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ABSTRACT Traditional neural networks trained using point-based maximum likelihood estimation
are deterministic models and have exhibited near-human performance in many image classification tasks.
However, their insistence on representing network parameters with point-estimates renders them incapable
of capturing all possible combinations of the weights; consequently, resulting in a biased predictor towards
their initialisation. Most importantly, these deterministic networks are inherently unable to provide any
uncertainty estimate for their prediction which is highly sought after in many critical application areas.
On the other hand, Bayesian neural networks place a probability distribution on network weights and
give a built-in regularisation effect making these models able to learn well from small datasets without
overfitting. These networks provide a way of generating posterior distribution which can be used for
model’s uncertainty estimation. However, Bayesian estimation is computationally very expensive since it
greatly widens the parameter space. This paper proposes a hybrid convolutional neural network which
combines high accuracy of deterministic models with posterior distribution approximation of Bayesian
neural networks. This hybrid architecture is validated on 13 publicly available benchmark classification
datasets from a wide range of domains and different modalities like natural scene images, medical
images, and time-series. Our results show that the proposed hybrid approach performs better than both
deterministic and Bayesian methods in terms of classification accuracy and also provides an estimate of
uncertainty for every prediction. We further employ this uncertainty to filter out unconfident predictions
and achieve significant additional gain in accuracy for the remaining predictions.

INDEX TERMS Bayesian Estimation, Convolutional Neural Networks, Hybrid Neural Networks, Image
Classification, Time-series Classification, Uncertainty Estimation

I. INTRODUCTION

OVER the last decade, Convolutional Neural Networks
(CNNs) have made phenomenal strides in various clas-

sification tasks using a wide array of input modalities. These
powerful algorithms have achieved impressive performance,
often at par with human experts, in many challenging natural
scene image recognition tasks [1]–[3] and even in sensitive
and critical application areas like medical image analysis for
disease prediction [4]–[8]. These CNNs gained significant

attention due to their parameter efficiency, in contrast to
other deep learning models like densely connected Multi-
Layer Perceptrons (MLPs), resulting in comparatively better
generalisation performance. They are particularly powerful
in analysing visual modalities like images and videos [9] but
have also proved their worth in time-series analysis where
they have been used for classification [10] and anomaly
detection [11].

The fundamental principle behind conventional CNNs is
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to learn the optimal combination of network parameters
(weights and biases) that can capture encoded representation
of input training data. These conventional CNNs use point-
estimates to represent network parameters and although they
work astonishingly well in most image recognition tasks,
they have large insatiable appetite for data [12]. Additionally,
the softmax function tips the odds in favour of one class by
squashing classification probabilities for others. Therefore,
it results in overly confident predictions often times even
when the network is completely wrong. This compulsive
behaviour of traditional point-based neural networks to
always be relentlessly assertive in their prediction raises
serious concerns in many crucial application areas like
medical image analysis, security, autonomous driving, finan-
cial transactions and IoT (Internet of Things) based human
health monitoring. Also, the very nature of these point-based
classifiers prohibits them to associate uncertainty with their
predictions, which is a highly desired characteristic of any
AI-based classifier.

Bayesian estimation introduces a probabilistic perspective
to the neural networks and addresses many shortcomings of
traditional point-based neural networks. It represents each
parameter with a probability distribution instead of a single
point-estimate. As a result, Bayesian neural networks are able
to learn effectively from relatively small amount of data and
thus are fairly robust to overfitting [13]. They can provide
an inherent regularisation effect [14] by constraining the
network parameters within a distribution instead of letting
them increase out of bound. Most importantly, Bayesian
inference can allow to estimate network’s uncertainty about
any prediction. However, a full Bayesian estimation over all
network parameters is computationally expensive and finding
true posterior probability is intractable. These limitations
are normally addressed by employing various tricks like
Markov Chain Monte Carlo (MCMC) sampling [15] and
Variational Inference (VI) [16], or a combination of the
two [17], to approximate the true posterior with a manageable
distribution. A CNN trained using Bayesian estimates for
network parameters is shown to lag its counterpart, trained
using point-estimates, in terms of classification accuracy [13],
[18].

