝑆𝑂𝑁 yield a comparable accuracy
of 92.39% with the 𝐺𝐵𝐷𝑇 model7. In Figure 4, we show the ROC
curves and AUC scores of 𝑆𝑉𝑅 and 𝐺𝐵𝐷𝑇 models trained using
𝑋𝑇𝑀𝑇+𝑆𝑂𝑁 , 𝜑𝑑𝑐𝑜𝑟𝑟 (𝑋𝑇𝑀𝑇+𝑆𝑂𝑁 ) and 𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑑𝑐𝑜𝑟𝑟 (𝑋𝑇𝑀𝑇+𝑆𝑂𝑁 ) as
datasets. The ROC curves and AUC scores indicate that the 𝐺𝐵𝐷𝑇
7A table with the features selected by 𝜑𝑐𝑜𝑟𝑟 and 𝜑𝑣𝑖 𝑓 ◦𝜑𝑐𝑜𝑟𝑟 for classification and re-
gression is provided in the appendix, because they performed well under all conditions.

models have a better trade-off characteristic between true and false
positive classifications. The 𝑆𝑉𝐶 performs on par with the 𝐺𝐵𝐷𝑇
models for the 𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑑𝑐𝑜𝑟𝑟 feature selection. In addition, the two
feature selection methods yield better characteristics than the base-
line which includes all features. We observe the best ROC and AUC
score for the𝐺𝐵𝐷𝑇 model trained on 𝜑𝑑𝑐𝑜𝑟𝑟 (𝑋𝑇𝑀𝑇+𝑆𝑂𝑁 ), while the
best accuracy score is observed for the corresponding 𝑆𝑉𝐶 model.

The results of the regression experiments (predicting time) are
summarized in Table 3. Using all features for training on 𝑋𝑆𝑂𝑁 ,
both models achieve good scores in the crossvalidation: 𝑅2 is 0.71
for 𝑆𝑉𝑅 and 0.7 for𝐺𝐵𝑅𝑇 . For𝑋𝑇𝑀𝑇 the 𝑆𝑉𝑅 model performs poor,
while the 𝐺𝐵𝑅𝑇 model can explain some of the variance in 𝑦𝑡𝑖𝑚𝑒

with 𝑅2 = 0.3. The𝜑𝑡𝑖𝑚𝑒
𝑐𝑜𝑟𝑟 feature selection selects 41 features, which

has a positive impact on the model results. In particular, the 𝑆𝑉𝑅
model trained on 𝑋𝑇𝑀𝑇 achieves a better score of 𝑅2 = 0.43, the
𝐺𝐵𝑅𝑇 model achieves a slightly better score of 0.46. For 𝑋𝑆𝑂𝑁 ,
the 𝑆𝑉𝑅 model performs best with 𝑅2 = 0.88. Analogue to our
observation in classification, the task-specific models fail, if they
are used with samples from the respectively unseen task: all 𝑅2
scores fall below zero. The models for 𝑋𝑇𝑀𝑇+𝑆𝑂𝑁 achieve scores
above zero: 𝑅2 is 0.5 or 0.63 without feature selection and improves
to 0.83 or 0.74, if 𝜑𝑡𝑖𝑚𝑒

𝑐𝑜𝑟𝑟 is used. We also investigate the impact
of the 𝜑𝑣𝑖 𝑓 feature selection and its combinations with the 𝜑𝑡𝑖𝑚𝑒

𝑐𝑜𝑟𝑟

method. All models perform worse than the ones using 𝜑𝑡𝑖𝑚𝑒
𝑐𝑜𝑟𝑟 only.

