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During human-robot interaction, errors will occur. Hence, understanding the effects

of interaction errors and especially the effect of prior knowledge on robot learning

performance is relevant to develop appropriate approaches for learning under natural

interaction conditions, since future robots will continue to learn based on what they

have already learned. In this study, we investigated interaction errors that occurred under

two learning conditions, i.e., in the case that the robot learned without prior knowledge

(cold-start learning) and in the case that the robot had prior knowledge (warm-start

learning). In our human-robot interaction scenario, the robot learns to assign the correct

action to a current human intention (gesture). Gestures were not predefined but the

robot had to learn their meaning. We used a contextual-bandit approach to maximize

the expected payoff by updating (a) the current human intention (gesture) and (b) the

current human intrinsic feedback after each action selection of the robot. As an intrinsic

evaluation of the robot behavior we used the error-related potential (ErrP) in the human

electroencephalogram as reinforcement signal. Either gesture errors (human intentions)

can be misinterpreted by incorrectly captured gestures or errors in the ErrP classification

(human feedback) can occur. We investigated these two types of interaction errors

and their effects on the learning process. Our results show that learning and its online

adaptation was successful under both learning conditions (except for one subject in

cold-start learning). Furthermore, warm-start learning achieved faster convergence, while

cold-start learning was less affected by online changes in the current context.

Keywords: human-robot interaction (HRI), error-related potentials (ErrPs), reinforcement learning, robotics,

long-term learning, learning with prior knowledge

1. INTRODUCTION

The “human-in-the-loop” approach, e.g., through human feedback, is an interesting approach
to learning in robots. Previous studies have used both explicit and implicit human feedback for
robot learning, such as active learning of rewards through the use of human ratings (Daniel et al.,
2014) or online generation of rewards through the use of EEG-based human feedback (Iturrate
et al., 2015; Kim et al., 2017). The most commonly used EEG components are error-
related potentials (ErrPs), which are evoked by the perception of unusual human or robot
actions (Falkenstein et al., 2000; Parra et al., 2003; van Schie et al., 2004; Iturrate et al., 2010,
2015; Kim and Kirchner, 2013, 2016; Chavarriaga et al., 2014; Kim et al., 2017, 2020; Salazar-
Gomez et al., 2017; Ehrlich and Cheng, 2018, 2019b). Single-trial detections of event-related
potentials (ERPs) are possible by using machine learning techniques and signal processing
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methods (Müller et al., 2004; Lotte et al., 2018), which has
been demonstrated in various application areas (review, Zhang
et al., 2018). In robot learning, single-trial detections are required
for online generation of EEG-based human feedback for each
robot’s actions. One issue in single-trial EEG detections is to
hardly achieve 100% classification accuracy (Kirchner et al.,
2013). Another issue is a high subject variability between
ErrP classification performance, which is well-known in brain-
computer interfaces (BCIs) (Blankertz et al., 2009; Vidaurre and
Blankertz, 2010; Ahn and Jun, 2015; Jeunet et al., 2015; Morioka
et al., 2015; Ma et al., 2019) and brain imaging (Seghier and
Price, 2018; Betzel et al., 2019). A relevant question when using
EEG-based human feedback in robot learning is the unknown
influence of human-robot interaction on the generation of EEG-
based human feedback. Indeed, it has not been systematically
investigated how human-robot interactions influence the online
generation of EEG-based human feedback in general and
especially when several interaction components play together in
human-robot interaction or cooperation.

The future cooperation with robots requires an intensive
investigation of interaction concepts and learning approaches
in robot systems with regard to their applicability in poorly
controlled environments, in case of faulty or changing human
behavior and when using several interaction options. This is
important because it is difficult and very strenuous or even
impossible for humans to repeatedly behave identically as a robot
can. A good example is the interaction with gestures. There
are individual differences even in the choice of gestures, not
to mention the fine to great differences in the execution of
exactly the same gesture by two different people. Depending
on the situation in which a person finds himself, the gestures
are also performed differently. The execution of gestures also
typically changes over time and depending on the frequency
of execution. Often, a person spontaneously thinks of another
gesture and executes a different gesture. People can cope well with
these changes in the behavior of the human interaction partner.
Robots or artificial learning processes have much more problems
with this.

A conceivable application is that a robot performs pick-and-
place tasks together with a human interaction partner. The task
is to sort objects differently depending on current situations
determined by human behavior (e.g., human gesture). The robot
therefore has no completely fixed predefined task procedure,
but does know for example which places are feasible for the
robot or the human to reach. On the other hand, the human
changes the desired places of objects (selection of the reachable
places) depending on current situation or task efficiency. For
example, the robot picks up objects and place them in locations
that correspond to the current human gesture. After the action
selection, the robot receives human feedback on the correctness
of action selection (e.g., the robot selects a correct position
for placing objects or not) and updates an action strategy
based on human feedback. In this way, the robot learns an
action that corresponds to the current situation determined by
human gesture and also adapts an action strategy depending on
online changes of human intention. Two interaction errors can
occur here: (a) human gestures, which can be easily changed
over time or which can vary between different interaction

partners (different people), can be misinterpreted by the robot
and (b) human implicit feedback in the form of EEG that
can be incorrectly decoded, since a decoder is not perfectly
trained. Such online learning and adaptation based on human
feedback can be beneficial in unknown situations or unknown
environments, e.g., space explorations. In this case, the robot
has only a little predefined knowledge about task solution before
explorations and can extend knowledge directly by learning from
human feedback. Further, it can also be relevant in more pre-
defined scenarios, i.e., assembly in production line, to adapt to
individual preferences.

In order to develop new interaction concepts and learning
procedures that can better deal with such changes in human
behavior, we first have to investigate which influence which
mistakes have on learning in the robot and which influence
misbehavior of the robot has on feedback from humans. In
this paper we want to use the example of implicit learning of
gesture-action pairs from intrinsic human feedback based on
brain activity to investigate the effect of errors in the recognition
of EEG signals and gestures on interactive learning.

We investigate interaction errors under two conditions. First,
the robot learns with prior knowledge and second, without
prior knowledge. Although almost all studies on robot learning
assume that the robot has no previous knowledge, this is
actually a completely unrealistic situation especially for humans.
Humans, like many other animals, almost always learn on the
basis of previous knowledge. With our study we want to show
that there are differences in the effects of interaction errors
depending on whether learning takes place with or without
previous knowledge.

1.1. Concept of Human-Robot Interaction
(HRI)
In our human-robot interaction scenario, the robot learns actions
that are best assigned to the current human intentions. Our
concept of human-robot interaction (HRI) is illustrated in
Figure 1. The subject interacts with the robot by selecting a
specific gesture that expresses the human intention. The robot
observes the current gesture and chooses an action based on
the policy from previous trials. The subject observes the chosen
action of the robot and evaluates it intrinsically. This intrinsic
evaluation is reflected in certain EEG activities, which are a
neuronal correlate of the implicit intrinsic evaluation of the
correctness of the action of the robot. The robot learns a policy
based on human feedback and updates the policy after every
other interaction with the subject where further experience
is gained. Finally, the robot learns correct mappings between
gestures and actions (i.e., correct gesture-action pairs), which is
updated in real time by human’s online feedback.

The learning algorithm used in our HRI concept is based on a
contextual bandit approach (e.g., Li et al., 2010). The contextual
bandit approach is well-suited for our HRI scenario, since a
robot learns to choose actions which are best assigned with the
given context (human’s current gestures). The contextual bandit
approach is a variant of reinforcement learning, in which only
one action is chosen per episode (details, see section 2.2).

Our HRI contains two interfaces between human and robot:
(a) gesture interface that encodes human’s intents in form of
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FIGURE 1 | The concept of our approach. Continuous lines represent the information flow of the learning process, and dotted lines represent the logs of the learning

process and markers of the EEG data. Solid lines: The subject communicates with the robot in the form of gestures and gesture features are sent to the learning

algorithm as human intention (1). Based on gesture features, the learning algorithm selects an action (2). The robot executes the chosen action (3). The subject

observes the executed actions of the robot (4). The test person gives an intrinsic feedback on the robot’s choice of action in the form of an EEG. The ErrP is evoked,

for example, when the action performed by the robot does not match the current human gesture. The output of ErrP decoder (binary classification: ErrP or No ErrP) is

sent to the learning algorithm as rewards (5). The learning algorithm updates the policy based on human feedback (6). Dotted lines: Feature vectors of human gesture

are written in the log file (r1). Executed actions of the robot are written in the log file (r2) and in the EEG as action markers (h1). EEG signals are continually recorded

and saved as EEG data (h2). The outputs of ErrP decoder (rewards) are written in the log file (r3). Payoffs of each gesture-action pair are written in the log file (r4).

Details, see sections 1.1 and 2.2.

gestures and (b) EEG interface that decodes human’s intrinsic
feedbacks on robot’s actions in form of EEGs. Both interfaces
provide inputs to the learning algorithm that triggers actions
in the robotic system (robot arm) that are best assigned with
the given gestures. Hence, learning performance depends on the
quality of inputs that are provided by both interfaces. In our
HRI scenario, misinterpretations of human intention (human
gesture) and human feedback (human evaluation) affect learning
performance. In other words, an incorrect coding of human
intention and an incorrect decoding of human feedback has an
impact on the learning performance of the robot.

1.2. HRI Errors: Gesture Errors and ErrP
Misclassifications
In our previous study (Kim et al., 2017) we investigated the
effect of ErrP classification performance on robot learning
performance, since the results of the ErrP classification are
directly used as a reward in the learning algorithm. Thus, we
focused on the analysis on ErrP-classification performance. In

our HRI scenario, however, the robot receives not only implicit
human feedback but also human gestures as explicit input for
the interaction. Thus, the robot has two kinds of inputs for
interactions with human: (a) human gestures in form of gesture
features and (b) human feedback in form of ErrPs, which
are neural correlates of human’s implicit evaluation on robot’s
actions. Both types of input can be incorrect in real applications
for different reasons.

Gesture errors can be generated when human gestures are not
correctly recorded for several reasons. First, hand positions of
the subjects are often out of range of sensors (infrared cameras)
due to changes of body posture of the subjects. In most cases,
the subjects are not aware of such large variances of their
own hand positions. Second, in a few cases, we have also a
general hardware problem. The gesture recording system called
Leap Motion does not accurately enough catch hand gestures
due to the limited range of infrared cameras. The accuracy
of gesture capture depends on how the subject’s hands enter
the camera’s sensors. Third, some subjects change their gesture
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TABLE 1 | (A) Four gesture types; (B) Errors in human-robot interaction (HRI) and their effects on learning performance.