In this paper, we recognise specific merits of each approach
discussed above and combine them into a hybrid training
paradigm. This hybrid approach integrates deterministic
CNNs, where each parameter assumes only one value, with
probability driven Bayesian CNNs, where each parameter
may take any value drawn from a probability distribution
characterised by a mean and a standard deviation. This proba-
bility distribution is learnt for each parameter during training.
The proposed hybrid training method provides an estimate of
uncertainty, using Bayesian classifier, without compromising
on classification accuracy owing to deterministic feature
extractor. It also captures maximum weight configurations
from small datasets while still remaining computationally
manageable. The proposed approach is tested on 13 different
classification datasets including benchmark image datasets,

fine-grained medical image datasets and time-series datasets.
The proposed hybrid method is proved to be superior to both
fully deterministic and fully Bayesian CNN approaches in
terms of classification accuracy.

A. RELATED WORK
Conventional CNNs have demonstrated their worth in various
image recognition tasks since long [19] and have resurged
into popularity in 2012 with Alexnet [20]. They have
lately evolved into awfully complicated networks spanning
thousands of layers [21].

Although applications of Bayesian method into neural
networks have also been investigated for many decades [22],
it was only after Blundell et al. [23] proposed Bayes
by Backprop that training of deep neural networks was
made possible using Bayesian estimation. This method of
Variational Inference allowed backpropagation of so called
Expected Lower BOund (ELBO) loss and regularising weight
distributions. A CNN trained using Bayesian method was
recently proposed by Shridhar et. al [18] as a fundamental
construct for other network architectures. They used Bayes
by Backprop for training convolutional network and reported
comparable results on many benchmark datasets.

Acknowledging the excessive computational cost of
Bayesian models, Gal and Ghahramani [24] proposed a
Monte Carlo dropout method to approximate Bayesian infer-
ence in deep Gaussian processes. The method is equivalent
to performing multiple forward passes through the network
and taking the average of results to model the uncertainty
of the network. Kwon et al. [25] recognised the importance
of uncertainty quantification especially in medical domain
and proposed to calculate it by splitting the uncertainty into
aleatoric, which corresponds to model’s uncertainty; and
epistemic uncertainty, which represents inherent noise in
the data. Kendall and Gal [26] studied the advantages of
modelling epistemic uncertainty as compared to aleatoric
uncertainty in deep Bayesian models.

Combining deterministic and probabilistic models in
various fashions has also been studied for long. Tang
and Salakhutdinov [27] pointed out that the conditional
distribution p(Y |X) does not need to be unimodel, as
normally assumed by MLPs, but can also be represented
as a multimodel output distribution for many structured
prediction problems. They proposed a hybrid Sigmoid Belief
Network (SBN) with some stochastic hidden variables and
some deterministic hidden variables and achieved superior
performance on synthetic and facial expression datasets.
Similarly, other neural networks with partially Bayesian
parameters have been proposed for regression tasks as
alternative to Gaussian Processes [14], [28], which do not
scale well with the number of training samples.

The problem of estimating uncertainty has been addressed
in variety of ways, for example out-of-distribution (OOD)
samples detection [29], [30] and density estimation using
flow based models. Normalising flows and autoregressive
models have been successfully combined to produce state-
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of-the-art results in density estimation, via Masked Autore-
gressive Flows (MAF) [31]; and to accelerate state-of-the-art
WaveNet-based speech synthesis to 20x faster than real-
time [32], via Inverse Autoregressive Flows (IAF) [33].
Huang et al. [34] presented Neural Autoregressive Flows
(NAFs) and demonstrated that these models are universal
approximators for continuous probability distributions, and
their greater expressivity allows them to better capture
multimodal target distributions. Adding on to their work,
Cao et al. [35] proposed Block Neural Autoregressive Flow
which is a much more compact universal approximator of
density functions, where a bijection is directly modelled
using a single feedforward network. Dinh et al. [36]
introduced a set of transformations called real-valued Non-
Volume Preserving (real NVP) as a tractable and expressive
way to modelling high-dimensional data. Ardizzone et
al. [37] extended real NVP architecture and argued that
their proposed Invertible Neural Networks (INNs) are well
suited for determining full posterior parameter distribution
conditioned on training data. They noted that alternating
backward and forward training passes and accumulating
gradients from both sides before updating parameters allows
efficient training. Kingma et al. [38] furthered flow-based
generative models [39] which are useful for calculating exact
log-likelihood, performing exact latent-variable inference,
and parallelising training and synthesis pipelines. Their
Generative flow (Glow) model uses an invertible 1 × 1
convolution and is shown to be capable of efficient and
accurate synthesis of large images.

