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Otavio Gonçalvez Vicente Ribeiro-Filho3‡, Luis Octavio Arriaga Camargo4‡, Matias

Alejandro Valdenegro-Toro4‡, Frank Kirchner4‡, Roberto Badaró2☯
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Abstract

The economic and social impacts due to diseases transmitted by mosquitoes in the latest

years have been significant. Currently, no specific treatment or commercial vaccine exists for

the control and prevention of arboviruses, thereby making entomological characterization fun-

damental in combating diseases such as dengue, chikungunya, and Zika. The morphological

identification of mosquitos includes a visual exam of the samples. It is time consuming and

requires adequately trained professionals. Accordingly, the development of a new automated

method for realizing mosquito-perception and -classification is becoming increasingly essential.

Therefore, in this study, a computational model based on a convolutional neural network

(CNN) was developed to extract features from the images of mosquitoes and then classify the

species Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. In addition, the model

was trained to detect the mosquitoes of the genus Aedes. To train CNNs to perform the auto-

matic morphological classification of mosquitoes, a dataset, which included 7,561 images of

the target mosquitoes and 1,187 images of other insects, was acquired. Various neural net-

works, such as Xception and DenseNet, were used for developing the automatic-classification

model based on images. A structured optimization process of random search and grid search

was developed to select the hyperparameters set and increase the accuracy of the model. In

addition, strategies to eliminate overfitting were implemented to increase the generalization of

the model. The optimized model, during the test phase, obtained the balanced accuracy (BA)

of 93.5% in classifying the target mosquitoes and other insects and the BA of 97.3% in detect-

ing the mosquitoes of the genus Aedes in comparison to Culex. The results provide fundamen-

tal information for performing the automatic morphological classification of mosquito species.

Using a CNN-embedded entomological tool is a valuable and accessible resource for health

workers and non-taxonomists for identifying insects that can transmit infectious diseases.
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Introduction

The economic impact of vector-borne diseases is significant. For the governments in endemic

countries, the economic impact includes the costs spent in vector control and case-manage-

ment activities [1–3]. In addition, the global economic cost spent to combat these illnesses is

measured in billions of dollars annually, and it also includes other types of costs such as loss of

work and school days [4–7]. Many arboviruses cases are not reported, making it difficult to

estimate the true economic impact of the diseases [8].

Dengue, chikungunya, and Zika are the most common viral diseases transmitted by mos-

quito-vectors [9–11] and negatively impact the public health and result in economic damage

worldwide [12,13]. The effective prevention and control of arboviruses depends on timely and

accurate detection of elevated viral activity in the population [14].

According to the World Health Organization (WHO), the global incidence of dengue has

dramatically grown in the recent decades and approximately half the world’s population is at

risk. The number of dengue cases reported to WHO increased approximately 6 fold, from

<0.5 million in 2010 to over 3.34 million in 2016. Notably, a substantial number of cases in the

Americas were reported in Brazil. Globally, there are an estimated 390 million dengue infec-

tions each year [15]. The global cost of dengue was U$ 8.9 billion in 2013, and in 34% of the

cases, the patients were not medicated [8]. The control and reduction of dengue cases can

globally save billions of dollars.

Regarding the Zika virus, the United Nations Development Program, in partnership with

the Red Cross International Federation, evaluated the socio–economic impacts of the Zika

virus in Latin American and Caribbean countries, especially in Brazil, Colombia, and Suri-

name [16]. Their report asserted that Zika was responsible for tangible losses in the gross

domestic product, estimated between seven and eight billion dollars in the period from 2015

to 2017, thereby imposing an immediate burden on health systems and social assistance.

The economic impact goes beyond the costs related to public health and the reduction in

the gross domestic product of the countries. It directly affects the household economy. In the

state of Orissa, in India, 10% of the monthly family income was spent on health-care expenses

for treating the chikungunya effects. Among the people interviewed, on average, the workers

lost 35 days of work because of the illness [17].

The mosquito of the species Aedes aegypti is the main transmission vector of arboviruses

and infects millions of people worldwide [18,19]. In addition, the species Aedes albopictus is

another transmitter vector of these diseases, and in the last three decades, its population has

exploded geographically worldwide [20–23]. Culex quinquefasciatus, other than being a dis-

ease-transmitting vector, is, along with Ae. aegypti, one of the most common urban mosqui-

toes in tropical and subtropical environments, causing discomfort to humans [24].

The proximity of mosquito-vector breeding sites to human habitation poses a significant

risk factor due to the diseases that these species transmit [25,26]. Currently, no specific treat-

ment or commercial vaccine exists for the control and prevention of arboviruses; therefore,

the population control of mosquitoes is the only preventive measure [27–29]. Entomological

characterization is critical to acquiring the information on mosquito behavior; however, the

current practice that is used to identify insect species is manual, time consuming, and requires

experienced professionals [30–32]. Accordingly, the development of a new automated method

for performing mosquito perception and classification is becoming increasingly essential

[31,33,34]. Despite being a problem in different parts of the world, especially in tropical coun-

tries, vector control and prevention programs are the only strategies in the hands of govern-

ments to reduce the incidence of arboviruses [7,35].
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Recently, new models based on machine learning and deep learning have been developed

to automatically classify and detect the species of mosquitoes [36–39]. However, as discussed

by Batista et al., the efficiency of these tools depends on the knowledge of the temporal space

of the transmitting vectors [40]. The time spent between the capture of the sample and the

analysis thereof in a laboratory affects this efficiency.

In a recent study, we demonstrated that CNNs can be used by health workers and non-tax-

onomists to autonomously classify mosquitoes to aid in the screening of possible vectors of

arboviruses [41]. The aforementioned study presented important results using LeNet [42],

AlexNet [43], and GoogLeNet [44] neural networks. However, it also recommended that more

complex networks must be used to improve the model accuracy, and that significant amount

of data were required to increase the reliability of any autonomous method to recognize

objects. Both the recommendations are addressed in this study.

In addition to using more complex architectures, deep-learning algorithms require optimi-

zation in different contexts and are the most difficult to be optimized among all the neural net-

works [45]. CNNs demand the definition of several training parameters that are not

automatically adjusted during the learning process. It is fairly common to invest months to

optimize a limited number of training parameters, and, accordingly, many optimization tech-

niques have been developed [45]. Notably, random-search and grid-search techniques are the

most frequently used strategies to optimize the hyperparameters [46].