Only for the 𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑡𝑖𝑚𝑒
𝑐𝑜𝑟𝑟 setting, i.e., applying the 𝜑𝑣𝑖 𝑓 after the

𝜑𝑡𝑖𝑚𝑒
𝑐𝑜𝑟𝑟 feature selection, the models perform well despite the further

reduction of features: 13 features from 𝑋𝑇𝑀𝑇 score to 𝑅2 = 0.44
(𝐺𝐵𝑅𝑇 ) and 12 features from 𝑋𝑆𝑂𝑁 , as well as 16 features from
𝑋𝑇𝑀𝑇+𝑆𝑂𝑁 score to 𝑅2 = 0.77 (𝑆𝑉𝑀). A general trend is, that the
models trained and evaluated on𝑋𝑆𝑂𝑁 achieve better scores overall.
Similarly, the 𝐺𝐵𝑅𝑇 models frequently perform better than their
𝑆𝑉𝑅 counterparts, in particular, if the model needs to select from
correlating and non-correlating features (i.e., if the 𝜑𝑡𝑖𝑚𝑒

𝑐𝑜𝑟𝑟 selection
is not used). We also computed both scores for a mean baseline
model, i.e., a model that always predicts the mean of the target
variable. The𝑀𝑆𝐸 scores are 684.9 for 𝑋𝑇𝑀𝑇 , 741.41 for 𝑋𝑆𝑂𝑁 , and
776.42 for 𝑋𝑇𝑀𝑇+𝑆𝑂𝑁 . The 𝑅2 score is zero by definition.

All regression models coverage as prediction target perform poor
(𝑅2 < 0 for all models). We also tested a correlation-based feature
selection, that selected features with mid and high correlation to
𝑦𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 from 𝑋𝑆𝑂𝑁 only, the 𝜑𝑣𝑖 𝑓 feature selection and combina-
tions of them, but without success.

5 DISCUSSION
The results of our machine learning experiments indicate that we
can distinguish well between easy and difficult task levels per cog-
nitive test: we observe accuracies of 97.03% and 100% using the
𝐺𝐵𝐷𝑇 algorithm and all features (confirms H1.1). Testing the mod-
els with unseen samples from the respectively other task fails with
accuracies around or below the chance level of 50% (confirms H1.2).
Selecting features using 𝜑𝑑𝑐𝑜𝑟𝑟 further improves the accuracy values
within a task, but not across tasks. Even though the features cor-
relate with the prediction target for all tasks, the learned weights
seem to be test specific (we have to partially reject H1.3). We hy-
pothesized that joint model training, i.e., including samples from
both tasks for training, might solve this problem (H1.4). We can



Table 2: Accuracy for all classification models using different feature selection methods.

Test Accuracy
Feature Selection 𝑛𝑜𝑛𝑒 𝜑𝑑𝑐𝑜𝑟𝑟 𝜑𝑣𝑖 𝑓 𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑑𝑐𝑜𝑟𝑟 𝜑𝑑𝑐𝑜𝑟𝑟 ◦ 𝜑𝑣𝑖 𝑓
X Model 5x2 CV unseen 5x2 CV unseen 5x2 CV 5x2 CV 5x2 CV

𝑋𝑇𝑀𝑇
𝑆𝑉𝐶 83.19% 50.00% 93.96% 54.55% 87.69% 95.38% 75.93%
𝐺𝐵𝐷𝑇 100.00% 51.20% 98.46% 30.91% 81.76% 95.38% 68.35%

𝑋𝑆𝑂𝑁
𝑆𝑉𝐶 90.99% 50.00% 97.14% 47.58% 87.91% 92.53% 88.02%
𝐺𝐵𝐷𝑇 97.03% 50.00% 95.60% 59.39% 93.96% 95.71% 87.91%

𝑋𝑇𝑀𝑇+𝑆𝑂𝑁
𝑆𝑉𝐶 87.21% — 97.01% — 87.15% 89.52% 88.60%
𝐺𝐵𝐷𝑇 94.73% — 95.47% — 87.95% 93.25% 92.39%
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Figure 4: ROC curves and AUC scores for three 𝑆𝑉𝐶 and three 𝐺𝐵𝐷𝑇 models using different feature selection strategies on
𝑋𝑇𝑀𝑇+𝑆𝑂𝑁 . The models include 167 (𝑛𝑜𝑛𝑒), 52 (𝜑𝑑𝑐𝑜𝑟𝑟 ) or 13 (𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑐𝑜𝑟𝑟 ) features.