II. PROPOSED HYBRID NEURAL NETWORK
A CNN primarily consists of two main modules: a feature
extractor and a classifier. The proposed network consists of
a set of convolutional layers trained with point estimates
followed by fully-connected layers trained using Bayesian
estimate. It provides a trade-off between high accuracy of
deterministic models and uncertainty estimation of Bayesian
models. It also restricts the parameter space of the network
as compared to fully Bayesian models because only the
classifier part of the network treats its parameters as random
variables. Fig. 1 shows schematic diagram of the hybrid

model proposed in this work. The network initially trains to
optimise parameters for both convolutional feature extractor
and dense classifier as given below.

W∗C ,W∗D = arg minWC ,WD
1

|X |∑
(x,y)∈X×Y

L
(
ψ
(
Φ(x;WC);WD

)
, y
)
,

(1)

where L denotes the loss function, Φ represents the
convolutional part of the network parameterised by WC

and ψ represents the dense layers (forming the classifier)
parameterised by WD.

Once the network is trained using point-estimates, we
reinitialise fully connected layers with random variables fol-
lowing normal distribution and retrain them using Bayesian
estimation. The parameters of convolutional feature extractor
are frozen throughout this retraining. This whole training
paradigm allows us to capitalise on economically learned
features by deterministic convolutional block and use ex-
pensive Bayesian inference only to approximate posterior
distribution, which might then be used for uncertainty
estimation. Mathematically, the learning of FC classifier
of hybrid model is given by;

θ∗D = arg min θD
1

|X |
∑

(x,y)∈X×Y

L
(

Ψ
(
Φ(x;W∗C); θD

)
, y
)
,

(2)
where Ψ represents the Bayesian layers learned through
Bayes by Backprop and θD denotes the distribution of
weights. Since the weights are described by a distribution
instead of point-wise estimates, L in this case denotes
the ELBO loss. Convolutional feature extractor trained
with point-estimates learns crisp features of the input data
while probabilistic classifier allows to sample from posterior
distribution and offers an insight into network’s confidence.

After this retraining is finished, we perform inference by
passing test samples a number of times from our network.
Since the parameters of the last fully-connected layers of the
network are sampled from a probability distribution, each

Convolutional Feature Extractor FC ClassifierInput Image

FIGURE 1: Proposed Hybrid Model. Convolutional Layers are trained separately using point estimates. The parameters of
the convolutional layers are then frozen and Bayesian classifier is trained.
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Algorithm 1 Uncertainty Estimation

Inputs modelOutput: Array containing softmax
probabilities of all images for all models
allPredictions: Array containing class predictions for all
images and for all models
allTargets: Array containing actual targets for all images
and for all models
percentile: A scalar parameter to ascertain uncertain
images to ignore
consensus: A scalar parameter representing minimum
number of confident models to reach certain prediction
Outputs certainAccuracy: Accuracy when model is
certain
uncertainImages: A percentage of uncertain images
filtered out

1: procedure ESTIMATEUNCERTAINTY
2: for each model i in allModels do
3: for each image j in allImages do
4: differences = differences of top two

classes’ probabilities in modelOutput[i][j]
5: end for
6: end for
7: threshold = calculate for each model by filtering
percentile number of images from differences of
each model and average them.

8: for each image j in allImages do
9: Let confPred = 0, uncertain = 0,
confModels = 0 be new variables

10: for each model i in allModels do
11: if differences[i][j] > threshold then
12: if allPredictions[i][j] ==

allTargets[i][j] then
13: increment confModels
14: end if
15: end if
16: end for
17: if confModels >= consensus then
18: increment confPred
19: else
20: increment uncertain
21: end if
22: end for
23: return confPred/(len(allImages) − uncertain),

uncertain/len(allImages)
24: end procedure

pass of the same test sample gives a different prediction.
These output predictions are used to draw a posterior
distribution and estimate network’s uncertainty. Complete
algorithms used for this task is given in Algorithm 1.