Because the prevention and control strategies to counter arboviruses have not shown satis-

factory results in reducing disease transmission, utilizing automated and efficient tools of clas-

sifying mosquitoes can be significantly useful to improve the programs to control these

diseases. Accordingly, the objective of this study is to develop a CNN-based entomological

model for field use by experts and non-specialists to automate the classification of Ae. aegypti,
Ae. albopictus, and C. quinquefasciatus, as well as allow the detection of the genus Aedes. More

complex state-of-the-art CNN architectures, such as Residual Network (ResNet) [47], VGG

[48,49], InceptionV3 [50], Xception [51], and DenseNet [52], were used in the model, and the

hyperparameters were optimized using a random- and grid-search approaches to increase the

model accuracy. We must highlight that this study meets the current guidelines recommended

by WHO. The prevention and control of arboviruses depends on the effectiveness of vector-

control measures. Sustained community involvement can substantially improve the vector-

control efforts.

Materials and methods

Sample collection and ethics statement

No permits were required for sampling for this study, as the field sampling did not involve any

endangered or protected species.

The mosquito samples used for image capture were obtained from the same database as

used in the study by Motta et al. [2019] [41] with several adaptations (i.e., inclusion of new

samples). the newly included samples were kindly donated by the Parasitology Laboratory of

the Federal University of Bahia–UFBA (Salvador, Brazil) and Oswaldo Cruz entomology Insti-

tute–FIOCRUZ (Rio de Janeiro, Brazil). Some of the new samples were also directly collected

from the field by a trained entomologist and added to the SENAI CIMATEC Biotechnology

Laboratory database (see Table 1).

In this study, 359 mosquito samples were used. Of these samples, 139 were the specimens of

Ae. aegypti, 107 of Ae. albopictus, and 113 of C. quinquefasciatus. Field sampling was per-

formed between September and October 2017 and between March and April 2018 in the city

of Salvador in two collection areas (Bahia, Brazil). CDC light traps (Centers for Disease
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Control and Prevention miniature light traps) and suction tubes were used for collecting adult

insects. The captured specimens were euthanized using ethyl acetate and stored in entomologi-

cal collection tubes until identification was performed by an entomologist.

Image acquisition

In this study, we utilized a supervised deep learning approach. Therefore, the structuring and

labeling of the dataset is a fundamental step for performing the correct training and evaluation

of the CNN.

Of the 7,561 images of the target mosquitoes, namely, Ae. aegypti, Ae. albopictus, and C.

quinquefasciatus used in this study, 95% (7,180) were directed acquired from the samples col-

lected, and the remaining 5% (381) were donated by the Institute of Entomology Oswaldo

Cruz of FIOCRUZ (Rio de Janeiro, Brazil) and also extracted from the ImageNet database.

The species were photographed using various cameras, such as a Leica DMC2900 (Leica

Microsystems, Heerbrugg, Switzerland) coupled to a stereoscopic Leica M205C at the Oswaldo

Cruz Institute of Entomology at FIOCRUZ (Rio de Janeiro–Brazil), Canon Power Shot D30

(Canon, Tokyo, Japan) coupled to a Wild M3C stereomicroscope (Leica Microsystems, Heer-

brugg, Switzerland) at SENAI CIMATEC (Salvador–Brazil), and mobile-phone cameras (Sam-

sung J5, Seoul, South Korea and Apple iPhone 7, Cupertino, California, USA) [41].

The images were collected at different resolutions and different angles of the mosquito in

the image. The objective was to develop a classification model that could be generalized. In Fig

1, we depict a sample of the images used in this study.

All the images used in this study were evaluated by an entomologist to validate their

labeling.

In addition, 1,187 images of spiders, beetles, and bees were acquired from the Internet and

labeled as “others.” This was done to train the model and prevent another species of insects

being labeled as one of the target classes. All the images used in this study were analyzed and

classified by an entomologist. In Table 2, we list the number of images by class used in this

study.

Dataset split in training, validation, and testing

In this study, the method used to develop the automatic-classification model was based on the

one proposed by Motta et al. [41].

The dataset was divided to be used in the following three distinct phases: training, valida-

tion, and testing. First, in the training phase, the dataset with its labels is presented to the algo-

rithm, and the model is trained using the attributes of each class. Second, in the validation

phase, which is simultaneously performed with the training phase, the objective is to measure

Table 1. Identification of mosquito samples used in this study to obtain the images and database.

Sample Sample origin Number Description

Ae. Aegypti UFBA 16 10 females and 6 males

Ae. Aegypti FIOCRUZ 03 Females

Ae. Aegypti Field (database CIMATEC) 120 94 females and 26 males

Ae. Albopictus UFBA 10 5 females and 5 males

Ae. Albopictus FIOCRUZ 03 Females

Ae. Albopictus Field (database CIMATEC) 94 71 females and 23 males

C. quinquefasciatus FIOCRUZ 03 Females

C. quinquefasciatus Field (database CIMATEC) 110 97 females and 13 males

https://doi.org/10.1371/journal.pone.0234959.t001
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the quality of the training with new data. In this phase, the classification is evaluated and net-

work weights are adjusted with the objective of increasing the accuracy and reducing the loss.

Third, in the testing phase, a new dataset is presented to the model. No weight adjustments are

performed at this stage, and the target is to evaluate the generalization ability of the model.

The split into the three phases was randomly adopted as follows: 60% for training, 20% for

validation, and 20% for testing. The images were randomly divided in each phase according to

the defined percentages.

Performance-evaluation metrics

During the training and validation phases, the metrics used to evaluate the performance of the

model were loss function and accuracy. The loss function used in this study was the cross-

entropy cost function.

In the testing phase, the network performance was evaluated using a confusion matrix.

Notably, the dataset used in this study was unbalanced; i.e., each class had different number os

datapoints in the database and, therefore, a different weight in the overall result. Therefore, in

this study, we used a metric that considered the effect of this imbalance. Although several met-

rics are currently used from the confusion matrix, balanced accuracy (BA) represents the over-

all performance when the database is unbalanced [53]. In Table 3, we present a 2 x 2 confusion

matrix. Eqs 1, 2, 3 and 4 present the calculation methods of the metrics of this matrix.

Precision : PR ¼
TP

TP þ FP
ð1Þ

True� Positive Rate : TPR ¼
TP

TP þ FN
ð2Þ

True� Negative Rate : TNR ¼
TN

TN þ FP
ð3Þ

Balanced Accuracy : BA ¼ 0; 5� ðTPRþ TNRÞ ð4Þ

In this study, additionally, the classification process also considered matrices above of two

classes. The way indicators are calculated in these cases changes. To obtain a single

Fig 1. Sample of the images used in developing the model. (A) Ae. aegypti female. (B) Ae. aegypti male. (C) Ae. albopictus female. (D)

Ae. albopictus male. (E) C. quinquefasciatus female. (F) C. quinquefasciatus male.

https://doi.org/10.1371/journal.pone.0234959.g001

Table 2. Number of images by class.