Gesture type Feature vector Recorded feature vectors

(A)

Left [−1 0 0 0] [−0.85 0.11 0.15 0.21]

Right [ 1 0 0 0] [0.91 0.22 0.32 0.19]

Upward [ 0 1 0 0] [0.14 −0.84 0.15 0.93]

Forward [ 0 −1 0 1] [0.11 0.81 0.11 0.23]

Online robot learning Offline analysis

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Case Perception
Human Recorded Robot ErrP

Rewards
Gesture ErrP ErrP Impact on

gesture gesture action detection error error classification learning

(B)

1
Human

Left Left Left No ErrP 1 No No TN Positive
robot

2
Human

Left Left Left ErrP −0.25 No Yes FP Negative
robot

3
Human

Left Left Right No ErrP 1 No Yes FN Negative
robot

4
Human

Left Left Right ErrP −0.25 No No TP Positive
robot

5
Human

Left Right Left No ErrP 1 Yes
No TN

Negative
robot Yes FN

6
Human

Left Right Left ErrP −0.25 Yes
Yes FP

Positive
robot No TP

7
Human

Left Right Right No ErrP 1 Yes
Yes FN

Positive
robot No TN

8
Human

Left Right Right ErrP −0.25 Yes
No TP

Negative
robot Yes FP

The recorded feature vectors are presented as example. ErrP error stands for ErrP error classification. The positive class stands for faulty action of the robot. Only the cases in which
the test subjects perform the gesture to move the robot to the left are described as examples.

patterns during the experiments. For example, at the beginning
of the experiment, these subjects made gestures to move the
robot to the right with their hands open, but in the middle
of the experiment they closed their hands before finishing the
whole gesture. In this case, an additional gesture feature (e.g.,
closed hand) was added [1, 0, 0, 1], which is used for the gesture
forward [0, −1, 0, 1]. Again, the subjects are not aware of their
own changes of gesture pattern. An overview of the gesture
vector depending on the gesture type is shown in Table 1A. All
types of gesture errors provide wrong gesture features to the
robot and thus the robot perceives gesture features that are not
coherent with gestures that the subjects intended to perform.
Therefore, in our data analysis gesture errors are defined as
gesture incoherence between human and robot, i.e., incoherence
between gestures performed (by humans) and perceived (by
robots). Note that maximum values of feature vectors (second
column of Table 1A) cannot be reached by actually performed
human gestures. We observed individual differences in gesture
features within the same gesture type (inter-subject variability)
and differences in gesture characteristics between repeatedly

executed identical gesture types within the same test subjects
(inter-gesture variability).

Human feedback (reward) can also be wrong for various
reasons. We consider incorrect decoding of human implicit
feedback (ErrP) as the most common reason for incorrect human
feedback. In general, the accuracy of the trained ErrP decoder is
seldom achieved with 100%. Hence, ErrP misclassifications, i.e.,
both false positives (FP) and false negatives (FN) were counted
as erroneous human feedback in our data analysis. Erroneous
human feedback can in a few cases also be generated by gesture
errors, although there are no ErrP misclassifications (details in
section 2.1). Erroneous human feedback can also be caused if
the test subjects miss the robot’s actions due to lack of attention.
In this case, ErrP detections are incorrect and thus erroneous
feedbacks are sent to the robot. However, we have found that such
errors are indeed rare, since the task (observing the actions of
the robot) was actually very simple. This was also shown by the
oral feedback of the test persons to our questions, how often they
approximately missed the actions of the robot. For this reason,
we excluded this type of error from our data analysis.
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Both ErrP misclassifications and gesture errors can
occur together and influence each other. The interaction
of both types of errors can lead to erroneous feedback to
the robot, which affects robot learning. The interaction
between ErrP misclassifications and gesture errors and
their effects on robot learning is reported in detail
in section 2.1.

2. METHODS

2.1. Expected Effects of HRI Errors on
Learning Performance
Figure 2A shows a schematic overview of the effects of ErrP
classifications on the learning process of the robot, where there
are no gesture errors (no faulty recording of gestures). ErrPs are
used as implicit evaluation of robot’s action choice: when ErrPs
are detected, negative feedbacks are given to the robot, whereas
positive feedbacks are given to the robot when ErrPs are not
detected (solid red lines, in Figure 2A). There are two cases for
robot learning, when ErrP detections are correct: (a) a positive
feedback (No ErrP) is given to a correct gesture-action pair (a1 in
Figure 2A) and (b) a negative feedback (ErrP) is given to a wrong
gesture-action pair (b2 in Figure 2A). In both cases, the robot
learns correct gesture-action pairs (case 5 and 8 in Figure 2A and
Table 1B). However, when ErrP detections are wrong, erroneous
feedbacks are given to the robot: (a) a negative feedback (ErrP) is
given to a correct gesture-action pair (a2 in Figure 2A) and (b) a
positive feedback (No ErrP) is given to a wrong gesture action-
pair (b1 in Figure 2A). In both cases, the robot learns wrong
gesture-action pairs (case 6 and 7 in Figure 2A and Table 1B).
Hence, ErrP misclassifications can generate erroneous feedback
that negatively affect the learning process in two ways: (a) ErrPs
are detected although robot’s actions are correct, i.e., false positive
(FP) and (b) ErrPs are not detected although robot’s actions are
wrong, i.e., false negative (FN), where positive class stands for
erroneous actions.

Figure 2B shows a schematic overview of the negative effects
of gesture errors on the robot’s learning performance, where
ErrP detections are correct per se. Gesture errors can have a
direct or indirect effect on the robot’s learning performance,
but their impact on the learning process is not straightforward,
since gesture errors affect ErrP error classifications that
further influence the learning process. This means that the
effects of gesture errors on the learning process cannot be
easily interpreted. When gestures are incorrectly recorded,
the performed gestures of human are not coherent with the
recorded gestures (green dotted line in Figure 2B). Hence, the
robot perceives gesture features that are incoherent with the
subject’s performed gestures and decides an action based on the
perceived gestures. On the other hand, human feedbacks are
generated based on the performed gestures of human. In fact,
the test subjects always compare their executed gestures (not the
recorded gestures) and the robot’s action choices (H-a and H-b in
Figure 2B). They are not aware of incorrectly recorded gestures,
because the test subjects perceive almost no false recordings
of their own gestures when interacting with the robot online.

Therefore, human feedback to the robot (No ErrP/ErrP) is
generated based on the gestures performed by the human, while
the robot receives characteristics of the recorded gestures. That
means, online-reward generations (ErrP detections) are based on
human perception, whereas action choices of the robot are based
on robot perception. In the end, erroneous recordings of gestures
lead to the generation of incorrect feedback: (a) ErrP with correct
gesture-action pairs (Ra in Figure 2B) and (b) No ErrP on an
incorrect gesture-action pair (Rb in Figure 2B), although the
ErrP detections are correct in themselves, i.e., there are no ErrP
misclassifications (Ha and Hb in Figure 2B).

For schematic overviews, we visualized the effect of ErrP
classifications (rewards) without gesture errors (Figure 2A) or
the effect of gesture errors without ErrP misclassifications
(Figure 2B). However, ErrP misclassifications and gesture errors
can occur together and interact.

Table 1B shows all theoretically possible cases of input errors
(gesture errors/ErrP misclassifications) and their combinations
in our HRI scenario. In Table 1B only the cases are exemplarily
described in which the subjects perform the gesture to move the
robot to left.

When there are no gesture errors (case 1, 2, 3, 4 in
Table 1B), ErrP-classification performances are same for both
human perception and robot perception (Table 1B-h). When
gesture errors are observed (case 5, 6, 7, 8 in Table 1B),
ErrP-classification performances are different between human
perception and robot perception (Table 1B-h). Gesture errors
have a negative effect on the robot’s learning process if they occur
without ErrP error classifications (case 5 and 8 in Table 1B),
because the robot learns gesture-action pairs based on the
recorded gestures and not on the executed human gestures
and receives erroneous feedback from the test persons (case
5: No ErrPs on right-left pairs; case 8: ErrPs on right-right
pairs). However, when gesture errors and ErrP misclassifications
occur together, learning performances of the robot are positively
affected, since gesture errors cancel out ErrP misclassifications
(case 6 and 7 in Table 1B) and the robot receives correct
feedbacks from the subjects (case 6: ErrP on right-left pairs; case
7: No ErrP on right-right pairs).

In summary, misinterpretations of human intention (gesture
errors) and human feedback (ErrP error classifications) can
separately influence the learning process as follows: Learning
process can be negatively affected by (a) ErrP misclassifications
without gesture errors (case 2 and 3 in Table 1B) or (b) gesture
errors without ErrP misclassifications (case 5 and 8 in Table 1B).
However, in a few cases, there is an interaction between
gesture errors and ErrP misclassifications, which positively
affects the learning process, since gesture errors cancel out ErrP
misclassifications (case 6 and 7 in Table 1B). Finally, the absence
of both error types (correct gesture recordings and correct ErrP
detections) has a positive impact on the learning process (case 1
and 4 in Table 1B).

2.2. Learning Algorithm
In our HRI scenario, a robot learns to choose actions which are
best assigned with the given context (human’s current gestures),
in which robot’s actions have single-state episodes and the
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FIGURE 2 | A schematic overview: (A) Effects of the ErrP classifications on the learning processes of the robot where there are no gesture errors (no faulty recording

of gestures). (B) Negative effects of gesture errors on robot learning processes where ErrP recognitions are correct. The cases of ErrP error classifications (case 6 and

7 in Table 1) are not shown. Note that ErrPs are generated based on human perception, while action decisions are based on the perception of the robot (TP, true

positive; FP, false positive; TN, true negative; FN, false negative).

context is independent of each other. Thus, the contextual bandit
approach is well-suited for our HRI scenario. Among state-of-
the art contextual bandits approaches, we chose LinUCB (Li
et al., 2010) as learning algorithm (see Algorithm 1). In principle,
LinTS (Agrawal and Goyal, 2013) is also suitable for our
HRI scenario. Although both algorithms are interchangeable,
empirical evaluation of both algorithms led to different learning
performances depending on application scenarios (Chapelle and

Li, 2011). Further, other state-of-art algorithms regarding multi-
arm bandits can also be implemented for contextual bandits
settings (Cortes, 2018). However, LinUCB (Li et al., 2010) is a
popular approach that has been evaluated in numerous scenarios
and proved as a fast and effective approach in contextual bandit
settings [e.g., HybridLinUCB (Li et al., 2010), GOB.Lin (Cesa-
Bianchi et al., 2013), CLUB (Gentile et al., 2014), CoLin
(Wu et al., 2016)].
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Contextual bandits (Langford and Zhang, 2008) have single-
state episodes, since they obtain only one immediate reward per
episode. This is similar to k-armed bandits (Auer et al., 2002)
that is the simplest form of reinforcement learning. However,
contextual bandits use the information about the state of the
environment (cf. k-armed bandits) and thus make decision
dependent on the state of the environment (context). Thatmeans,
the policy of context (state)-action pair is updated per episode
(trial) and the context is independent of each other. Accordingly,
the context is different for each episode (trial). For example, in
our HRI scenario, the subject performs different types of gesture
(left, right, forward, upward) for each episode, e.g., left gesture
(x1,1) for the first episode, right gesture (x2,2) for the second
episode, left gesture (x3,1) for the third episode, forward gesture
(x4,3) for the fourth episode, etc. Figure 3 shows a schematic
visualization of LinUCB (Li et al., 2010) in a given context in a
specific episode as an example.