For uncertainty analysis in Bayesian and hybrid archi-
tectures during inference, the algorithm works by sampling
10 classifier models from Bayesian weights distribution for
every test sample and taking their output predictions. This

way, instead of a single prediction, we get a set of predictions
representing a probability distribution on network’s output.
This set of predictions are normalised in [0− 1] range using
min-max normalisation for direct comparison. Predictions
for top two classes are taken and difference in their values is
recorded. After having the normalised differences, we build
a distribution of all these differences and use a percentile
value (40% in this case) to automatically select a threshold
for the measure of uncertainty. The percentile value of 40%
is determined heuristically. This parameter can be considered
as a knob to control how confident predictions are desired
in any given application area. In circumstances where no
prediction is deemed better than a wrong prediction (medical
diagnosis, for example), this value can be raised to ensure that
only the most confident predictions are given by the network.
For other, relatively less critical, scenarios this knob can
be adjusted accordingly. The underlying assumption for our
uncertainty estimation is that if the output for two classes is
fairly distinctive then the difference in top two classes should
be greater than the threshold and the model is regarded as
certain about prediction otherwise it is considered uncertain.
If a test sample is regarded as certain by more than half
models (represented by consensus parameter), using simple
majority voting, then it is output as a fairly certain prediction.

A. TIME AND SPACE COMPLEXITY ANALYSIS
The proposed hybrid model uses fewer parameters than its
Bayesian counterpart as is evident from Table 1. The table
shows the number of trainable parameters in each method and
training time per epoch for some of the datasets. The hybrid
model does not incur any additional cost for combining the
benefits of both deterministic and Bayesian methods.

The time complexity of the Algorithm 1 is O(2M ×
I), where M represents number of Models sampled and
I denotes the number of test samples. Also, the algorithm
computes in constant space since, regardless of number of
total models and test samples, only one model and one test
sample are loaded at any given time.

TABLE 1: Time and space requirement of deterministic,
Bayesian and hybrid models for some datasets

Dataset Network Parameters (Millions) Execution Time per epoch (s)

Deterministic Bayesian
[18]

Hybrid
[Ours] Deterministic Bayesian

[18]
Hybrid
[Ours]

MNIST 2.457 4.914 2.459 15 70 27
CIFAR-10 5.851 11.703 9.528 25 129 49

ISIC-Subset 58.294 116.587 112.840 338 832 602
ORIGA 58.29 116.579 112.831 5 16 6

Electric Devices 0.655 3.277 0.577 2 16 3
Mallat 3.801 33.423 3.486 2 10 3

Thorax-1 2.726 24.589 2.569 2 10 5

III. EXPERIMENTATION
We used 13 datasets of disparate modalities and from diverse
areas of application to ascertain the viability of our proposed
hybrid CNN architecture. A brief description of all the
datasets used and overall experimental setup is given below.
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A. DATASETS
Table 2 gives an overview of all the datasets used in this
work. We picked standard benchmark image datasets, as
well as challenging fine-grained medical image classification
datasets and many time-series datasets so that the validity of
our approach on a broad range of datasets may be extensively
investigated.

TABLE 2: Distribution of datasets used to evaluate proposed
architecture

No. of Samples
Datasets Modality No. of

Classes Train Test Total

Image Datasets

MNIST Grey Images 10 70k 10k 80k
CIFAR-10 Color Images 10 50k 10k 60k

Medical Image Datasets

ORIGA Color Retinal Fundus Images 2 520 130 650
ISIC-Subset Color Clinical Skin Images 3 5201 600 5801

Time Series Datasets

Fish Image-derived data 7 175 175 350
ShapesAll Image-derived data 60 600 600 1200
Plane Sensor data 7 105 105 210
TwoPattern Simulation data 4 1000 4000 5000
ECG5000 ECG data 5 500 4500 5000
MedicalImages Image-derived data 10 381 760 1141
ElectricalDevices Device data 7 8926 7711 16637
Mallat Simulation data 8 55 2345 2400
ECG Thorax1 ECG data 42 1800 1965 3765