Class/genre Number of images

Ae. aegypti female 1,193

Ae. aegypti male 1,562

Ae. albopictus female 1,448

Ae. albopictus male 1,360

C. quinquefasciatus female 1,025

C. quinquefasciatus male 973

Others 1,187

TOTAL 8,748

https://doi.org/10.1371/journal.pone.0234959.t002
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performance-evaluation metric, we first used the performance analysis for each class, accord-

ing to the equations presented in Table 4.

For the cases of the above-mentioned two classes, the overall accuracy result of the model

was considered the mean of the balanced accuracies for each class.

Data augmentation

When a CNN is used for the visual recognition of objects, with low data availability, data aug-

mentation is commonly used [54]. In this study, the training and validation datasets were com-

putationally augmented from the original images obtained. The test dataset was not

augmented.

Various data-augmentation parameters (rotation, width-shift range, height-shift range,

brightness, and zoom) were randomly tested, and after a performance evaluation, a grid search

followed by two stages was developed.

In the first stage, the objective was to identify the best set of hyperparameters for generating

new images, as presented in Table 5. Initially, three hyperparameters were tested: rotation,

width-shift range, and height-shift range. This definition was supported by the results obtained

from the random search performed previously. Subsequently, the variation values of each

hyperparameter was determined. For rotation, two levels were tested (45˚ and 90˚), and for

width- and height-shift ranges, three levels (5%, 15%, and 25%) were tested. Finally, the net-

work underwent the training and validation phases for seven different combinations, includ-

ing the comparison without data augmentation. On the basis of the results, the set of

hyperparameters with better performances in terms of accuracy and cross-entropy loss, both

in the validation phase, was defined as the standard to be used in this study.

In the second stage, the objective was to evaluate the number of times the data should be

magnified. Using the set selected in the first stage, the dataset was multiplied by 5, 10, 15, and

20. The multiplier with the best performance, considering the same criteria as those in the pre-

vious stage, was then selected for the developing the optimized model.

Definition of the CNN architecture and optimization of hyperparameters

for the classification layers

In this study, we used pre-trained CNN models available in the Keras library [55]. Using a pre-

trained model, also known as transfer learning, is important to improve the performance of

Table 3. Confusion matrix 2 x 2 metrics.

Predicted Class

Positive Negative

Actual Class Positive TP FN

Negative FP TN

https://doi.org/10.1371/journal.pone.0234959.t003

Table 4. Confusion matrices of the above-mentioned two classes.

Predicted Class TPR TNR BA

Class 1 Class 2 Class 3

Actual Class Class 1 a b c a
aþbþc

eþfþhþi
dþeþfþgþhþi

BA1 ¼ TVPþTVN
2

Class 2 d e f e
dþeþf

aþcþgþi
aþbþcþgþhþi

BA2 ¼ TVPþTVN
2

Class 3 g h i i
gþhþi

aþbþdþe
aþbþdþeþgþh BA3 ¼ TVPþTVN

2

Precision a
aþdþg

e
bþeþh

i
cþfþi

BA1þBA2þBA3

3

https://doi.org/10.1371/journal.pone.0234959.t004
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image classification, as its weights have previously been optimized with attributes that are

important in most computer-vision problems. The use of the transfer-learning technique was

possible in this study, as the dataset used had images that were similar to those used in Ima-

geNet. If the images were not similar to those used to train the models available, it would have

been necessary to retrain some layers.

The CNN selection and optimization of the hyperparameters was performed in five steps.

In the first step, the target was to randomly evaluate the performance of different network

architectures and hyperparameters in the process of automatic classification of mosquitoes, in

terms of accuracy and loss in the training and validation phases.

In the second step, 16 experiments were developed, as listed in Table 6. Considering the

performance achieved by Xception and DenseNet201 in the first step, those architectures were

selected as the ones to be used for developing the model.

On the basis of the results of the second step, the five best-performing models in terms of

accuracy in the validation phase and the five best ones in terms of loss function in the valida-

tion phase were selected for classifying the test dataset.

Notably, the values of the initial weights assigned in a neural network training begin with

random values. As the learning process evolves, these weights are adjusted. However, the initial

randomness of these values may affect the final performance result. Accordingly, the fourth

step was to evaluate this variation, and the two experiments with the best overall accuracy per-

formances were retrained two more times, following which their new models were resubmit-

ted to the test dataset evaluation.

In the last step, the batch size for the best set obtained in the fourth step varied as 32, 64,

128 and 256.

Evaluation of the optimized model

To evaluate the applicability of the model in the community (i.e., among non-specialists), the

classification of the species may not be as important as the detection of the genus Aedes.
Accordingly, for the community and public programs regarding the prevention of arboviruses,

the detection of the mosquito Aedes is considered an important factor. Another important

point to evaluate the model is its ability to recognize other insects and distinguish them from

the target mosquitoes of this study.

Table 5. Grid search–hyperparameters for dataset augmentation.

Data-Augmentation Hyperparameters Experiments

1˚ 2˚ 3˚ 4˚ 5˚ 6˚ 7˚

Rotation No augmentation 45˚ 45˚ 45˚ 90˚ 90˚ 90˚

Width-shift range 5% 15% 25% 5% 15% 25%

Height-shift range 5% 15% 25% 5% 15% 25%

https://doi.org/10.1371/journal.pone.0234959.t005

Table 6. Grid search—CNN architecture and hyperparameters for classification layers.

CNN e Hyper. Experiments

1˚ 2˚ 3˚ 4˚ 5˚ 6˚ 7˚ 8˚ 9˚ 10˚ 11˚ 12˚ 13˚ 14˚ 15˚ 16˚

CNN Xcp Xcp Xcp Xcp Xcp Den Den Den Den Den Den Den Den Den Den Den

Epochs 200 200 200 200 300 200 200 200 200 200 200 200 200 200 200 300

LR 4e-7 4e-6 2e-5 1e-4 4e-6 4e-6 1e-5 2e-5 3e-5 6e-5 1e-4 2e-4 3e-4 6e-4 1e-3 4E-6

(Epochs: number of epochs; LR: initial learning rate; Xcp: Xception network; Den: DenseNet201 network).

https://doi.org/10.1371/journal.pone.0234959.t006
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Accordingly, the optimized model was tested in the following three distinct scenarios: (a)

six classes—in this case, the classification of the three species, as well as the differentiation

between males and females, is evaluated; (b) two classes—in this case, there is only the differ-

entiation between Aedes and Culex; (c) seven classes—in this case, a another insect category is

included to evaluate the behavior of the network when an image of a non-mosquito is

presented.