In LinUCB (Li et al., 2010), it is assumed that the predicted
payoff (the expected payoff) of an arm a is linear in its d-
dimensional feature xt,a with some unknown coefficient vector
θ
∗
a : E[rt,a|xt,a] = xTt,aθ

∗
a . Note that the model is called disjoint,

since the parameters are not shared among different arms.
Ridge regression is applied to the training data (Da, ca) in
order to estimate the coefficients θ

∗
a (details, see below). The

algorithm observes feature vector xt and selects an action at
based on the predicted payoffs of all actions. After action selection,
the algorithm receives the current payoff rt,at and updates the
policy with the new observation (xt,at , at , rt,at ). The step-by-step
description follows below (see Algorithm 1).

The exploration parameter α is determined before the
learning was used as input (line 0). For each time, e.g., for
each trial (line 1), the algorithm observes all features (line 2).
When the action has not been observed before (line 4), one
d × d identity matrix (Id) and one zero vector of length d
(0d×1) are instantiated (line 5, line 6), where d is the number
of features. The coefficient θ̂a is estimated by applying ridge
regression to the training data (Da, ca), where Da is a m × d
design matrix and ca is the vector of length m (where m is
the number of observations): θ̂a = (DT

aDa + Id)
−1 DT

a ca. In
the Algorithm 1, DT

a Da + Id is rewritten as Aa and DT
a ca is

rewritten as ba (line 8). Accordingly, θ̂a can be rewritten as A−1a

ba. Payoffs Pt,a are estimated as the sum of ridge regression for
the current feature xt,a (i.e., the expected payoff: θ̂a xt,a) and

the standard deviation of the expected payoff (
√

xTt,a A
−1
a xt,a),

where the standard deviation is multiplied by the parameter
α that determines the degree of exploration (line 9). The
algorithm chooses the action with the highest expected payoff
(arg maxa∈At Pt,a) and observes the received current payoff rt
on the chosen action (line 11). Finally, the training data (Da,
ca) is updated in action space Aat and context space bat (line
12 and line 13), which is fitted by applying ridge regression to
estimate θ̂a for the next trial. Therefore, the expected payoff
is linear in its d-dimensional feature xt,a with some unknown
coefficient vector θ

∗
a : E[rt,a|xt,a] = xTt,aθ

∗
a . Payoffs pt,a are affected

by two parameters: the expected payoff (exploitation) and the
standard deviation of the expected payoff (exploration). The

optimum of action strategy is obtained by balancing exploration
and exploitation.

Algorithm 1 LinUCB (Li et al., 2010)

0: Inputs: α ∈ R+
1: for t = 1, 2, 3, . . . ,T do

2: Observe features of all arms a ∈At : xt,a ∈ R
d

3: for all a ∈At do

4: if a is new then

5: Aa← Id (d-dimensional identity matrix)
6: ba← 0d×1 (d-dimensional zero vector)
7: end if

8: θ̂a← A−1a ba

8: Pt,a← θ̂
T
a xt,a + α

√

xTt,a A
−1
a xt,a

10: end for

11: Choose arm at = arg maxa∈At Pt,a with ties broken
arbitrarily and observe a real valued payoff rt

12: Aat ← Aat + xt,at x
T
t,at

13: bat ← bat + rt xt,at
14: end for

In our HRI scenario, the algorithm learns to select robot’s actions
at that are best assigned with the current context xt , i.e., the
current human intention in form of gesture feature recorded by
the Leap Motion. The current payoff, i.e., the immediate reward
is the ErrP-classification output (ErrP or No ErrP), which is given
to the action chosen by the LinUCB algorithm, i.e., the executed
action of the robot. As mentioned earlier, action selection
was made conditional on human gesture (left, right, forward,
upward). We call actions together with gesture features “gesture-
action pairs” (i.e., context-action pairs). The LinUCB algorithm
learns a correct mapping between human gesture features and
actions of the robot, i.e., a correct gesture-action pair. In fact,
the robot should learn which action is correctly executed. Hence,
our HRI scenario is designed that the predictions of correct
mappings (No ErrP) are highly rewarded [1] than the predictions
of wrong mappings (ErrP) that are minimally punished [−0.25].
To this end, we used two windows for the same action in
online ErrP detection and the predictions of correct mappings
(No ErrP) were sent to the learning algorithm, only when No
ErrP was predicted from both time windows (Table 2). As a
result, the rewards for predicted correct mapping (TN, FN)
were weighted more strongly than predicted wrong mapping
(FP, TN). Note that the reward values of [−0.25, 1] were
empirically determined. Further, the exploration parameter α

was also empirically determined [α = 1].
One of the key elements of our approach is to adapt the

previous learned policy when changing the current human
intention (i.e., when changing the semantics of gestures). Thus,
human gesture was not predefined, i.e., no initial semantics of
gestures was given to the robot. Rather, the robot learned the
current meaning of human gesture, which can be changed online.
That means, there were no fixed labels (no fixed semantics of
gestures) to train a model. For this reason, we did not train
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FIGURE 3 | A schematic visualization of LinUCB (Li et al., 2010). Action selection and policy update were depicted in the given context x1 for the 30th trial (episode)

as an example. In accordance with our HRI scenario, the subjects performed the left gesture (x30,1) among other gesture types (x30,2, x30,3, x30,4) in the current

episode (in the 30th episode). In this example, a correct action x1 (left action of the robot) is chosen in the given context x1 (left gesture). The policy [i.e., the expected

payoff that is equivalent to the upper confidence bound (UCB)] is updated for the chosen action, i.e., x1-a1 pair.

TABLE 2 | Use of ErrP detection as a reward in the learning algorithm.

(A) Actual label Correct Correct Wrong Wrong

(B1) Prediction (1st window) No ErrP No ErrP ErrP ErrP No ErrP No ErrP ErrP ErrP

(B2) Prediction (2nd window) No ErrP ErrP No ErrP ErrP No ErrP ErrP No ErrP ErrP

(C) Predicted label No ErrP (correct) ErrP (wrong) No ErrP (correct) ErrP (wrong)

(D) Rewards 1 −0.25 1 −0.25

(E) ErrP evaluation TN FP FN TP

Actual labels are obtained by comparing between gesture labels and action labels (gesture-action pairs). The outputs of ErrP decoder, i.e., predictions (B1 and B2) are obtained by two
windows with the same robot actions (same gesture-action pair). A decision was made from two windows, and this is used as predicted labels (C) for the confusion matrix. Rewards
(D) are sent to the learning algorithm (online learning). The evaluation of the ErrP classifications (ErrP detections) is based on the confusion matrix.

a classifier to distinguish different types of predefined gestures.
Instead, the robot received gesture feature vectors recorded by
the Leap Motion instead of classified gestures. Accordingly, no
classified gestures were sent to the robot. The chosen algorithm
called LinUCB enables to learn gesture-action pairs without prior
knowledge of gesture meaning.

In fact, we observed a variation of gesture feature vectors
between trials within the same subject (details, see section 1.2),
but this did not prevent robust learning of gesture-action pairs.
Learning remains robust due to the updates of context space per

trial: The current context, i.e., gesture feature vector (xt,a) was
added to the context space (ba,t) together with the corresponding
current payoff (rt,a) for each trial. This update of the context space
allows for robust learning despite of variations of gesture feature
vectors between trials (e.g., [−0.9, 0.15, 0.29, 0.37], [−0.8, 0.27,
0.41, 0.05], [−0.95, 0.29, 0.11, 0.88], etc.) for the left gesture type
(default value [−1, 0, 0, 0]). In this way, gesture feature vectors
were adapted per trial within a subject.

The main scope of this study was to analyze erroneous inputs
and their impacts on learning performance. The data analysis
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was based on the log files that were generated for each online
experiment. Note that learning was completed for each online
experiment (i.e., each online dataset). The following outputs were
logged online per trial within an online experiment:

• Updates of action space Aa and context space ba (line 5 and 6
in Algorithm 1)
• Gesture feature vector for the current trial xt,a (line 1 in

Algorithm 1, Figure 1-r1)
• The actionwith the highest expected payoff for the current trial

at (line 11 in Algorithm 1, Figure 1-r2)
• The current payoff, i.e., the immediate reward rt for the

current trial (line 11 in Algorithm 1, Figure 1-r3)
• The expected payoffs Pt,a (line 9 in Algorithm 1, Figure 1-r4)

Gesture feature vectors were logged automatically while online
learning (Figure 1-r1). That means, gesture feature vectors
recorded by Leap Motion was logged online. However, human
gestures, i.e., gestures performed by human could not be logged
online. Thus, we filmed human gestures and robot’s actions
during online experiments. After experiments, we investigated
which gesture feature vectors were perceived by the robot. To
this end, we reconstructed gestures per trial based on the logged
gesture feature vectors in the log file. Such reconstruction was
done only for offline data analysis. We used the following
decision criteria for reconstruction of gestures: (a) m = 1,
if m > 0.5 (b) m = −1, if m < −0.5 (c) m = 0, if
−0.5 < m < 0.5, where m is each component of vector.
The gesture feature vector consists of four components (details,
see section 2.3.4). In this way, we obtained filmed gestures and
reconstructed gestures. Finally, gesture errors were estimated
by comparing filmed human gestures (e.g., left gesture) and
the reconstructed gesture based on recorded gesture vectors
[e.g., −0.8, 0.1, 0.2, 0.1]. Further, filmed gestures were used to
determine the correctness of gesture-action pairs and to find a
true label to generate a confusion matrix for human’s perspective,
whereas the reconstructed gestures were used as a true label to
generate a confusion matrix for robot’s perspective (details, see
section 2.4).