Table 3: Model performance for all regression models and feature selection methods (𝑅2 /𝑀𝑆𝐸).

𝑅2 /𝑀𝑆𝐸 test score
Feature Selection 𝑛𝑜𝑛𝑒 𝜑𝑡𝑖𝑚𝑒

𝑐𝑜𝑟𝑟 𝜑𝑣𝑖 𝑓 𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑡𝑖𝑚𝑒
𝑐𝑜𝑟𝑟 𝜑𝑡𝑖𝑚𝑒

𝑐𝑜𝑟𝑟 ◦ 𝜑𝑣𝑖 𝑓
X Model 5x2 CV unseen 5x2 CV unseen 5x2 CV 5x2 CV 5x2 CV

𝑋𝑇𝑀𝑇
𝑆𝑉𝑅 −15.57 /> 104 −0.04 / 813.72 0.43 / 312.94 −0.83 / 1143.51 0.04 / 575.84 0.25 / 408.75 0.01 / 607.82
𝐺𝐵𝑅𝑇 0.30 / 406.21 −1.51 / 1673.72 0.46 / 374.28 −0.28 / 947.54 0.39 / 434.04 0.44 / 353.54 −0.75 / 842.82

𝑋𝑆𝑂𝑁
𝑆𝑉𝑅 0.71 / 220.40 −0.55 / 1064.26 0.88 / 105.38 −0.53 / 1048.43 0.63 / 238.44 0.77 / 179.20 0.08 / 673.63
𝐺𝐵𝑅𝑇 0.70 / 194.79 −0.76 / 1711.40 0.76 / 194.79 −1.12 / 1711.40 0.77 / 152.36 0.74 / 231.34 0.17 / 600.89

𝑋𝑇𝑀𝑇+𝑆𝑂𝑁
𝑆𝑉𝑅 0.50 / 400.17 – / – 0.83 / 123.50 – / – 0.10 / 576.02 0.77 / 167.34 0.29 / 465.46
𝐺𝐵𝑅𝑇 0.63 / 266.27 – / – 0.74 / 217.07 – / – 0.61 / 254.86 0.72 / 218.63 0.40 / 456.11



confirm it, because the models achieve accuracies of 87.21% (𝑆𝑉𝑅)
and 94.73% (𝐺𝐵𝐷𝑇 ) in predicting the correct level of difficulty and
𝜑𝑑𝑐𝑜𝑟𝑟 yields a further improvement (only a marginal improvement
for 𝐺𝐵𝐷𝑇 ). This is also reflected in the ROC curves (see Figure 4):
the models using 𝜑𝑑𝑐𝑜𝑟𝑟 feature selection yield a better trade-off be-
tween true positive and false positive rates and the AUC scores are
slightly better. Removing further features, e.g., using the VIF-based
filter, results is worse model performances.

Another goal of our experiment is to show that the user perfor-
mance for these tasks can be effectively modelled with regression
models. The results show that our models can predict the time
required for solving a task. This works well for 𝑋𝑆𝑂𝑁 , if all fea-
tures are included, with an 𝑅2 score of 0.71. For 𝑋𝑇𝑀𝑇 , only the
𝐺𝐵𝑅𝑇 model can explain some of the variance in the target variable
(𝑅2 = 0.3). This suggests that H2.1 can be confirmed. Analogue to
the results from our classification experiments, hypotheses H2.2
and H2.3 for regression can be confirmed: the models do not gener-
alize across tasks (𝑅2 < 0 for all models) and using 𝜑𝑡𝑖𝑚𝑒

𝑐𝑜𝑟𝑟 feature
selection leads to improved model scores. Further, both regression
algorithms can effectively learn to predict the completion time for
both cognitive tests, if samples from both are present. The joint
training particularly benefits from 𝜑𝑡𝑖𝑚𝑒

𝑐𝑜𝑟𝑟 , and similar to classifi-
cation, the 𝑆𝑉𝑅 algorithm benefits more (H2.4 can be confirmed).
However, we have to reject H2.5, because all combinations of re-
gression algorithms and feature selection methods with coverage
as a prediction target yield poor performance metrics (𝑅2 < 0).