Angle of the mosquito in the image

Another evaluation performed in this study was on the effect of the object angle in the image

on the prediction performance of the model. A photography expert separated the test database

from the six classes in the following four different sets: (A) frontal and bottom angles, which

consider the photos taken from the front of the head region and below the thorax of the mos-

quito, respectively; (B) back angle, which comprises the region of the wings; (C) right angle,

and (D) left angle. In Fig 2, we depict a sample from each of the four sets.

The test dataset had 344 images with front and bottom angles, 287 images with back angle,

460 with right angle, and 419 with left angle.

Experimental setup

The experiments were performed using Python as the programing language and Keras frame-

work for training the models. The workflow adopted is depicted in Fig 3 and can be divided

into the following 3 steps: data pre-processing, transfer learning, and model training and test-

ing. As previously mentioned, for every model trained, the dataset was split into training, vali-

dation, and testing phases, with the proportions of 60%, 20%, and 20% respectively.

Data pre-processing

In this step, the dataset was computationally augmented with random variations in rotation,

height, and width. Only the training and validation images were augmented. Generating new

images took an average of 5 h for the training dataset and 2 h for the validation dataset, consid-

ering the augmentation of the images for the six classes in 20 times.

Transfer learning

In this step we aimed to extract the attributes of the images by using some of the pre-trained

networks. For each of the three phases of the model development (training, validation, and

testing), two vectors X and Y were generated, where X denotes the attribute vector of the

images that was used to characterize the output signal present in vector Y according to its

label, and Y denotes the label vector.

The main purpose of CNN convolutional layers is to capture the relevant attributes that

characterize and generalize the classification process. The input signal (x) requires the specifi-

cation of the attributes of that have the most important role in its prediction [56]. During the

training epochs, significant time is spent in the process of compressing the input data for real-

izing an efficient representation of the output data. It is a process to identify the most relevant

information for the identification process [57].

The CNN architecture is selected in this stage. The program was developed to enable the

use of any of the pre-trained models that are currently available in the Keras library (https://

keras.io/applications/): Xception, VGG16, VGG19, ResNet50, InceptionV3, InceptionRes-

NetV2, MobileNet, DenseNet, NASNet, and MobiliNetV2.
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In this study, the average generation time of the attribute vectors in the training phase was

30 h, in the validation phase was 2.5 h, and in the test phase was 10 min. This time represents the

average of each time the program is used while generating attribute vectors for the six classes.

Model training and testing

This step represents the classification layers. As explained earlier, it is at this stage that 2D fea-

ture maps are converted to a 1D feature vectors and object classification or recognition is per-

formed. In addition to using the attributes vectors generated using the previous program, in

Fig 2. Samples of images at different angles of mosquitoes. (A) Bottom angle. (B) Back angle. (C) Right angle. (D) Left angle.

https://doi.org/10.1371/journal.pone.0234959.g002
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this step, we select the values of the hyperparameters, such as number of epochs, initial learn-

ing rate, and optimizer, that directly affect the learning process of the network.

The callbacks dropout and reduce learning rate on plateau functions are used for reducing

the risk of overfitting and improving the performance of the classification process.

By running this program, the model after undergoing training and validation phases is

saved. This is important to enable the use of the model with the test dataset and, thus, evaluate

the performance of the network in classifying new images. In this study, the mean training

time of the network, for 200 epochs, was 2 h.

The model saved with the weights trained after using all the previous programs is evaluated

in the test phase. At this stage, a new dataset is presented, and a confusion matrix is generated,

enabling the evaluation of the generalization capability for each class.

Results and discussion

Random search

The setup of the grid-search plan to optimize the data-augmentation parameters and model

hyperparameters was preceded by a random search. This search was conducted to support the

definition of the hyperparameters that were varied and the scope of this variation. The dataset

with six classes was the one used for the model optimization. In Table 7, we present the results

obtained after the last epoch of the network for the 24 experiments performed during the ran-

dom search.

For correctly interpreting the results, we must analyze the learning curves of each model. In

Figs 4, 5 and 6, we depict some curves of learning process of the experiments and exemplify the

criteria used for developing the grid-search plan. In Fig 4, we depict the cross-entropy (loss func-

tion) and accuracy in the validation phase with the use of ResNet50 and VGG16 (see Table 7).

ResNet was the winner of the ILSVRC-2015 challenge in the category of object classification

with a margin of error-top-5 of 3.57% [47,58,59]. However, in the classification of adult mos-

quitoes with the parameters used in this study, it did not perform satisfactorily. It should be

noted that no optimization was performed for using ResNet in this study. Because of its

Fig 3. Programs used for the development of work.

https://doi.org/10.1371/journal.pone.0234959.g003
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performances in experiments 2, 3, and 4, using different optimizers (SGD, RMSprop, and Ada-

grad, respectively), it was decided not to include the ResNet architecture in the grid search.

Notably, in both Fig 4A and 4B, underfitting is indicated. That is, with a greater number of

epochs, this network tends to improve its performance.

Another important evaluation for the random-search phase was related to the effect of the

dataset augmentation. The benefits of dataset augmentation were demonstrated in a recently per-

formed work [60]. By carefully evaluating the images generated in experiment 9, we verified that

there were no mosquitoes in them, which was defined by reviewing the number of hyperpara-

meters and their amplitudes for generating new images for the dataset. The augmentation of the

images from experiment 17 follows a new configuration. The new results confirm that dataset aug-

mentation can improve the model performance in the classification of images of adult mosquitoes.

In Fig 5, we depict the cross entropy and accuracy in the validation phase using the Xcep-

tion and DenseNet201 networks. From Fig 5B and 5D, it is evident that upon reducing the

number of epochs, the minimum cross-entropy value is achieved, and that at this point (i.e.,

approximately 20 epochs), the error in the validation phase begins to increase. However, the

validation accuracy of the model still increases along the number of epochs.

Accuracy and loss might be inversely correlated to each other; i.e., the higher the accuracy,

the lower the loss. However, during the learning process of a neural network, the loss function

Table 7. Random search results.