2.3. Scenario and Dataset
We used the data that was recorded in the previous study
for investigation on flexible adaptation of learning strategy
using EEG-based reinforcement signals in real-world robotic
applications (Kim et al., 2020). In the previous study (Kim
et al., 2020), data was recorded from eight subjects (2 females,
6 males, age: 27.5 ± 6.61, right-handed, normal or corrected-to
normal vision). The experiments were carried out in accordance
with the approved guidelines. Experimental protocols were
approved by the ethics committee of the University of Bremen.
Written informed consent was obtained from all participants that
volunteered to perform the experiments.

In our HRI scenario (Kim et al., 2017), the subjects perform
gestures (left, right, forwards) and observe the robot’s actions
as response to the human gestures (Details, see section 1.1 and
Figure 1). In the extend HRI scenario (Kim et al., 2020), the
subjects add a new gesture (upwards) after about 30 trials, while
the robot still learns the mapping between human gestures and

its own actions. That means, the subjects determine the meaning
of the gesture (human intent) and select one of gestures. The
robots learns to select an action that is best assigned to the
current human intents (current gesture) based on human implicit
feedback in form of EEG. The goal of the previous study was
to investigate whether the robot can flexibly adapt the learning
strategy in real time, when the user changes the current intentions
(in form of EEG). For example, the subjects changed their control
strategy e.g., by adding a new context (gesture) to the previous
used gestures. Our results showed that the robot could adapt
the previously learned policy depending on online changes of
the user’s intention (Kim et al., 2020). This investigation was
validated under two learning conditions: (a) learning algorithm
was trained with a few samples (1 or 2 gesture-action pairs) before
online learning (pretraining) and (b) learning algorithm was not
trained before online learning (no-pretraining).

2.3.1. Scenario Description
In the previous study (Kim et al., 2020), we collected data in two
different scenarios: (a) observation scenario and (b) interaction
scenario. In the observation scenario, the subjects observed
the robot’s action. Here, the subjects were not required to
interact with the robot, e.g., by performing gestures, since human
gestures and robot’s action choice were already preprogrammed.
A hand gesture was displayed to the subjects as a word
(left, right, forward, or upward) on the monitor, which is
located on the left side of the robot. Then, a feature vector
of the displayed gesture (Table 1A, second column) was sent
to the pseudo-learning algorithm, where action selections were
preprogrammed. Gesture-action pairs are preprogrammed with
the class ratio of 8:1 (correct/wrong actions). The observation
scenario was designed to train a ErrP classifier in order to
detect ErrPs online in the interaction scenario. In the observation
scenario, the subjects did not perform gestures and the robot
did not learn any action selection strategy. In this way, we could
reduce the recording time for training data for ErrP decoder.
We trained a classifier for each subject to distinguish ErrP and
No ErrP, which was later used to detect ErrPs in the interaction
scenario. Such classifier transfer was successfully evaluated in our
previous studies (Kim andKirchner, 2013, 2016; Kim et al., 2017).

In the interaction scenario, the subjects performed one of four
gesture types (left, right, forward, and upward). As mentioned
before, we used the Leap Motion to record human gestures.
Gesture feature vectors recorded by Leap Motion were sent to
the LinUCB algorithm. Then, the algorithm selected an action
and sent this action selection to the robot. The subject observed
the action choice of the robot and at the same time the implicit
evaluation of the chosen action of the robot was measured by
using the EEG and the so called ErrP was detected online per
action choice.

Implicit human evaluations (ErrP/No ErrP) were sent to the
LinUCB algorithm as rewards.

2.3.2. Datasets for Training of ErrP Decoder

(Observation Scenario)
For training a classifier (ErrP decoder), we recorded data in
the observation scenario, in which the subjects observe the

Frontiers in Robotics and AI | www.frontiersin.org 9 October 2020 | Volume 7 | Article 558531

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Kim et al. Human Interaction Effecting Robot Learning

robot’s actions without performing a gesture to reduce the
recording time of EEG data. The subjects were instructed to
observe the gesture that was displayed as a word (left, right,
forward, or upward) on the monitor. After the display of the
gesture disappeared on the monitor, the robot started to move
the arm. The subjects were instructed to observe the actions
of the robot. Six datasets were recorded from each subject.
Each dataset consists of 80 correct actions of the robot and
10 wrong actions of the robot (90 instances in total). Gesture-
action pairs are preprogrammed with the class ratio of 8:1
(correct/wrong actions). We had a uniform number of training
dataset, i.e., all participants had the same number of training
dataset (six datasets).

2.3.3. Online Datasets During Robot Learning

(Interaction Scenario)
In the online application (i.e., online EEG-based RL learning),
the subjects performed gestures to communicate with the robot.
To this end, we used the interaction scenario. The subjects were
instructed to freely perform one of three gestures (left, right,
forward, see Table 1B) and add the fourth gesture (upward, see
Table 1B), when they heard a short tone that was given to the
subjects after 30 trials. Before the start of the online experiments
in the interaction scenario, all subjects had a short practice set to
train the correct use of Leap Motion.

The robot chooses an action as response of the current
human intention (human gesture) and receives an immediate
reward in form of ErrP-classification output [ErrP/No ErrP].
The robot updates the policy based on human feedback (details,
see section 2.2).

2.3.3.1. Learning condition
Two learning conditions were investigated in online learning:
warm-start learning (pre-training) and cold-start learning (no
pre-training). In warm-start learning, a few trials (# of trial
n < 4) were pre-trained, i.e., a few gesture-action pairs were
trained with the perfect human feedback (i.e., the perfect ErrP-
classifications). That means, the perfect human feedback was
given to the action choice of the robot that was preprogrammed.
Hence, we expected less erroneous actions of the robot (i.e., less
mapping errors) in the beginning of learning phase for warm-
start learning compared to cold-start learning. Note that the
three kinds of gestures (left, right, forward) were pre-trained, but
not the fourth gesture (upward) that was added during learning
process online. In cold-start learning, we did not pre-train any
gesture-action pairs. For all subjects, we started with the warm-
start learning condition before the cold-start learning conditions
to prevent the frustration of subjects, which can be caused by
a large number of erroneous actions of the robot in cold-start
learning. We did not alternate both learning conditions within
subjects.

2.3.3.2. Number of trials in both learning conditions
In warm-start learning, we used the same number of trials for
all subjects (90 trials). In cold-start learning, we used the same
number of trials for all subjects (90 trials) except for one subject
(60 trials, 90 trials, 120 trials for each online dataset). In fact, we

investigated a different number of trials to find the appropriate
number of trials. We aimed to find when the learning curve is
stabilized (no mapping errors). To this end, we started with 120
trials and reduced the number of trials (90 trials, 60 trials). We
did this evaluation on the first subject. In total, three datasets
with 120 trials were recorded from the first subject. We reduced
gradually the time to give a short tone for adding a new gesture.
In the first dataset, the short tone was given to the subject after 60
trials (Figure 7). In the second dataset, the short tone was given
to the subject after 50 trials (Figure 5). In the third dataset, the
short tone was given to the subject after 40 trials. Finally, we
decided to give a short tone for adding a new gesture after 30
trials. Based on this analysis, 60 trials were already enough for
convergence in this subject. However, we are aware of subject
variability in ErrP-classification performance and that for some
subjects more trials might be needed. Moreover, we also did not
intend to record on different days due to changes of electrode
positions. Actually, the duration of the dataset with 120 trials
was 32 min. This would have been too long for one session
in total. Hence, we determined 90 trials for online dataset in
both learning conditions. That means, there was no difference
in the number of trials between warm-start learning and cold-
start learning. Note that the first two datasets with 120 trials were
excluded for statistical analysis (inference statistics). However,
we included them for descriptive analysis and visualization
for three reasons: (a) descriptive visualization of the learning
curve in different number of trials (90 trials vs. 120 trials;
Figures 5A,B vs. Figures 5C,D), (b) descriptive visualization of
gesture errors (i.e., incoherence between human’s perspective and
robot’s perspective, see Figure 7, Table 5), and (c) descriptive
visualization of a few number of gesture errors (Figure 5,
Table 6) and a large number of gesture errors (Figure 7, Table 5).

2.3.3.3. Number of online datasets in both learning

conditions
In warm-start learning, we recorded three online datasets for
four subjects and two online datasets for four subjects. In total,
we recorded 20 datasets in warm-start learning. In cold-start
learning, two online datasets were recorded for five subjects
and three online sets were recorded for two subjects. For one
subject, we recorded only one online dataset. This participant
was very tired after recording the online dataset. Thus, we did
not record further online datasets, since this participant could
not concentrate on the task. In total, we recorded 17 datasets in
cold-start learning. It is worth noting that the number of online
datasets has no impact on the learning performance of the robot
or ErrP-classification performance, since the learning process is
completed within an online dataset (online experiment) and thus
the learning of online datasets is independent of each other.
It is thus enough to record only one online dataset (online
experiment) per subject. However, we recorded more than one
online dataset to obtain more data for this evaluation, in case that
a participant allowed us to record more than one online dataset.
The number of online datasets for each subject and each learning
condition was reported in Supplementary Table 1. As shown in
Supplementary Table 1, there was no high difference between
learning conditions within subjects. Note that the different
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number of datasets between learning conditions were taken into
consideration in inference statistics.

2.3.4. EEG Recording, Gesture Recording, and Robot

Arm
For both scenarios (interaction/observation), EEG were
continuously recorded using the with 64-channel actiCap system
(Brain Products GmbH, Munich, Germany), sampled at 5 kHz,
amplified by two 32 channel Brain Amp DC amplifiers (Brain
Products GmbH, Munich, Germany), and filtered with a low
cut-off of 0.1Hz and high cut-off of 1 kHz. Impedance was kept
below 5 k�. The EEG channels were placed according to an
extended standard 10–20 system.

For recording of human gesture, we used the Leap
Motion system (Leap Motion Inc., San Francisco, USA). The
Leap Motions uses a stereo image generated by using two
monochromatic infrared cameras. The positions of hand and
finger bones can be detected in x, y, and z coordinates relative
to the sensor. We used the x, y, z components of the palm normal
vector and a value from 0 to 1, which describes how far the
hand is opened or closed. (flat hand [0], fist [1]). We recorded
ten samples with the length of 100ms per gesture and averaged
them. Gesture feature vectors were used as inputs (human
intention) for the LinUCB algorithm. Four types of gestures
were used in the experiments: left, right, forward, and upward
(see Table 1A). Gesture features recorded by LeapMotion
were logged online (Figure 1-r1, details, see section 2.2).
Additionally, we filmed online experiments to record gestures
performed by human. In this way we received both gestures
performed by humans (gestures) and gestures perceived by the
robot (gestures).