1) Image Datasets
We used two of the most common benchmark datasets i.e.
MNIST [19] and CIFAR-10 [40] and two publicly available
medical image datasets i.e. ORIGA [41] and a subset of
ISIC Archive to evaluate the performance of our proposed
approach. For MNIST and CIFAR-10, standard pre-defined
train and test splits are used. ORIGA dataset provides clinical
ground truth to benchmark segmentation of optic disc and
classification of healthy and glaucomatous images. Since
this dataset is very small and no predefined train and test
splits are given, we used 5-fold Cross Validation (CV) for
this dataset such that in each iteration of CV there are 130
images in validation fold and 520 images in training fold.
The second dataset of medical images was taken from ISIC
Archive 2018 version. It consists of around 24000 clinical
and dermoscopic images of skin lesions categorised into 7
classes. Some of the classes in this dataset have as fewer as
122 images per class, therefore, we took a subset of the whole
data with three largest classes namely Benign Keratosis-like
Lesions (BKL), Melanoma (MEL), and melanocytic Nevi
(NV) and randomly divided them into training and test sets.

2) Timeseries Datasets
We selected 9 datasets from UCR archive [42]. The time-
series datasets were generated based on different sources
including device usage, sensors data, ECG, motion sensor,
or simulation etc. Each time-series contains different number
of classes; and the number of observations also vary in each
dataset. All datasets are already divided into train and test
sets by the publisher.

B. PREPROCESSING
To preprocess benchmark image datasets (MNIST and
CIFAR-10), we used random crop and normalisation by
mean subtraction. On medical image datasets (ORIGA and
ISIC Subset), histogram equalisation is applied to enhance
contrast and normalize brightness. We also made use of
different data augmentation techniques like rotations, flipping,
and random crops to increase the dataset size. Note that in
addition to preprocessed images, original images are also
kept in the dataset. Data augmentation was done keeping
in mind the class ratio, such that the minor class can have
more augmentations and more copies generated. Time-series
datasets are used without any preprocessing.

C. EXPERIMENTAL SETUP AND HYPERPARAMETER
SELECTION
All of our image datasets were trained and compared with
similar experimental setup. We used a 5-layer convolutional
block as baseline CNN, however, our experiments with
varying depths and breadths of CNN shows that the approach
is fairly scalable to more advance CNN architectures. We
trained this CNN using Maximum Likelihood Estimation
(MLE) for 60 epochs with a learning rate of 0.001, weight
decay of 5× 10−4, and batch size of 32. For probabilistic
models, we used the same setup as described above but
instead of using point estimates we trained convolutional
and fully connected layers with distribution-based weights
using Bayes by Backprop for 60 epochs. In our proposed
hybrid approach, we employed a fully-connected classifier
with frozen convolutional feature extractor, pre-trained using
MLE, and fine-tuned it using Bayesian estimation for 60
epochs with similar parameters. Two hyperparameters used in
Algorithm 1, i.e. percentile and consensus can be selected
as per use case requirements. In critical application areas, for
example medical image diagnosis or stock market prediction,
where there is little room for incorrect classification, higher
values of these parameters can be selected to ensure only
the most certain predictions are given by the network.
In other applications, a relaxed criterion for uncertainty
estimation might be acceptable. In our experiments, we used
percentile = 40% and consensus of more than half models
(i.e. 6 models). These values were selected empirically and
they worked well in all 13 datasets of different kind. It
should be emphasised here that, for a given dataset, we
used the same underlying architecture (number, width, and
depth of convolutional layers and size of dense layers) in
all three training paradigms, i.e. fully deterministic, fully
Bayesian and Hybrid, to ensure fair comparison among three
approaches.