# M CNN Epochs Optimizer LR Results

L_t Acc_t (%) L_v Acc_v (%)

1 10� ResNet50 200 SGD 1e-3 1.77 21.0 1.77 21.0

2 0 ResNet50 200 SGD 1e-3 1.65 28.8 1.64 28.3

3 0 ResNet50 200 RMSprop 1e-3 1.48 39.3 1.50 36.8

4 0 ResNet50 200 Adagrad 1e-3 1.54 36.6 1.55 35.7

5 0 Xception 200 RMSprop 1e-3 0.06 98.3 1.41 79.9

6 0 VGG16 200 RMSprop 1e-3 0.42 83.4 0.81 75.1

7 0 DenseNet201 200 RMSprop 1e-3 0.01 99.6 1.01 87.2

8 0 DenseNet201 120 RMSprop 1e-3 0.02 99.4 0.96 87.2

9 2� VGG16 200 RMSprop 1e-3 1.69 26.1 1.77 24.7

10 0 VGG16 300 RMSprop 1e-3 0.38 86.1 0.86 75.1

11 0 VGG16 200 RMSprop 1e-2 1.77 21.3 1.77 21.3

12 0 VGG16 200 RMSprop 1e-4 0.62 77.6 0.80 71.1

13 0 InceptionV3 200 RMSprop 1e-3 0.06 97.6 1.40 79.7

14 0 Xception 200 Adam 1e-3 0.04 98.8 1.34 80.3

15 0 Xception 200 Adam 1e-4 0.11 97.1 0.72 79.8

16 0 Xception 200 Adam 1e-5 0.48 82.8 0.63 76.0

17 2 Xception 200 Adam 5e-5 0.24 91.7 0.65 78.4

18 2 DenseNet201 200 Adam 5e-5 0.24 91.3 0.62 79.2

19 2 DenseNet201 200 Adam 1e-5 0.44 83.6 0.61 77.6

20 2 DenseNet201 200 Adam 2e-5 0.33 87.8 0.59 78.8

21 2 VGG16 200 Adam 1e-3 0.54 78.8 0.99 66.5

22 2 VGG16 200 Adam 1e-4 0.76 71.1 0.95 63.1

23 10 DenseNet201 200 Adam 2e-5 0.21 92.3 0.42 85.9

24 15 DenseNet201 200 Adam 2e-5 0.19 92.9 0.41 86.9

M: Data-augmentation multiplier; LR: Learning rate; L_t: Training loss; Acc_t: Training accuracy; L_v: Validation loss; Acc_v: Validation accuracy.

� Dataset augmentation with indiscriminate variation in hyperparameters.

https://doi.org/10.1371/journal.pone.0234959.t007
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Fig 4. Evolution of network learning upon using ResNet50 and VGG16. (A) Accuracy in the validation phase–experiment 3 (ResNet50). (B) Cross entropy in the

validation phase–experiment 3 (ResNet50). (C) Accuracy in the validation phase–experiment 6 (VGG16). (D) Cross entropy in the validation phase–experiment 6

(VGG16). (E) Accuracy in the validation phase–experiment 9 (VGG16). (F) Cross entropy in the validation phase–experiment 9 (VGG16).

https://doi.org/10.1371/journal.pone.0234959.g004

PLOS ONE Convolutional neural network hyperparameters for classification of mosquitoes

PLOS ONE | https://doi.org/10.1371/journal.pone.0234959 July 14, 2020 13 / 30

https://doi.org/10.1371/journal.pone.0234959.g004
https://doi.org/10.1371/journal.pone.0234959


Fig 5. Evolution of network learning by using Xception and DenseNet201. (A) Accuracy in the validation phase–experiment 5 (Xception). (B) Cross entropy in the

validation phase–experiment 5 (Xception). (C) Accuracy in the validation phase–experiment 7 (DenseNet201). (D) Cross entropy in the validation phase—experiment 7

(DenseNet201). (E) Accuracy in the validation phase after reducing the initial learning rate to 1E-5 –experiment 16 (Xception). (F) Cross entropy in the validation phase

after reducing of the initial learning rate to 1E-5 –experiment 16 (Xception).

https://doi.org/10.1371/journal.pone.0234959.g005
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can increase, despite increased or maintained accuracy. We must correctly understand this

phenomenon to decide which is the "best" set of hyperparameters for a given application.

The loss function measures the distance between the actual and predicted values. The pre-

dicted value is probabilistic and the real value deterministic. Considering a hypothetical situa-

tion of a real image of an Ae. aegypti male mosquito, the actual value assumes that the image is

100% likely to be of an Ae. aegypti male mosquito. However, upon presenting this image to the

prediction algorithm, this evaluation can vary between 0% and 100%. The loss function mea-

sures this variation between the actual and predicted values.

Accuracy measures the predicted value as deterministic. When evaluating the same above-

mentioned image, if the algorithm classifies the image as being 80% likely to be of an Ae.
aegypti male mosquito and 20% likely to be of an Ae. albopictus female, for the value of accu-

racy, the model would have 100% accuracy.

Therefore, if at a given epoch of the network training, the model predicts that an image is

80% likely to be of an Ae. aegypti male mosquito and in the subsequent epoch, the same model

predicts that the same image is 60% likely to be of an Ae. aegypti male mosquito, then the loss

function increases, but the accuracy remains the same.

This effect should not be confused with overfitting. Overfitting is related to the inability to

generalize the model when new data, which are not used in training or validation phase, are

presented [45]. To detect overfitting, we must evaluate the image-classification performance

when using the test dataset.

Despite the importance of the loss function, in this study, the BA in the test phase is consid-

ered more relevant.

Alternatively, we can minimize this effect is by changing the initial learning rate. The per-

formance of a deep-learning-based method significantly depends on the selection and evolu-

tion of the learning rate and can considerably increase the model of the training process [61].

In Fig 5E and 5F, we depict the effect of reducing the initial learning rate while using Xception.

However, reducing the initial learning rate alters the learning speed of the network and

consequently, its final performance. Therefore, we investigated the effects of the initial learning

rate at the grid-search stage. Fig 5 depicts underfitting, reinforcing the importance of assessing

the number of epochs in addition to the initial learning rate.

In Fig 6, we depict the cross entropy and accuracy in the validation phase of experiments 20

and 24 (see Table 7) obtained using DenseNet201. In addition to the fact that the dataset aug-

mentation improves the performance of the network in the classification process, we verified

that it accelerates the learning process as well.

Optimization of hyperparameters for data augmentation

The data-augmentation hyperparameters were optimized in two stages. In the first stage, the

best set of hyperparameters was defined for generating new images. In the second stage, we

evaluated the number of times the data should be augmented.

In Fig 7, we depict the behavior of the classification accuracy and cross-entropy function in

the validation phases of the experiments for both the stages of hyperparameter optimization to

generate new images.

In the first optimization stage (see Fig 7A and 7C), regarding the performance of the evalu-

ated sets, the best results for accuracy and loss function were determined to be 45˚ of image

rotation, 5% of image-width displacement, and 5% of height-shift of images. Because of this

performance, this set of values was chosen for data augmentation in the second stage.

In the second optimization stage (see Fig 7B and 7D), the best performance regarding the

classification accuracy and cross-entropy function was obtained with the multiplication factor

PLOS ONE Convolutional neural network hyperparameters for classification of mosquitoes

PLOS ONE | https://doi.org/10.1371/journal.pone.0234959 July 14, 2020 15 / 30

https://doi.org/10.1371/journal.pone.0234959


of 20, thereby reinforcing once again that data augmentation enhances the model performance

in classification tasks [60].