The LinUCB algorithm selects actions, which were sent to a six
degree of freedom (6-DOF) robotic arm called COMPI (Bargsten
and Ferandez, 2015), which was developed at our institute (RIC,
DFKI, Germany). We implemented six predefined actions (left,
right, forward, upward, and back to start) in joint space, which
were triggered from the LinUCB algorithm.

2.4. Data Analysis
For analysis of EEG data, we used a Python-based framework
for preprocessing and classification (Krell et al., 2013). The EEG
signal was segmented into epochs from −0.1 to 1 s after the
start of the robot’s action for each action type (correct/wrong
trial). All epochs were normalized to zero mean for each channel,
decimated to 50Hz, and band pass filtered (0.5–10 Hz). We
used the xDAWN spatial filter (Rivet et al., 2009) for feature
extraction and 8 pseudo channels were obtained after spatial
filtering. Two windows were used for the same robot’s action
and thus features were extracted from two windows (8 pseudo
channels): [−0.1–0.6 s, 0–0.7 s] and normalized over all trials. A
total of 280 features (8 pseudo channels × 35 data points = 280
for each sliding window) were used to train a classifier. A linear
support vector machine (SVM) (Chang and Lin, 2011) was used
for classification.

In this study, we performed two main analyses: (a) learning
performance of the robot (mapping errors) and (b) ErrP-
classification performance (rewards for learning algorithm). For

evaluation of learning performance of the robot, we evaluate the
correctness of gesture-action pairs by comparing between human
gestures and robot’s actions. For evaluation of ErrP-classification
performance, we generated a confusion matrix based on the
outputs of ErrP decoder (predicted label) with the correctness of
gesture-action pairs (actual label).

For example, when gestures performed by human and actions
of the robot are identical (e.g., gesture: left; action: left), robot’s
actions are correct, i.e., gesture-action pairs (left-left pairs) are
correct. When ErrPs are detected on correct gesture-action pairs
(e.g., left-left pairs), predictions of the ErrP decoder are wrong
(FP). Otherwise, predictions of the ErrP decoder are correct (TP).
In contrast, if ErrPs are not detected on wrong gesture-action
pairs (e.g., left-right pairs), ErrP classifications are wrong (FN).
Otherwise, predictions of the ErrP decoder are correct (TN).
Note that the positive class stands for a wrong action of the robot.

Hence, evaluations of robot’s performance and ErrP-
classification performance are straightforward, when
gestures performed by human and gestures recorded by
LeapMotion are identical (i.e., there occur no gesture
errors). In this case, the logs of learning process (Figure 1-
dotted lines) are enough for evaluation of robot’s learning
performance and ErrP-classification performance. For
example, we can evaluate the correctness of robot’s
actions by comparing gesture features (Figure 1-r1) with
executed actions (Figure 1-r2). We can also evaluate ErrP-
classification performance by comparing the output of ErrP
decoder (Figure 1-r3) with gesture (Figure 1-r1)-action
(Figure 1-r2) pair.

However, there were incoherences between gestures perceived
by the robot (recorded gestures) and gestures performed by
human, which result in two different perspectives (Table 1B and
Figure 2B). Such incoherences between human perception and
robot perception can affect the robot’s learning performance,
since ErrPs are elicited by (performed) gesture-action pairs,
whereas the learning algorithm updates the current strategy
based on (perceived) gesture-action pairs (details, see section
1.2). For this reason, data was analyzed in both perspectives
(human/robot). For human’s perspective, the correctness of
robot’s actions was calculated by comparing filmed gestures
with robot’s actions, where we filmed human’s action while
performing gestures. For robot’s perspective, the correctness
of robot’s actions was calculated by comparing reconstructed
gestures with robot’s actions, where we reconstructed gestures
based on gesture features recorded by Leap Motion. Therefore
the ErrP classification performance was also different between
the human and the robot perspective, because the correctness
of the robot actions (actual marking) was different between both
perspectives (Table 1B).

Finally, four steps of data analysis were performed. First, we
evaluated learning performance of the robot (mapping errors)
and learning progress of the robot in the whole learning phase.
Further, we evaluated the changes of learning progress after
changing the current human intention. To this end, we divided
the whole learning phase in three learning phases according to
the time point of when a new gesture (changes of human intents)
was added. In this way, we determined three learning phases: (a)
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beginning phase (start-1/3), (b) phase after adding a new gesture
(1/3-2/3), and (c) final phase (2/3-end). Second, we evaluated
ErrP-classification performance in the whole learning progress.
Third we analyzed the effect of ErrP-classification performance
on learning performance by comparing the pattern of learning
progress in mapping errors and the pattern of learning progress
in ErrP-classification performance. Fourth, we computed gesture
errors by calculating incongruence between robot’s perception
and humans’ perception to analyze the effect of gesture errors
on learning performance of the robot. Finally, we analyzed the
interaction effect of gesture errors and ErrP misclassifications on
learning performance of the robot. All analyses were performed
under both learning conditions (warm-start learning and cold-
start learning) as well as under both perspectives (human’s
perspective and robot’s perspective).

2.5. Statistical Analysis
We investigated the effect of interaction errors (ErrP
misclassification, gesture errors) on robot’s learning performance
(mapping errors) in both learning conditions (cold-start
learning, warm-start learning), both perspectives (human’s
perspective, robot’s perspective), and three learning phases
(beginning phase, phase after adding a new gesture, final phase).
To this end, three factors were designed in statistics: learning
condition (two levels: cold-start learning, warm-start learning),
perspective (two levels: human’s perspective, robot’s perspective),
and learning phase (three levels: beginning phase, phase after
adding a new gesture, final phase).

For statistical analysis, we performed six investigations to
find out (a) effects of learning condition, learning phase, and
perspective on learning performance of the robot (mapping
errors), (b) effects of learning condition, learning phase,
and perspective on ErrP misclassifications (FN ∪ FP), (c)
effects of learning condition, learning phase, and perspective
on TP, (d) effects of learning condition, learning phase,
and perspective on FN, (e) effects of learning condition,
learning phase, and perspective on TN, and (f) effects of
learning condition, learning phase, and perspective on FP (see
Figures 4B, 6B,D,F,H; for a descriptive analysis of both robot’s
learning performance and ErrP-classification performance,
see Table 3).

To this end, a three-way repeated measures ANOVA
was performed with learning condition (2 levels: warm-start
learning, cold-start learning) as between-subjects factor and
perspective (2 levels: human’s perspective, robot’s perspective)
and learning phase (3 levels: beginning phase, phase after
adding a new gesture, final phase) as within-subjects factors.
Note that the sample size was unequal for learning condition,
since one subject performed only one online experiment
(online dataset) in the cold-start learning condition. For
this reason, the independent variable learning condition was
considered as between-subjects factor in the three-way repeated
measures ANOVA. Dependent variables were robot’s learning
performance (mapping errors), ErrP-classification performance,
e.g., misclassifications (FN ∪ FP), FN, FP, TN, and FP.
For each dependent variable, we separately performed the
three-way repeated measures ANOVA. Greenhouse Geisser

correction was applied if necessary. Three post-hoc analyses
were performed, i.e., pairwise comparisons were performed
at each factor to compare (1) both learning conditions for
each perspective (human’s perspective vs. robot’s perspective),
(2) both perspectives for each learning condition (warm-
start learning vs. cold-start learning), and (3) three learning
phases for each learning condition and each perspective
(beginning phase vs. phase after adding a new gesture
vs. final phase). Bonferroni correction was performed for
pairwise comparisons.

Further, we compared both learning conditions and both
perspectives for all trials to analyze effects of learning condition
and perspective on mapping errors and ErrP-classification
performance in the whole learning phase (see Figures 4A,
6A,C,E,G, a descriptive visualization of the whole learning
phase as an example, see Figure 5). To this end, the results
were pooled from three learning phases for each learning
condition and each perspective. This is equivalent to a two-way
repeated measures ANOVA with learning condition (2 levels:
warm-start learning, cold-start learning) as between-subjects
factor and perspective (2 levels: human’s perspective, robot’s
perspective) as within-subjects factor. Two post-hoc analyses
were performed, i.e., pairwise comparisons were performed
at each factor to compare (1) both learning conditions for
each perspective (human’s perspective vs. robot’s perspective)
and (2) both perspectives for each learning condition (warm-
start learning vs. cold-start learning). Bonferroni correction was
performed for pairwise comparisons.

Finally, we performed three investigations to find out
(a) relationship between robot’s learning performance

FIGURE 4 | Online learning performance of the robot: the average of mapping

errors across all datasets for the whole learning phase (A) and the three

learning phases (B). Mapping errors are presented for both perspectives: the

human and the robot perspective. For each perspective, both learning

conditions are compared: pre-training (yellow) vs. no pre-training (blue).
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TABLE 3 | The mean ErrP-classification performance across all subjects and the standard error of the mean for both learning conditions and both perspectives.

Human’s perspective Robot’s perspective

Cold-start learning Warm-start learning Cold-start learning Warm-start learning

Mapping error 31.75 ± 5.79 12.61 ± 1.85 28.26 ± 6.11 7.84 ± 1.35

Gesture error 5.70 ± 1.65 5.88 ± 1.24 5.70 ± 1.65 5.88 ± 1.24

ErrP misclassifications 23.12 ± 4.56 12.81 ± 1.66 23.89 ± 4.54 13.13 ± 1.80

FN 15.33 ± 4.72 3.96 ± 0.73 14.14 ± 4.85 1.73 ± 0.41

FP 7.79 ± 1.82 8.85 ± 1.36 9.74 ± 2.06 11.40 ± 1.60

TP 16.42 ± 2.26 8.66 ± 1.43 14.46 ± 2.22 6.11 ± 1.10

TN 60.45 ± 5.76 78.53 ± 2.75 61.65 ± 5.92 80.76 ± 2.63

FNR (1-TPR) 37.26 ± 5.34 28.80 ± 4.42 34.90 ± 5.71 19.20 ± 3.93

FPR (1-TNR) 13.57 ± 3.28 10.52 ± 1.67 15.45 ± 3.23 12.72 ± 1.88

FNR = FN/(FN+TP), FPR = FP/(FP+TN), ErrP misclassification = FN ∪ FP.

(mapping errors) and ErrP-classification performance (see
Table 4A; a descriptive visualization, see Figure 8A and
Supplementary Figure 1), (b) relationship between robot’s
learning performance (mapping errors) and gesture errors
(see Table 4B; a descriptive visualization, see Figure 8B), and
(c) relationship between gesture errors and ErrP-classification
performance (see Table 4C; a descriptive visualization, see
Figure 8C and Supplementary Figure 2). To this end, we
calculated correlation coefficients for each investigation (a,b,c).
Concerning ErrP-classification performance, we performed
a correlation analysis separately for ErrP misclassifications
(FN ∪ FP), TP, TN, FP, and FN (see Tables 4A,C). All
correlation analyses were performed separately for each
learning condition (warm-start learning, cold-start learning)
and each perspective (human’s perspective, robot’s perspective).
Correlation coefficients and significances were reported for each
correlation analysis (see Table 4).