Overall, the results show that the𝜑𝑐𝑜𝑟𝑟 method effectively selects
features from a larger set and improves the model performances
for regression and classification. This is essential, if only a small
sample size is available. In general, the gradient boosted tree mod-
els seems to be more robust to noise that is introduced by low
correlating features: they show better performances, if all features
are included. However, the support vector machine models benefit
more from applying the additional feature selection (9.8% abso-
lute improvement for classification and .33 absolute improvement
for regression) which can lead to better performance than for gra-
dient boosted tree models. From the remaining feature selection
approaches, 𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑐𝑜𝑟𝑟 provides the best trade-off between num-
ber of selected features and model performance. We assume that
features from 𝜑𝑐𝑜𝑟𝑟 , that correlate with the prediction target, still
suffer from multicollinearity. Removing collinear features using
𝜑𝑣𝑖 𝑓 from the remaining set of features does not deteriorate the
model performances, because other, linear dependent features stay
in the feature set and only little of the predictive power is lost.

5.1 Model Parameters.
We inspect the hyper-parameters of all classification and regres-
sion models using the 𝜑𝑐𝑜𝑟𝑟 and the 𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑐𝑜𝑟𝑟 feature selection,
because they tend to perform best across all tasks. Per machine
learning algorithm, we merge the 5 best parameter sets from the
nested crossvalidation from all three task datasets and report the
most frequent parameter combination. These can be used as a start-
ing point for future work. Regarding the gradient boosted tree
models, the best parameter combination for classification (𝐺𝐵𝐷𝑇 )
is 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1,𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 3, 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100. For

regression, the optimal value for 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 is typically 500. Re-
garding the models based on support vector machines, we observe
𝐶 = 100 for classification and 𝐶 = 1000 for regression. The most
frequent value for 𝑔𝑎𝑚𝑚𝑎 is 10−3. Only for the 𝜑𝑐𝑜𝑟𝑟 -based models,
we observe an optimum of 𝑔𝑎𝑚𝑚𝑎 = 10−4.

5.2 Limitations & Future Work
We limit the scope of our discussion to the results in relation to
our feature selection methods. It will be interesting to describe
the selected features in detail for the classification of difficulty,
estimation of completion time or both, as both can be seen as a
measure for cognitive load. Selected and removed features should
also be discussed with regard to features proposed in the litera-
ture. Another limitation is, that we merge the features of three
easy and three difficult SON sketches two samples per participant
for better comparison with the TMT samples. This might have an
impact on model quality, because the difficulty increases gradually
such that SON-3 and SON-4 have a similar difficulty, but belong
to different classes. Further, it might be interesting to model the
difficulty for SON as a six-class problem. It can also be beneficial for
model training to normalize sketches before model training: scale
sketches such that they fit into a quadratic box with a predefined
edge length. Remaining challenges include the effective integration
of pen-based user- and context models in technology-enhanced
adaptive learning environments. We believe that digital pens are
particularly suitable due to their unobtrusive nature. One possible
application is to provide additional feedback about learning activi-
ties, e.g., homework, to teachers. This would enable more targeted
and, hence, more efficient and effective interventions on an individ-
ual basis. In addition, a real-time estimation of task difficulty can be
used to support learners by muting notifications of nearby devices.