For time-series modality, we used CNN with two con-
volutional layers, each followed by a max pooling layer
for deterministic model analysis. On top of that, two fully
connected layers were added as classifier. For probabilistic
and hybrid approach, we used the same setting as explained
before.
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IV. RESULTS AND ANALYSIS
Table 3 summarises classification accuracies obtained by
traditional fully deterministic CNN, Bayesian CNN [18]
and our proposed hybrid approach. The table shows that
the proposed hybrid approach outperforms not only purely
Bayesian CNNs but also their deterministic counterparts in
9 out of 13 datasets while giving comparable results on
rest of them. Even when the hybrid approach lagged other
methods in classification accuracies, the difference was very
small and came at no additional cost in terms of time or
number of parameters as shown in Table 1. The results in
Bayesian Accuracy field in Table 3 are generated by our
own experiments using the implementation of Shridhar et al.
[18] for Bayesian CNNs.

TABLE 3: Comparison of deterministic, Bayesian, and
proposed hybrid models on different datasets without using
uncertainty estimation

Datasets Deterministic
Accuracy (%)

Bayesian [18]
Accuracy (%)

Hybrid [Proposed]
Accuracy (%)

Benchmark Datasets
MNIST 99.0 99.01 99.3
CIFAR-10 88 72.0 88.7

Medical Image Datasets
ORIGA 76 74.4 80.3
ISIC-Subset 74 65.5 75.7

Time Series Datasets
Fish 85.1 80.7 84.7
ShapesAll 67.0 70.9 72.3
Plane 97.0 96.7 95.1
TwoPattern 89.0 81.0 89.4
ECG5000 92.0 93.2 91.9
MedicalImages 69.0 62.4 64.7
ElectricalDevices 55.0 54.0 56.6
Mallat 88.0 82.5 89.3
ECG Thorax1 90.0 89.1 91.3

Fig. 2 shows output probabilities of deterministic, Bayesian

and hybrid models for various correctly classified and
misclassified images from CIFAR-10 and ORIGA. It can
be observed in Fig. 2 that when hybrid model was unable
to make a correct prediction (subfigures (b), (d), (e), and
(h)), it associated relatively smaller probability scores with
its misclassification than its competing models who also
misclassified but did so with overconfidence. Additionally,
in cases where both deterministic and Bayesian models failed
to correctly classify an image and hybrid network succeeded
(subfigures (c), (f), and (g)), it predicted very cautiously
with reasonable probability scores. The probability scores
of hybrid model were at par with other two methods for
relatively easy examples as shown in subfigure (a).

A. UNCERTAINTY ESTIMATION

Since deterministic model does not have intrinsic ability
to estimate uncertainty (although some works like [24],
[43] have used deterministic models and applied some post-
processing to get confidence estimates), in this section we
focus on Bayesian and Hybrid models only and compare
their performance. Since the classifier part of both Bayesian
and Hybrid methods are trained using Bayesian estimates,
both networks provide posterior distribution which is used
to estimate uncertainty using Algorithm-I. Table 4 compares
the accuracies of both training methods before and after
using Algorithm 1. In this table, Overall Accuracy refers
the accuracy of the model before applying Algorithm 1,
whereas Certain Accuracy refers to the accuracy on the
predictions for which the network was certain according
to Algorithm 1. When the algorithm is not sure about the
prediction it tags the test sample as uncertain. We can observe
that accuracies for both fully Bayesian and hybrid approaches
improved after uncertainty estimation algorithm was applied.

FIGURE 2: An analysis of confidence comparison for all three approaches on various samples of CIFAR10 and ORIGA
datasets. The actual class is mentioned on left side of each image in bold vertical text.
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TABLE 4: Comparison of Bayesian and proposed hybrid
models on different datasets with uncertainty estimation

Bayesian Model [18] Hybrid Model

Datasets Overall
Accuracy

(%)

Certain
Accuracy

(%)

Uncertain
Samples

(%)

Overall
Accuracy

(%)

Certain
Accuracy

(%)

Uncertain
Samples

(%)
Image Datasets

MNIST 99.01 99.17 20.5 99.26 99.28 9.6
CIFAR-10 65.41 72 66.9 88.70 91.11 46.2

Medical Image Datasets
ORIGA 74.42 77.10 35.65 80.31 77.21 38.7
ISIC-Subset 58.15 65.48 34.3 75.67 81.5 53.8