3. RESULTS

Table 3 shows the overall results of descriptive analysis: the
number of mapping errors (robot’s learning performance),
gesture errors, and ErrP misclassifications including false
positive (FP) and false negative (FN) for both perspectives
and both learning conditions. In addition, false positive rate
(FPR) and false negative rate (FNR) were reported for both
perspectives and both learning conditions. As mentioned earlier,
the number of trials varied between subjects in online test
sets. Thus, we calculated the number of mapping errors,
gesture errors, and ErrP misclassifications in % (details,
see section 2.3).

3.1. Learning Performance of the Robot
In our HRI scenario, the robot learns the mapping between
human gestures and robot’s actions, i.e., correct gesture-
action pairs. Hence, the number of errors in the mapping
between human gestures and robot’s actions (i.e., mapping
errors) was used as performance measure. Table 3 shows the

number of mapping errors for both learning conditions and
both perspectives.

Figure 4A shows the comparison of the total number of
mapping errors (i.e., in the whole learning phase) between
both learning conditions for each perspective. The number
of mapping errors was significantly decreased in the warm-
start learning condition (pre-training) compared to the cold-
start learning condition (no pre-training) in both perspectives
[F1, 35 = 12.29, p < 0.002, human perspective: p < 0.003,
robot perspective: p < 0.002]. For both learning conditions, the
number of mapping errors was reduced in robot’s perspective
compared to human’s perspective for both learning conditions
[F1, 35 = 25.98, p < 0.001, cold-start learning: p < 0.011,
warm-start learning: p < 0.001].

Figure 4B shows the comparison of three different learning
phases in both learning conditions. We divided the whole
learning phase in three learning phases according to the time
point of when a new gesture (changes of human intents)
was added. Different patterns of the learning process were
observed between both learning conditions. The number of
mapping errors was not significantly varied between learning
phases in warm-start learning, whereas a significant reduction of
mapping errors was observed between learning phases in cold-
start learning [F2,70 = 3.63, p < 0.033]. This pattern was
shown for both perspectives. In warm-start learning, the number
of mapping errors was slightly (but not significantly) increased
in the second learning phase (after adding a new gesture) and
slightly (but not significantly) reduced in the third learning phase.
[human’s perspective: start-1/3 vs. 1/3-2/3: p = 0.51, 1/3-2/3
vs. 2/3-end: p = 1.0, start-1/3 vs. 2/3-end: p = 1.0; robot’s
perspective: start-1/3 vs. 1/3-2/3: p = 0.41, 1/3-2/3 vs. 2/3-
end: p = 1.0, start-1/3 vs. 2/3-end: p = 1.0]. In cold-start
learning, the number of mapping errors was significantly reduced
in the second learning phase (after adding a new gesture) and
slightly (but not significantly) increased in the third learning
phase [human’s perspective: start-1/3 vs. 1/3-2/3: p < 0.001,
1/3-2/3 vs. 2/3-end: p = 1.0, start-1/3 vs. 2/3-end: p < 0.01;
robot’s perspective: start-1/3 vs. 1/3-2/3: p < 0.001, 1/3-2/3 vs.
2/3-end: p = 1.0, start-1/3 vs. 2/3-end:p < 0.006]. Further, the
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FIGURE 5 | A descriptive visualization of learning progress for both learning conditions in both perspective: (A) cold-start learning (no pre-training) for human’s

perspective, (B) cold-start learning (no pre-training) for robot’s perspective, (C) warm-start learning (pre-training) for human’s perspective, (D) warm-start learning

(pre-training) for robot’s perspective.

Frontiers in Robotics and AI | www.frontiersin.org 14 October 2020 | Volume 7 | Article 558531

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Kim et al. Human Interaction Effecting Robot Learning

TABLE 4 | Correlation analysis.

Human’s perspective Robot’s perspective

Cold-start learning Warm-start learning Cold-start learning Warm-start learning

(A) Correlation between robot’s learning performance and ErrP-classification performance

ErrP misclassification 0.892** 0.684** 0.888** 0.680**

FN 0.927** 0.715** 0.944** 0.705**

FP −0.172 0.453* −0.262 0.584**

TN −0.950** −0.897** −0.942** −0.869**

TP 0.622** 0.934** 0.693** 0.965**

FNR (1-TPR) 0.707** 0.209 0.745** 0.228

FPR (1-TNR) 0.486* 0.577** 0.395 0.660**

(B) Correlation between robot’s learning performance and gesture errors

Gesture errors −0.089 0.803** −0.274 0.503*

(C) Correlation between ErrP-classification performance and gesture errors

ErrP misclassification −0.221 0.488* −0.090 0.573**

FN −0.190 0.604** −0.248 0.356

FP −0.036 0.272* 0.385 0.533*

TN 0.101 −0.676** 0.150 −0.595**

TP 0.169 0.735** 0.214 0.485*

FNR (1-TPR) 0.075 0.208 0.001 0.037

FPR (1-TNR) 0.153 0.388 0.103 0.595**

(A) Correlation between the robot’s learning performance (mapping errors) and the ErrP-classification performance for both learning conditions and both perspectives. (B) Correlation
between the robot’s learning performance (mapping errors) and gesture errors for both learning conditions and both perspectives. (C) Correlation between the ErrP-classification
performance and gesture errors for both learning conditions and both perspectives. Note that ** stands for significant level of p < 0.01 (2-sided) and * stands for significant level of p <

0.05 (2-sided). TPR = 1-FNR; TNR = 1-FPR. ErrP misclassification: FP ∪ FN.

number of mapping errors was significantly reduced for warm-
start learning compared to cold-start learning in the first learning
phase for both perspectives [warm-start learning vs. cold-start
learning: p < 0.001 for both perspectives]. However, there was
no significant difference between both learning conditions in
the second learning phase [warm-start learning vs. cold-start
learning: p = 0.079 for human’s perspective; p = 0.051 for robot’s
perspective]. In the final learning phase, the number of mapping
errors was again reduced for warm-start learning compared to
cold-start learning [warm-start learning vs. cold-start learning:
p < 0.022 for human’s perspective; p < 0.010 for robot’s
perspective].

Figure 5 shows a descriptive visualization of the learning
progress of the whole learning phase as an example, which
was separately visualized in both learning conditions and both
perspectives. In the beginning of the learning phase, we observed
a high increase ofmapping errors in cold-start learning compared
to warm-start learning. Accordingly, the learning curve in cold
start learning slowly stabilized compared to warm start learning
before a new gesture was added. This learning pattern was shown
for both perspectives. However, once the learning curve had
stabilized, adding a new gesture to cold start learning had less
impact on learning than warm-start learning. In contrast, the
number of mapping errors has been increased immediately after
adding a new gesture for warm-start learning (Figures 5C,D after
30 trials). After the learning curve had stabilized, there was some
variation in both learning conditions. In the late learning phase
(2/3-end) fluctuations were observed, which were caused by FP

especially during warm start learning. In warm-start learning, FP
occurred more frequently in the late learning phase compared
to cold-start learning. This was consistent with the correlation
analysis, according to which FP showed a significant correlation
with mapping errors for the learning condition warm start, but
not for the learning condition cold start (Table 4A, details, see
section 3.3). Note that the class ratio was different depending on
datasets as shown in Figures 5C,D, since the number of correct
and wrong actions depends on the online learning performance
of the robot.

In summary, it can be observed that the total number of
mapping errors of the robot during warm-start learning has been
reduced compared to cold-start learning in both perspectives.
After adding a new gesture, the number of mapping errors in
warm-start learning was slightly increased, while the number of
mapping errors in cold-start learning was reduced after adding
a new gesture. In warm start learning, an earlier stabilization
of the robot’s learning progress was observed than in cold-start
learning at the beginning of the learning phases. That means,
the learning curve was stabilized quickly in warm-start learning
compared to cold-start learning. In other words, the algorithm is
converged in warm-start learning before adding a new gesture,
whereas the convergence was not reached in cold-start learning
before adding a new gesture. However, the difference in mapping
errors between the two learning conditions disappeared in the
second learning phase (after adding a new gesture), because a
slight increase in mapping errors in warm start learning and a
significant reduction in mapping errors in cold start learning
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canceled out the effect of warm start learning on the robot’s
learning performance in the second learning phase. In fact, there
were less fluctuations of learning progress for cold-start learning
condition across all subjects after adding a new gesture compared
to warm-start learning. Note that individual differences were
more clearly observed for cold-start learning compared to warm-
start learning (see Figure 8, details, see section 3.3).

3.2. ErrP-Classification Performance in the
Whole Learning Phase
In our HRI scenario, the results of classifiers trained to recognize
ErrPs were used as a reward in our learning algorithm. To
measure the ErrP classification performance, a confusion matrix
was calculated and the number of FN, FP, TP, and TN was used as
performance metric.

Table 3 shows the number of FN, FP, TP, and TN. The number
of FN was significantly reduced in warm-start learning compared
to cold-start learning. However, the number of FP was slightly
(but not statistically) increased for warm-start learning compared
to cold-start learning. Hence, the number of FN was higher for
FN than FP, whereas the number of FN was lower compared to
FP in warm-start learning.

Figure 6 shows the comparison of ErrP-classification
performance (FN, FP, TP, TN) between both learning conditions
and both perspectives for all trials (Figures 6A,C,E,G). We found
differences between both learning conditions in ErrP-detection
performances. The number of ErrP misclassifications (FN ∪
FP) was reduced for warm-start learning compared to cold-start
learning under both perspectives [F1, 35 = 5.36, p < 0.029,
human perspective: p < 0.031, robot perspective: p < 0.027].
Especially, the number of FN was substantially reduced in
warm-start learning compared to cold-start learning under
both perspectives [F1, 35 = 7.21, p < 0.012, human perspective:
p < 0.015, robot perspective: p < 0.01]. However, the number
of FP was not significantly differed between both learning
conditions. [F1, 35 = 0.034, p < 0.569, human perspective:
p = 0.64, robot perspective: p = 0.53]. The number of TN
was increased for warm-start learning compared to cold-
start learning [F1, 35 = 9.29, p < 0.005, human perspective:
p < 0.006, robot perspective: p < 0.005]. In contrast, the
number of TP was increased for cold-start learning compared
to warm-start learning [F1, 35 = 11.10, p < 0.003, human
perspective: p < 0.006, robot perspective: p < 0.002]. The FNR
was reduced for warm-start learning compared to cold-start
learning in robot’s perspective, but not in human’s perspective
[F1, 35 = 3.81, p = 0.059, human perspective: p = 0.227, robot
perspective: p < 0.027]. The FPR was not significantly reduced
for warm-start learning compared to cold-start learning under
both perspectives [F(1,35) = 0.67, p = 0.420, human perspective:
p = 0.391, robot perspective: p = 0.461].