After performing the hyperparameter-optimization process for data augmentation, the

DenseNet201 network obtained 87.7% accuracy in the validation phase after 200 epochs (see

Fig 7B, M20). As previously mentioned, the final performance evaluation of the model was

performed during the test phase, to verify its generalization capacity. In Table 8, we present

the result, which is in the form of a confusion matrix, of the prediction of the model in the test

phase, obtained after the second stage of the optimization process.

The overall BA in the classification, up to this phase of the optimization, was 90.7%. In

Table 8, we also present the performance of the model for each of the six classes.

At this stage of hyperparameter optimization, although the overall BA result previously

exceeds 90%, it was established that each class should have a true-positive rate above 80%. This

goal was established, considering the result previously achieved using CNN GoogLeNet, when

the general accuracy of 76.2% was obtained. However, of the six classes evaluated, three pre-

sented unsatisfactory accuracy (64.3% for the classification of species Ae aegypti female, 57.1%

Fig 6. Evolution of the learning of the DenseNet network after dataset augmentation. (A) Accuracy in the validation phase—experiment 20. (B) Cross entropy in the

validation phase—experiment 20. (C) Accuracy in the validation phase—experiment 24. (D) Cross entropy in the validation phase—experiment 24.

https://doi.org/10.1371/journal.pone.0234959.g006
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for that of C. quinquefasciatus female, and 71.4% for that of C. quinquefasciatus male) [41].

Accordingly, it can be seen from Table 8 that for classes Ae. aegypti Male and Ae. albopictus
male, the model must be improved.

Optimization of hyperparameters to extract features and for the

classification layers

After the optimization of the training and validation dataset-augmentation hyperparameters,

the CNN, Xception, and DenseNet201 architectures were investigated. In Table 9, we present

Fig 7. Effect of hyperparameter variation on the accuracy and loss function–data augmentation. (A) The first stage of grid-search plan—accuracy. (B) The second

stage of grid-search plan–accuracy. (C) The first stage of grid-search plan–loss function. (D) The second stage of grid-search plan–loss function.

https://doi.org/10.1371/journal.pone.0234959.g007
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the results of the performance of the hyperparameters grid search in terms of features extrac-

tion and classification (see Table 6) achieved at the end of the training epochs.

From the results presented in Table 9, the five best performances in terms of the accuracy

in the validation phase and the five best ones in terms of the loss function in the validation

phase were experiments 7, 8, 9, 10, and 11 and experiments 12, 13, 14, 15, and 16, respectively.

Therefore, the models corresponding to these experiments were selected for the evaluation of

the classification in the test dataset.

In Fig 8, we depict the results of global BA of experiments 7–16 in classifying Ae. Aegypti
male, Ae. Aegypti female, Ae. Albopictus male, Ae. Albopictus female, C. quinquefasciatus male,

and C. quinquefasciatus female.

Notably, the values of the initial weights are randomly assigned in a neural network train-

ing. As the learning progresses, these weights are adjusted; however, the initial randomness of

Table 8. Confusion matrix of the model after the optimization process of data-augmentation hyperparameters.

Class Ae. aegypti
female

Ae. aegypti
male

Ae. albop.

female

Ae. albop.

male

C. quinq.

female

C. quinq.

male

TOTAL TPR (%) TNR (%) BA (%)

Ae. aegypti
female

201 9 22 3 3 0 238 84.5 95.7 90.1

Ae. aegypti male 16 240 20 32 4 0 312 76.9 96.7 86.8

Ae. albop. female 24 4 251 9 0 1 289 86.9 94.3 90.6

Ae. albop. male 8 26 23 214 0 1 272 78.7 96.0 87.3

C. quinq. female 7 1 3 3 190 1 205 92.7 98.0 95.3

C. quinq. male 0 0 1 3 19 171 194 88.1 99.8 94.0

TOTAL 256 280 320 264 216 174 1510 90.7

PR (%) 78.5 85.7 78.4 81.1 88.0 98.3

TPR: True-Positive Rate; TNR: True-Negative Rate; BA: Balanced Accuracy.

https://doi.org/10.1371/journal.pone.0234959.t008

Table 9. Grid-search results for the definition of CNN architecture and hyperparameters for the classification layers.

# CNN Number of Epochs Optimizer LR Results

L_t Acc_t. L_v Acc_v

1 Xception 200 Adam 4e-7 0.76 71.3% 0.75 71.9%

2 Xception 200 Adam 4e-6 0.31 88.8% 0.55 80.4%

3 Xception 200 Adam 2e-5 0.19 93.3% 0.58 81.6%

4 Xception 200 Adam 1e-4 0.08 97.2% 0.70 83.5%

5 Xception 300 Adam 4e-6 0.29 89.6% 0.55 80.9%

6 DenseNet201 200 Adam 4e-6 0.26 90.5% 0.42 85.6%

7 DenseNet201 200 Adam 1e-5 0.18 93.6% 0.41 86.9%

8 DenseNet201 200 Adam 2e-5 0.13 95.3% 0.41 88.0%

9 DenseNet201 200 Adam 3e-5 0.12 95.6% 0.41 88.1%

10 DenseNet201 200 Adam 6e-5 0.08 97.0% 0.41 89.4%

11 DenseNet201 200 Adam 1e-4 0.05 98.1% 0.43 90.0%

12 DenseNet201 200 Adam 2e-4 0.03 99.0% 0.47 90.4%

13 DenseNet201 200 Adam 3e-4 0.02 99.4% 0.51 90.7%

14 DenseNet201 200 Adam 6e-4 0.01 99.7% 0.56 90.8%

15 DenseNet201 200 Adam 1e-3 0.01 99.7% 0.59 90.7%

16 DenseNet201 300 Adam 4e-6 0.23 91.8% 0.41 86.3%

LR: Learning rate; L_t: Training loss; Acc_t: Training accuracy; L_v: Validation loss; Acc_v: Validation accuracy.

https://doi.org/10.1371/journal.pone.0234959.t009
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these values may alter the final performance. The factors that determine the minimum local

value are the initial weight and training algorithm. In addition, the weight initialization affects

the convergence speed, convergence probability, and generalization [62].

Therefore, the accuracy results depicted in Fig 8 might vary if the models are retrained. To

evaluate the effect of this variation on the selection of the hyperparameter set of this study, the

two experiments that achieved the best overall accuracy performance (experiments 12 and 13)

were retrained twice more, and their new models underwent dataset evaluation again.

In Fig 9, we depict the performances of experiments 12 and 13 (see Table 9) and the varia-

tion in the overall accuracy results for three independent trainings.