Time Series Datasets
Fish 80.7 92.4 9.1 84.7 100.0 6.8
ShapesAll 70.9 71.8 1.0 72.3 72.9 1.3
Plane 96.7 98.9 0.95 95.1 97.1 0.0
TwoPattern 81.0 84.4 25.0 89.4 91.3 24.9
ECG5000 93.2 93.8 36.2 91.9 93.9 36.8
MedicalImages 62.4 62.9 0.13 64.7 66.5 0.13
ElectricalDevices 54.0 55.8 14.6 56.6 57.9 14.8
Mallat 82.5 84.2 35.6 89.3 92.1 37.7
ECG Thorax1 89.1 90.9 14.9 91.3 91.6 14.8

The accuracy of our hybrid approach is higher than fully
Bayesian model especially when it was fairly certain about
the predictions. Fig. 3 shows some examples of images
that were considered certain or uncertain by both Bayesian
model (top row) and hybrid model (bottom row). It is very
interesting to observe that the algorithm enabled both models
to confidently categorised those images that had clearly
defined optic disc border (black dotted elliptical boundary
drawn on images to highlight disc boundary). In both training
approaches the images where the boundary of the disc was
dwindled, for examples because of papilledema (Fig. 3d and
Fig. 3h) or optic atrophy (Fig. 3b and Fig. 3f), were filtered
out and the model did not predict on these images because
of high uncertainty.

Fig. 4 depicts the trade-off between number of uncertain
samples and classification accuracy for both Bayesian and
Hybrid models. We can see from this figure that the accuracy
of the networks increases with the increase in percentage
of uncertain samples. It can be argued from these curves

that since, difficult samples have been passed over by the
classifier and prediction is given for easy samples only, that
is why we see a positive trend in accuracy with growing
number of uncertain samples. However, in many crucial
application areas, it is better to abstain from giving any half-
cooked prediction than making a potentially costly mistake.
In medical image analysis, for instance, such non-compulsive
classifiers can reduce the workload of human experts by
screening relatively easy disease patterns and allowing the
physicians to focus their time and energy only on the most
challenging of the cases.

V. CONCLUSION
Practical applications of deep learning based classifica-
tion models require high accuracy, better generalisation,
computational efficiency and an estimate of uncertainty in
model’s predictions. All these characteristics are not readily
available with either traditional deterministic CNNs or their
Bayesian counterparts. Deterministic models, though provide
better accuracies, do not facilitate uncertainty estimation
on their own. Bayesian method, on the other hand, allows
explication of posterior distribution but have significantly
larger number of parameters that require more memory and
time for tuning. Therefore, in this work we conceptualised
and implemented a hybrid CNN capable of combining some
of the merits of deterministic and Bayesian methods in
terms of classification accuracy. The proposed method in
validated on 13 different datasets and it shows promising
results. We experimented with different architectures with
varying number of convolutional and dense layers, and the
hybrid training approach consistently performed better than
its deterministic and Bayesian counterparts. We anticipate
that this work might serves as a proof-of-concept that
such hybrid CNN training is worth exploring since it
works noticeably better than its pure deterministic and

(a) Classified with certainty (b) Unclassified due to uncertainty (c) Classified with certainty (d) Unclassified due to uncertainty

(e) Classified with certainty (f) Unclassified due to uncertainty (g) Classified with certainty (h) Unclassified due to uncertainty

FIGURE 3: Comparison of output probabilities for Bayesian and Hybrid training approaches on ORIGA dataset
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FIGURE 4: Trade-off between number of uncertain samples and the accuracy on remaining predictions. The threshold on
x-axis is calculated using percentile parameter as shown in Algorithm 1.

probabilistic versions while at the same time facilitating
estimation of network’s certainty for every prediction. A
thorough architecture search and hyper-parameter tuning
might be required to increase baseline accuracies for each
dataset. However, our experimentation with various data
modalities and application areas has shown great promise to
prompt further comprehensive investigation into this training
paradigm. Our next logical step in this research would be
to incorporate this hybrid approach with dataset specific
architectures obtained through, for instance, NAS-Net [3]
and ENAS [44] algorithms.
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