We also found differences between both perspectives in ErrP-
detection performances. Under both learning conditions, the
number of aberrations in the robot perspective was reduced
compared to the human perspective. [F1, 35 = 25.98, p < 0.001,
cold-start learning: p < 0.010, warm-start learning: p < 0.001].
The number of FN was reduced under the robot perspective

compared to the human perspective for warm start learning, but
not for cold start learning [F1, 35 = 16.89, p < 0.002, cold-
start learning: p = 0.06, warm-start learning: p < 0.001].
In contrast, the number of FP was increased under the robot
perspective compared to the human perspective under both
learning conditions [F1, 35 = 16.30, p < 0.001 cold-start learning:
p < 0.023, warm-start learning: p < 0.003]. Altogether, the
number of ErrP misclassifications (FN ∪ FP) was not differed
between both perspectives [F1, 35 = 0.82, p = 0.372, cold-start
learning: p = 0.39, warm-start learning: p = 0.69]. The number
of TNs was increased from the robot perspective compared to the
human perspective for warm start learning, but not for cold start
learning [F1, 35 = 16.92, p < 0.001, cold-start learning: p = 0.058,
warm-start learning: p < 0.001]. However, the number of TP
from the robot perspective was reduced compared to the human
perspective for both learning conditions [F1, 35 = 16.30, p <

0.001, cold-start learning: p < 0.02, warm-start learning: p <

0.002]. FNR was reduced from the robot perspective compared
to the human perspective in warm start learning, but not in cold
start learning [F1, 35 = 4.34, p < 0.046, cold-start learning: p =
0.058, warm-start learning: p < 0.02]. The FPR was increased
from the robot perspective compared to the human perspective
for both learning conditions [F1, 35 = 12.90, p < 0.002, cold-
start learning: p < 0.032, warm-start learning: p < 0.008].
Note that we have not found any interaction between the three
factors (learning condition, learning phase, perspective). Hence,
the results of pairwise comparisons between levels of factors
could be well-interpreted.

In summary, it can be said that the ErrP classification
performance was influenced by the learning conditions.
Especially wrong classifications of incorrect robot actions
(FN) and correct classifications of correct robot actions (TN)
were strongly influenced by the learning conditions. Correct
classifications of erroneous actions (TP) were also influenced by
the learning condition, but this effect was not higher than TN
or FN.

3.3. Effect of ErrP-Classification
Performance on Learning Performance
Figure 6 shows ErrP-classification performance (FN, FP, TP, TN)
in the three learning phases (Figures 6B,D,F,H). As expected, we
found that the pattern of TP and FN (i.e., correct or incorrect
classifications of erroneous actions of the robot) was coherent
with the pattern of erroneous actions of the robot (i.e., mapping
errors) (Figure 4B vs. Figure 6F; Figure 4B vs. Figure 6B).
However, the pattern of TN (i.e., correct classifications of correct
actions of the robot) was reversed compared to the pattern of
mapping errors (Figure 4B vs. Figure 6H).

3.3.1. Correct Classifications of Erroneous Actions of

the Robot (TP)
Figure 6F shows the number of TP for the three learning phases
and both learning conditions. As expected, the pattern of correct
classifications of erroneous actions of the robot matched with
the pattern of erroneous actions of the robot (mapping errors).
In warm-start learning, the number of TP was slightly (but not
significant) increased in the second learning phase and slightly
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FIGURE 6 | ErrP-classification performance (FN, FP, TP, TN): the average of FN across all datasets, the average of FP across all datasets, the average of TP across all

datasets, the average of TN across all datasets for the whole learning phase (A,C,E,G) and the three learning phases (B,D,F,H) in both perspectives. For each

perspective, both learning conditions are compared: pre-training (yellow) vs. no pre-training (blue).

(but not significant) reduced in the third learning phase [human’s
perspective: start-1/3 vs. 1/3-2/3: p = 0.532, 1/3-2/3 vs. 2/3-end:
p = 1.0, start-1/3 vs. 2/3-end: p = 1.0; robot’s perspective: start-1/3

vs. 1/3-2/3: p = 0.155, 1/3-2/3 vs. 2/3-end: p = 0.556, start-
1/3 vs. 2/3-end: p = 1.0]. In cold-start learning, the number of
TP was significantly reduced in the second learning phase and
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slightly (but not significantly) increased in the third learning
phase [human’s perspective: start-1/3 vs. 1/3-2/3: p < 0.001,
1/3-2/3 vs. 2/3-end: p = 1.0, start-1/3 vs. 2/3-end: p < 0.004;
robot’s perspective: start-1/3 vs. 1/3-2/3: p < 0.001, 1/3-2/3 vs.
2/3-end: p = 1.0, start-1/3 vs. 2/3-end: p < 0.006]. The same
pattern was observed in the learning performance of the robot,
i.e., mapping errors (Figure 4B vs. Figure 6F). Furthermore, the
number of TPs for warm start learning was reduced compared to
cold start learning only for the beginning of the learning phase
for both perspectives [start-1/3: warm-start learning vs. cold-start
learning: p < 0.001 in both perspectives]. After adding a new
gesture, there was no significant difference between both learning
conditions [1/3-2/3: warm-start learning vs. cold-start learning;
p = 0.534 in human’s perspective, p = 0.417 in robot’s perspective;
2/3-end: warm-start learning vs. cold-start learning: p = 0.334
in human’s perspective, p = 0.305 in robot’s perspective]. In
cold-start learning, differences between the two perspectives only
became evident for the final learning phase [human’s perspective
vs. robot’s perspective: p = 0.153 for start-1/3; p = 0.178
for 1/3-2/3; p < 0.012 for 2/3-end]. In warm-start learning,
differences between both perspectives were found in all learning
phases [human’s perspective vs. robot’s perspective: p < 0.007 for
start-1/3; p < 0.010 for 1/3-2/3; p < 0.013 for 2/3-end].

3.3.2. Correct Classifications of Correct Actions of

the Robot (TN)
Figure 6H shows the number of TN for three learning phases
and both learning conditions. As expected, we observed that the
pattern of learning phases in TN was inverse to the pattern of
learning phases in mapping errors (Figure 4B vs. Figure 6H).
In warm-start learning, the number of TN was slightly (but not
significant) reduced in the second learning phase and slightly
(but not significant) increased in the third learning phase for
both perspectives [human’s perspective: start-1/3 vs. 1/3-2/3: p =
0.102, 1/3-2/3 vs. 2/3-end: p = 0.712, start-1/3 vs. 2/3-end:
p = 1.0; robot’s perspective: start-1/3 vs. 1/3-2/3: p = 1.0,
1/3-2/3 vs. 2/3-end: p = 0.251, start-1/3 vs. 2/3-end: p =
1.0]. In contrast, in cold-start learning, the number of TN was
significantly increased in the second learning phase and slightly
(but not significantly) reduced in the third learning phase for
both perspectives [human’s perspective: start-1/3 vs. 1/3-2/3: p <

0.001, 1/3-2/3 vs. 2/3-end: p = 1.0, start-1/3 vs. 2/3-end: p <

0.001; robot’s perspective: start-1/3 vs. 1/3-2/3: p < 0.012, 1/3-
2/3 vs. 2/3-end: p = 1.0, start-1/3 vs. 2/3-end:p = 0.321].
In particular, the number of TN for warm start learning was
increased compared to cold start learning. This was only shown
for the initial phase and the end of the learning phase from
both perspectives [start-1/3: p < 0.001 in both perspectives; 1/3-
2/3: p = 0.116 in human’s perspective, p = 0.072 in robot’s
perspective; 2/3-end: p < 0.039 in human’s perspective, p < 0.022
in robot’s perspective]. Further, we found differences between both
perspectives in the second and final learning phase for warm-
start learning and only in the beginning of learning phase in
cold-start learning [warm-start learning: p = 0.055 for start-
1/3; p < 0.002 for 1/3-2/3; p < 0.007 for 2/3-end; cold-start
learning: p < 0.033 for start-1/3; p = 0.190 for 1/3-2/3; p = 0.371
for 2/3-end].

3.3.3. Incorrect Classifications of Correct Actions of

the Robot (FP)
Figure 6D shows the number of FP for the three learning phases
under both learning conditions. We observed no difference
between learning phases and between learning conditions. We
found no significant difference between three learning phases in
both perspective [(a) human’s perspective: warm-start learning:
start-1/3 vs. 1/3-2/3: p = 0.168, 1/3-2/3 vs. 2/3-end: p = 0.216,
start-1/3 vs. 2/3-end: p = 1.0, cold-start learning: start-1/3 vs.
1/3-2/3: p = 0.084; 1/3-2/3 vs. 2/3-end: p = 0.313; start-1/3
vs. 2/3-end: p = 1.0; (b) robot’s perspective: warm-start learning:
start-1/3 vs. 1/3-2/3: p = 1.0, 1/3-2/3 vs. 2/3-end: p = 1.0, start-
1/3 vs. 2/3-end: p = 1.0, cold-start learning: start-1/3 vs. 1/3-2/3:
p = 0.438, 1/3-2/3 vs. 2/3-end: p = 0.917, start-1/3 vs. 2/3-
end: p = 0.438]. Further, we found no differences between both
learning conditions for both perspectives [human’s perspective:
warm-start learning vs. cold-start learning: p = 0.323 for start-1/3,
p = 0.867 for 1/3-2/3, p = 0.891 for 2/3-end; robot’s perspective:
warm-start learning vs. cold-start learning: p = 0.323 for start-
1/3, p = 0.867 for 1/3-2/3, p = 0.891 for 2/3-end]. Further,
we found significant differences between both perspectives for
all learning phases in warm-start learning [human’s perspective
vs. robot’s perspective: p < 0.008 for start-1/3; p < 0.014
for 1/3-2/3: p < 0.011 for 2/3-end]. In cold-start learning,
differences between both perspectives were shown only for the
final learning phase [human’s perspective vs. robot’s perspective:
p = 0.164 for start-1/3; p = 0.067 for 1/3-2/3: p < 0.015
for 2/3-end].