On the basis of the performance variation, it is concluded that although the model with the

hyperparameters of experiment 13 may achieve similar performance to that of the model with

Fig 8. Overall BA of experiments 7–16 of Table 9.

https://doi.org/10.1371/journal.pone.0234959.g008
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the hyperparameters of experiment 12, the latter model, shows superior performance (on aver-

age) in terms of the overall BA. Therefore, we selected that model.

Considering the CNN architecture and hyperparameters of experiment 12 (see Table 9), we

began to investigate the batch-size variation. Fig 10 presents the results of the overall BA for

various batch sizes.

In the overall result, the batch size of 32 showed the best performance. Therefore, after con-

cluding the entire optimization process, in Table 10 we present the configuration of the hyper-

parameters that achieved the best performance in terms of the classification of adult

mosquitoes in six different classes.

In Table 11, we present the confusion matrix for six classes with the test dataset, after per-

forming training using the hyperparameter configuration listed in Table 10.

Comparing the results of Table 11 with those of Table 8, it is verified that the improvement

in the overall accuracy was approximately 1.8%, reaching 92.5%. Notably, with the exception

of the accuracy for the classification of C. quinquefasciatus male, all the other metrics showed

improved performances after the optimization process. In addition, for all the classes, the

value of the true-positive rate was higher than 80%.

Fig 9. Variation in the global BA of experiments 12 and 13.

https://doi.org/10.1371/journal.pone.0234959.g009
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The comparisons presented in this study are references and not absolute, once the authors

have used different datasets. Except the comparison with [41].

The application of the model for the six classes can be compared with the results of other

authors. Ouyang et al. [37] applied wing beat frequency profiling techniques and evaluated the

classification of the same target species as those used in this study. Consequently, they obtained

the average accuracy of 79.5% upon using neural networks. Motta et al. [41] used a CNN-

based method for image classification and obtained the accuracy of 76.2% upon using the Goo-

gLeNet network.

Comparing the results for each class, in the work of Motta et al. [41], the classes Ae. aegypti
female, C. quinquefasciatus female, and C. quinquefasciatus male presented the accuracy of

64.3%, 57.1%, and 71.4%, respectively, whereas in the present study the same classes showed

BAs of 93.6%, 93.5%, and 96.4%, respectively.

Fig 10. Overall BA upon varying the batch size.

https://doi.org/10.1371/journal.pone.0234959.g010
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Notably, however, in the studies by Ouyang et al. [37] and Motta et al. [41], the test database

was significantly small, and the accuracy calculation did not consider the dataset unbalance. In

addition, among all the classes studied, the value of the true-positive rate was higher than 80%,

which is a goal established in this study.

Performance for two classes: Detection of Aedes
As previously shown, the performance of the model was also trained for differentiating Aedes
from Culex with the objective of evaluating the model performance in the detection of the

genus Aedes.
In Fig 11, we depict the learning curve for the optimized-hyperparameter model (see

Table 10) for the automatic classification of adult mosquitoes for differentiation between the

two classes.

As previously mentioned, the effect of increasing loss function and simultaneous increase

in the accuracy should not be confused with overfitting. In addition, it is relevant to consider

the scale of the graphs (see Fig 11A and 11B). Both the range of accuracy and loss function are

fairly small.

In Table 12, we present the confusion matrix for two classes with the test dataset and, below

the Table 12, the calculations of the performance metrics of the 2 x 2 confusion matrix are

presented.

Precision: PR ¼ TP
TPþFP ¼

1104

1104þ19
¼ 98:3%

True-Positive Rate: TPR ¼ TP
TPþFN ¼

1104

1104þ7
¼ 99:4%

True-Negative Rate: TNR ¼ TN
TNþFP ¼

380

380þ19
¼ 95:2%

Table 10. Configuration of hyperparameters after performing the optimization for the classification of adult

mosquitoes.

Hyperparameter Configuration

CNN DenseNet201 (pre-trained)

Optimizer Adam

Number of epochs 200

Learning rate 0.0002

Batch size 32

Dataset Augmentation

Rotation 45%

Width shift range 5%

Height shift range 5%

Multiplier 20

Reduce Learning Rate on Plateau

Monitor Validation loss (cross entropy)

Factor 0.9

Patience 4

Minimum learning rate 0

Classification Layers

pool0 = GlobalAveragePooling2D()(inputs)
dense0 = Dense(512, activation = "tanh")(pool0)

dpo0 = Dropout(0.45)(dense0)
dense1 = Dense(64, activation = "relu")(dpo0)

dpo1 = Dropout(0.35)(dense1)
outputs = Dense(6, activation = "softmax")(dpo1)

https://doi.org/10.1371/journal.pone.0234959.t010
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Balanced Accuracy: BA = 0,5×(TPR+TNR) = 0,5×(99.4+95.2) = 97.3%

In this stage, the results showed the BA of 97.3% in the detection of mosquitoes of the

genus Aedes, compared with the mosquitoes of the genus Culex. The application of the model,

for two classes, can be compared with the results obtained by Sanches-Ortiz et al. [38] and by

Reyes et al. [63] for the detection of the Aedes mosquito. The first work, despite evaluating the

classification in the larval stage and presenting a significantly small number in the dataset,

obtained a true-positive rate of 85%. The second work used the SVM technique and obtained

the true-positive rate of 92.5%.

Considering the true-positive result of this study, i.e., 99.4%, for two classes with the objec-

tive of detecting the mosquitoes of the genus Aedes, the proposed model presented an out-

standing result.

Performance for seven classes: Differentiating non-mosquitoes

The model performance was also evaluated for differentiation among seven classes with the

inclusion of other insects (spiders, beetles, and bees). The objective in this stage was to evaluate

the ability of the model to distinguish mosquitoes from other insects.

Table 11. Confusion matrix of the model after the optimization process.

Class Ae. aegypti
female

Ae. aegypti
male

Ae. albop.

female

Ae. albop.

male

C. quinq.

female

C. quinq.

male

TOTAL TPR (%) TNR (%) BA (%)

Ae. aegypti
female

216 6 12 3 1 0 238 90.8 96.4 93.6

Ae. aegypti male 11 252 18 28 3 0 312 80.8 97.4 89.1

Ae. albop.

Female

19 4 258 8 0 0 289 89.3 96.1 92.7

Ae. albop. Male 8 21 15 227 0 1 272 83.5 96.4 90.0

C. quinq. Female 7 0 2 1 194 1 205 94.6 98.2 96.4

C. quinq. Male 1 0 1 4 19 169 194 87.1 99.8 93.5

TOTAL 262 283 306 271 217 171 1510 92.5

PR (%) 82.4 89.0 84.3 83.8 89.4 98.8

TPR: True-Positive Rate; TNR: True-Negative Rate; BA: Balanced Accuracy.

https://doi.org/10.1371/journal.pone.0234959.t011

Fig 11. Learning evolution of the model optimized for two classes: (A) accuracy in the validation phase and (B) loss (cross entropy) in the validation phase.

https://doi.org/10.1371/journal.pone.0234959.g011
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In Fig 12, we depict the results obtained for the learning evolution of the hyperparameters-

optimized model (see Table 10) for the differentiation among seven classes.