6 CONCLUSION
We investigated whether features from digital pens can predict
the difficulty of a task and the learner’s performance in this task.
We conducted a controlled user study to collect data and ran a
systematic machine learning experiment with different learning
algorithms and feature selection strategies. We could show that pen-
based features can effectively predict the level of difficulty within a
task and across tasks, if data from both tasks were used for training.
The same holds for predicting the completion time as a performance
measure. In addition, we implemented a fully automatic and more
fine-grained evaluation algorithm for drawing patterns of the SON
test. However, we could not predict this measure from digital pen
data. The ability to precisely and unobtrusively estimate the task
difficulty and user performance, which can be seen as measures
for the cognitive load of a learner, opens up new opportunities for
adaptive learning environments. This includes improvements in
monitoring of the learning progress for more fine-grained feedback
such as interventions from a teacher, but also automatic real-time
adaption of digital learning environments in high load situations.
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Table 4: In the following table, we briefly summarize the features selected by the 𝜑𝑐𝑜𝑟𝑟 and 𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑐𝑜𝑟𝑟 which performed well
under all conditions.

Selected Features

C
la
ss
ifi
ca
tio

n
(d
iffi

cu
lty

)

𝜑𝑑
𝑐𝑜𝑟𝑟 hbf49-01-side-ratio, hbf49-05-norm-first-to-last-vector, hbf49-06-cosine-flvector, hbf49-08-closure, hbf49-11-inflexion-x,

hbf49-16-trajectory-length, hbf49-17-ratio-bb-length, hbf49-18-deviation, hbf49-19-avg-direction, hbf49-21-perpendicularity,
hbf49-22-kperpendicularity, hbf49-24-dominant-direction, hbf49-25-dominant-direction, hbf49-26-dominant-direction, hbf49-
27-dominant-direction, hbf49-28-local-changes-direction, hbf49-29-local-changes-direction, hbf49-32-2dhistogram, hbf49-33-
2dhistogram, hbf49-38-2dhistogram, hbf49-43-hu-moment, hbf49-44-hu-moment, hbf49-49-compactness, markus-02-length,
markus-03-area, markus-04-perimeter-length, markus-09-rectangularity, markus-10-closure, markus-11-curvature, markus-
12-perpendicularity, rubine-05-distance-first-last-point, rubine-06-cosine-first-last-point, rubine-08-total-length, willems-
01-trajectory-length, willems-11-pen-up-down-ratio, willems-12-average-direction, willems-13-perpendicularity, willems-
14-average-perpendicularity, willems-15-deviation-perpendicularity, willems-25-average-velocity, willems-28-average-
acceleration, willems-41-deviation-straight-line, willems-45-octant-sample-ratio, willems-47-octant-sample-ratio, willems-
49-octant-sample-ratio, willems-59-distance-first-to-last, willems-62-absolute-curvature, willems-67-ratio-principal-axes,
willems-68-average-centroidal-radius, willems-74-sin-chain-code, willems-78-cos-chain-code, willems-88-average-stroke-
direction

𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑑
𝑐𝑜𝑟𝑟

(TMT)
hbf49-11-inflexion-x, hbf49-44-hu-moment, hbf49-49-compactness, rubine-06-cosine-first-last-point, willems-11-pen-up-
down-ratio, willems-28-average-acceleration, willems-49-octant-sample-ratio, willems-62-absolute-curvature, willems-74-
sin-chain-code, willems-78-cos-chain-code, willems-88-average-stroke-direction

𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑑
𝑐𝑜𝑟𝑟

(SON)
hbf49-11-inflexion-x, hbf49-22-kperpendicularity, hbf49-43-hu-moment, hbf49-49-compactness, rubine-06-cosine-first-last-
point, willems-11-pen-up-down-ratio, willems-28-average-acceleration, willems-45-octant-sample-ratio, willems-74-sin-
chain-code, willems-78-cos-chain-code, willems-88-average-stroke-direction

𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑑
𝑐𝑜𝑟𝑟

(TMT+SON)
hbf49-11-inflexion-x, hbf49-18-deviation, hbf49-43-hu-moment, hbf49-49-compactness, rubine-06-cosine-first-last-point,
willems-11-pen-up-down-ratio, willems-25-average-velocity, willems-28-average-acceleration, willems-49-octant-sample-
ratio, willems-62-absolute-curvature, willems-74-sin-chain-code, willems-78-cos-chain-code, willems-88-average-stroke-
direction

Re
gr
es
si
on

(𝑡
𝑖𝑚

𝑒
)

𝜑𝑡𝑖𝑚𝑒
𝑐𝑜𝑟𝑟 avg-stroke-distance, avg-writing-speed, hbf49-01-side-ratio, hbf49-13-downstrokes-trajectory-proportion, hbf49-18-deviation,

hbf49-19-avg-direction, hbf49-20-curvature, hbf49-21-perpendicularity, hbf49-24-dominant-direction, hbf49-25-dominant-
direction, hbf49-26-dominant-direction, hbf49-28-local-changes-direction, hbf49-29-local-changes-direction, hbf49-33-
2dhistogram, hbf49-34-2dhistogram, hbf49-35-2dhistogram, hbf49-38-2dhistogram, markus-11-curvature, markus-12-
perpendicularity, rubine-09-total-angle-traversed, rubine-10-sum-of-absolute-angles, rubine-11-sum-of-squared-angles,
willems-08-curvature, willems-11-pen-up-down-ratio’, willems-12-average-direction, willems-13-perpendicularity, willems-
14-average-perpendicularity, willems-15-deviation-perpendicularity, willems-16-centroid-offset, willems-21-maximum-
angular-difference, willems-45-octant-sample-ratio, willems-47-octant-sample-ratio, willems-49-octant-sample-ratio, willems-
50-octant-sample-ratio, willems-62-absolute-curvature, willems-72-sin-chain-code, willems-81-cos-chain-code, willems-83-
cos-chain-code, willems-86-average-stroke-length, willems-87-standard-deviation-stroke-length, willems-88-average-stroke-
direction

𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑡𝑖𝑚𝑒
𝑐𝑜𝑟𝑟

(TMT)
avg-stroke-distance, avg-writing-speed, hbf49-13-downstrokes-trajectory-proportion, rubine-09-total-angle-traversed,
rubine-11-sum-of-squared-angles, willems-11-pen-up-down-ratio, willems-16-centroid-offset, willems-49-octant-sample-
ratio, willems-72-sin-chain-code, willems-81-cos-chain-code, willems-83-cos-chain-code, willems-87-standard-deviation-
stroke-length, willems-88-average-stroke-direction

𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑡𝑖𝑚𝑒
𝑐𝑜𝑟𝑟

(SON)
hbf49-13-downstrokes-trajectory-proportion, rubine-09-total-angle-traversed, rubine-11-sum-of-squared-angles, willems-11-
pen-up-down-ratio, willems-16-centroid-offset, willems-49-octant-sample-ratio, willems-50-octant-sample-ratio, willems-
72-sin-chain-code, willems-81-cos-chain-code, willems-83-cos-chain-code, willems-86-average-stroke-length, willems-87-
standard-deviation-stroke-length

𝜑𝑣𝑖 𝑓 ◦ 𝜑𝑡𝑖𝑚𝑒
𝑐𝑜𝑟𝑟

(TMT+SON)
avg-stroke-distance, avg-writing-speed, hbf49-13-downstrokes-trajectory-proportion, hbf49-18-deviation, rubine-09-total-
angle-traversed, rubine-11-sum-of-squared-angles, willems-11-pen-up-down-ratio, willems-16-centroid-offset, willems-45-
octant-sample-ratio, willems-49-octant-sample-ratio, willems-50-octant-sample-ratio, willems-72-sin-chain-code, willems-
81-cos-chain-code, willems-83-cos-chain-code, willems-87-standard-deviation-stroke-length, willems-88-average-stroke-
direction
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