The accuracy (91.1%) in the validation phase at the end of 200 epochs for seven classes was

higher than the validation accuracy (90.4%) for six classes. These results reinforce the ability of

the model to recognize a non-mosquito.

In Table 9, we present the confusion matrix for seven classes with the test dataset. There-

fore, the ability of the developed model to distinguish mosquitoes from other insects was

observed. With the BA of 98.9%, the “other” class is the one with the best performance com-

pared with the other classes. The overall accuracy at this stage was 93.5% and, expectedly, the

true-positive rate was higher than 80% in all the classes evaluated (Table 13).

The application of the model for seven classes can also be compared with both the results

obtained by Ouyang et al. [37], who evaluated the classification of the same target species as

those used in this study and obtained average accuracy of 79.5% by using neural networks, and

the results obtained by Motta et al. [41], who used the CNN-based method for image classifica-

tion and obtained the accuracy of 76.2% by using the GoogLeNet network.

Angle of the mosquito in the image: Influence evaluation on the

performance

The optimized model was used to evaluate and classify the images of the test database, and the

obtained BA result is presented in Fig 13.

CNN techniques have been used to correct or estimate the orientation of objects in an

image. Fischer, Dosovitskiy & Brox [64] focused on estimating and correcting the exact orien-

tation of images and demonstrated that a convolutional network could learn how to predict

the canonical orientation of images. Saxena, Driemeyer & Ng [65] proposed a learning algo-

rithm to estimate the 3-D orientation of objects while considering situations with symmetrical

and asymmetrical objects.

Table 12. Confusion matrix of the optimized model for Aedes detection.

Class Aedes Culex TOTAL

Aedes 1104 7 1111

Culex 19 380 399

TOTAL 1123 387 1510

https://doi.org/10.1371/journal.pone.0234959.t012

Fig 12. Learning evolution of the model optimized for seven classes: (A) accuracy in the validation phase and (B) loss (cross entropy) in the validation phase.

https://doi.org/10.1371/journal.pone.0234959.g012
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However, no studies were found that were based on orienting the angle of the object to be

photographed in order to acquire an image, for performing automatic classification using

CNN.

The analysis of the overall accuracy performance suggests that when the image presents

mosquitos on the frontal, bottom, and back angles, the model performs better. However, it is

perceived that, depending on the mosquito species, the orientation of the image capture may

vary. In the presented case, for the C. quinquefasciatus species, the captured images of the right

and left angles presented high BAs.

Conclusion

In this study, we showed that using CNN-based models with complex architectures, we could

advance the automation of the detection and classification of adult mosquitoes. The perfor-

mance achieved in the classification and detection of this disease-transmitting vector clearly

asserts that a powerful entomological tool, which is based on CNN, can be developed and

deployed in the field to control or reduce the economic and social impacts of the arbovirus. In

addition, we achieved a significant improvement compared with our previous study, and the

improvement is approximately 17% (i.e., from 76.2% in the previous study to 93.5% in this

study) in terms of the absolute accuracy.

This tool could help specialists and non-specialists who aim to automatize the classification

of species Ae. aegypti, Ae. albopictus, and C. quinquefasciatus and the detection of the genus

Aedes while achieving high accuracy. It would enormously assist health authorities in control-

ling vector-borne diseases.

In addition, this study reinforces the need to optimize the hyperparameters of models for a

specific application, as a non-automated step. Despite the availability of pre-trained models for

object classification, their real-world use requires the prior optimization and evaluation of

their performances.

The application of deep-learning techniques requires significant amount of data (hundreds of

thousands datapoints). Accordingly, the acquisition of new images is a fundamental step toward

developing an entomological tool for field application. The dataset presented in this study is an

important step toward building a robust dataset that includes other mosquito species.

Table 13. Confusion matrix of the optimized model for distinguishing non-mosquitoes.

Class Ae. aegypti
female

Ae. aegypti
male

Ae. albop.

female

Ae. albop.

male

C. quinq.

female

C. quinq.

male

Others TOTAL TPR

(%)

TNR

(%)

BA

(%)

Ae. aegypti
female

203 9 18 5 3 0 0 238 85.3 97.2 91.3

Ae. aegypti
male

12 253 9 32 5 0 1 312 81.1 98.1 89.6

Ae. albop.

female

14 1 260 11 0 0 3 289 90.0 96.5 93.2

Ae. albop. male 6 17 19 229 0 1 0 272 84.2 96.7 90.4

C. quinq.

female

7 0 3 0 192 2 1 205 93.7 98.5 96.1

C. quinq. male 0 0 1 1 15 175 2 194 90.2 99.8 95.0

Others 3 0 1 0 0 0 233 237 98.3 99.5 98.9

TOTAL 245 280 311 278 215 178 240 1747 93.5

PR (%) 82.9 90.4 83.6 82.4 89.3 98.3 97.1

TPR: True-Positive Rate; TNR: True-Negative Rate; BA: Balanced Accuracy.

https://doi.org/10.1371/journal.pone.0234959.t013

PLOS ONE Convolutional neural network hyperparameters for classification of mosquitoes

PLOS ONE | https://doi.org/10.1371/journal.pone.0234959 July 14, 2020 25 / 30

https://doi.org/10.1371/journal.pone.0234959.t013
https://doi.org/10.1371/journal.pone.0234959


By studying the influence of the angle of the mosquito in the image, it is suggested that

image capture, should be performed from the front, bottom, or back of the mosquito, espe-

cially for the genus Aedes. In addition, a specialist must validate the images for their correct

labelling. This is essential for the successful application of the model.

Finally, the model with the CNN architecture DenseNet201, Adam optimizer, initial

learning rate of 0.0002, and 200 epochs presented the best results for the automatic classifica-

tion of the adult mosquitoes of species Ae. aegypti, Ae. albopictus, and C. quinquefasciatus.
However, new architectures of convolutional networks are continually emerging. Therefore, it

is essential that the model for the automatic classification of mosquitoes possesses the flexibil-

ity to incorporate new architectures of specific networks or layers that can improve its

performance.
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Machado, Otavio Gonçalvez Vicente Ribeiro-Filho, Luis Octavio Arriaga Camargo, Matias

Alejandro Valdenegro-Toro, Frank Kirchner, Roberto Badaró.
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