3.3.4. Incorrect Classifications of Erroneous Actions

of the Robot (FN)
Figure 6B shows the number of FN for the three learning phases
under both learning conditions. Only in cold-start learning,
the pattern of FN was coherent with the pattern of mapping
errors. We found no significant difference between three learning
phases for both perspectives [(a) human’s perspective: warm-start
learning: start-1/3 vs. 1/3-2/3: p = 0.964, 1/3-2/3 vs. 2/3-end,
p = 1.0; start-1/3 vs. 2/3-end: p = 1.0; cold-start learning: start-
1/3 vs. 1/3-2/3: p = 0.835, 1/3-2/3 vs. 2/3-end: p = 1.0, start-1/3
vs. 2/3-end: p = 1.0; (b) robot’s perspective: warm-start learning:
start-1/3 vs. 1/3-2/3: p = 1.0, 1/3-2/3 vs. 2/3-end: p = 1.0, start-
1/3 vs. 2/3-end: p = 1.0; cold-start learning: start-1/3 vs. 1/3-2/3:
p = 1.0, 1/3-2/3 vs. 2/3-end: p = 1.0, start-1/3 vs. 2/3-end:
p = 1.0]. Further, the number of FN was reduced for warm-
start learning compared to cold-start learning for the first and the
final learning phase, but not for the second learning phase. This
pattern was shown for both perspectives [human’s perspective:
warm-start learning vs. cold-start learning: p < 0.011 for start-1/3,
p = 0.051 for 1/3-2/3, p < 0.002 for 2/3-end; robot’s perspective:
warm-start learning vs. cold-start learning: p < 0.008 for start-
1/3, p = 0.085 for 1/3-2/3, p = 0.009 for 2/3-end]. Further,
we found significant differences between both perspectives for
the second and the final learning phase, but not for the first
learning phase in warm-start learning [human’s perspective vs.
robot’s perspective: p = 0.060 for start-1/3, p < 0.002 for 1/3-
2/3, p < 0.007 for 2/3-end]. The reversed pattern was shown
in cold-start learning [human’s perspective vs. robot’s perspective:
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p < 0.025 for start-1/3, p = 0.135 for 1/3-2/3, p = 0.371
for 2/3-end].

3.3.5. Correlation Between ErrP-Classification

Performance and Mapping Errors
Table 4A shows the correlation between learning performance
of the robot (mapping errors) and ErrP-classification
performance for each learning condition and each perspective,
in which correlations of mapping errors were separately
calculated with ErrP misclassifications (FP∪FN),TP, TN,
FP, and FN (details for statistical analysis, see section
2.5). Note that ∗∗ stands for significant level of p < 0.01
(2-sided) and ∗ stands for significant level of p < 0.05
(2-sided). Figure 8A shows a descriptive visualization of
robot’s learning performance and ErrP misclassification
(more details, see Supplementary Figure 1, which shows a
descriptive visualization of each correlation shown in Table 4A).
An individual dot represents the result of mapping errors
corresponding to ErrP misclassifications (FP ∪ FN), TP, TN,
FP, and FN in each dataset, where different colors (yellow, blue)
represent different learning conditions (warm-start learning,
cold-start learning).

As expected, we observed a high correlation between learning
performance of the robot and ErrP-classification performance
under both learning conditions (see Table 4A). However, a
higher correlation was observed for cold-start learning compared
to warm-start learning. This pattern was more obviously shown
in FN and TN. FN strongly correlated with learning performance
in the cold-start learning condition compared to the warm-start
learning condition [cold-start learning vs. warm-start learning:
r = 0.927 vs. r = 0.715 for human’s perspective; cold-
start learning vs. warm-start learning: r = 0.944 vs. r =
0.705 for robot’s perspective]. Note that we obtained a single
correlation coefficient for each correlation analysis. Hence,
the comparison between learning conditions was descriptively
reported. The same pattern was shown for TN [cold-start learning
vs. warm-start learning: r = −0.950 vs. r = −0.897 for
human’s perspective; cold-start learning vs. warm-start learning:
r = −0.942 vs. r = −0.869 for robot’s perspective]. In
contrast, the reversed pattern was shown for TP, i.e., a higher
correlation was observed for the warm-start learning compared
to cold-start learning [cold-start learning vs. warm-start learning:
r = 0.622 vs. r = 0.934 for human’s perspective; cold-start
learning vs. warm-start learning: r = 0.693 vs. r = 0.965
for robot’s perspective]. For FP, there was no correlation for
cold-start learning [human’s perspective: r = −0.172, robot’s
perspective: r = −0.262].

Further, a descriptive analysis showed that a higher difference
between datasets in robot’s learning performance was observed in
cold-start learning compared to warm-start learning. As shown
in Figure 8A, all datasets of warms-start learning were placed in
the dark green boxes, whereas 5 datasets of cold-start learning
were placed in the light green boxes. The same pattern was
shown in ErrP-detection performance (Figure 8A), which was a
plausible reason for a high correlation between robot’s learning
performance and ErrP-detection performance (Table 4A). Note
again that an individual dot represents the result of mapping

errors corresponding to ErrP misclassifications (FP ∪ FN), TP,
TN, FP, and FN in each dataset and different colors (yellow, blue)
represent different learning conditions (warms-start learning and
cold-start learning).

In summary, FN had a stronger impact on cold-start learning
compared to warm-start learning, whereas FP had a stronger
effect on warm-start learning compared to cold-start learning.
In other words, the learning performance of the robot was
impaired more during cold start learning than during warm
start learning if incorrect robot actions were not detected, i.e.,
ErrPs were not detected if the actions of the robot were wrong.
Further, FN had an effect on learning performance for both
learning conditions, whereas FP had an impact on learning
performance for warm-start learning, but not for cold-start
learning. Consistent with a higher number of mapping errors,
the number of TP was higher in cold-start learning than in
warm-start learning.

3.4. Effect of Gesture Errors on Learning
Performance
As mentioned earlier, we considered wrong recordings of
human gestures as gesture errors, which lead to incoherences
between performed and perceived gestures, i.e., incoherences
between gestures performed by the subjects and gestures
recorded by LeapMotion. The subjects perceived their own
performed gesture and the robot perceived the gesture features
recorded by LeapMotion. Therefore we analyzed the learning
performance of robots and the ErrP classification performance
depending on the two perspectives (robot perspective/
human perspective).

Figure 7 shows differences in learning progress between both
perspectives that are caused by gesture errors. Gestures that were
performed by the subjects are depicted in Figure 7A, whereas
gestures that were recorded by the Leap Motion and perceived
by the robot are depicted in Figure 7B. As shown in Figure 7,
gestures were differently colored depending on perspective, e.g.,
upward (violet point) for human’s perspective and forward (red
point) for robot’s perspective on the same action of the robot in
the trial 69 (Figure 7A vs. Figure 7B, see Table 5D). When there
were no gesture errors, wrong actions of the robot (mapping
errors) were the same for both perspectives (see trial 1, 2, 4, 7,
9, 14 in Figure 7). When gesture errors occurred, the effect of
gesture errors was not clear, which required a further analysis
(details, see Table 5).

Table 5 shows four cases where we observed the interaction
effects of gesture errors on learning performance (the correctness
of robot actions, i.e., mapping errors) with ErrP recognition
performance: (A) No occurrence of gesture errors and correct
actions of the robot for both perspectives, (B) No occurrence
of gesture errors and wrong actions of the robot for both
perspectives, (C) Occurrence of gesture errors and correct
robot actions from the robot’s perspective, but incorrect robot
actions from the human perspective, and (D) Occurrence
of gesture errors and wrong actions of the robot from
both perspectives. Note that the trials that are visualized
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FIGURE 7 | A descriptive analysis of differences in learning progress between both perspectives (A and B) that are caused by gesture errors. A descriptive

visualization of learning progress of both perspectives is shown in the cold-start learning condition (no pre-training) as an example of one subject. The first five

mapping errors (trial 1, 2, 4, 7, 9, 14) and the mapping errors in the trial 69 are the same for both perspectives. Other mapping errors (trial 17, 54, 62, 72, 73, 95, 110,

116) are shown for the human’s perspective, but not for robot’s perspective. Such different perceptions between human and robot due to gesture errors and their

impacts on learning progress are analyzed in consideration of interaction with ErrP-detection performance and summarized in Table 5 (details, see text).

in Figure 7 are equivalent to the trials that are shown
in Table 5.

3.4.1. Correct Actions of the Robot Without Gesture

Errors (Table 5A)
When there were no gesture errors and the robot’s actions
were also correct, ErrP-detection performance had a direct
impact on the learning process (Table 5A). In other words, the
learning performance was affected only by ErrP-classification
performance. Correct classifications, i.e., detections of ErrPs on
wrong gesture-action pairs (TP) and detections of No ErrPs on
correct gesture-action pairs (TN) had a positive impact on the
learning process.

3.4.2. Wrong Actions of the Robot Without Gesture

Errors (Table 5B)
If the robot’s actions were wrong even though there were
no gesture errors, the learning performance was also only
affected by the ErrP recognition performance (Table 5B). Correct
classifications, i.e., detections of ErrPs on wrong gesture-action
pairs (TP) and detections of No ErrPs on correct gesture-action
pairs (TN) had a positive impact on the learning process. In
contrast, wrong classifications, i.e., detections of No ErrPs on

wrong gesture-action pairs (FN) and detections of ErrPs on
correct gesture-action pairs (FP) had a negative effect on the
learning process.

3.4.3. Correct Actions of the Robot With Gesture

Errors (Table 5C)
If the robot’s actions were correct, although gesture errors
occurred, we observed two different effects: (1) Gesture errors
had a negative effect on the learning performance, when ErrP
detection was correct from the human’s perspective (trial 54,
62, 73, 95, 110, 116 in Table 5C) and (2) Negative effects of
gesture errors were canceled out, when ErrP detection were
wrong from the human’s perspective (trial 17, 72 in Table 5C).
For example, when ErrPs were detected on wrong gesture-action
pairs from the human’s perspective (e.g., left-right pair in
trial 54 in Table 5C), ErrP classifications were correct (TP).
In contrast, when the robot perceived correct gesture-action
pairs on the same actions of the robot (e.g., right-right pair
in trial 54 in Table 5C), ErrP classifications were wrong from
the robot’s perspective (FP), which led to negative impacts
on the learning progress. However, such negative effects of
gesture errors on learning performance were canceled out, when
ErrP detections were wrong from the human’s perspective.
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TABLE 5 | Different perceptions between humans and robots due to gesture

errors (9 gesture errors in total in this example, see cases C and D).

Case Trial
Human Recorded Robot’s ErrP Human Robot

gesture gesture action detection CL CL

A 5 Right Right Right No ErrP TN TN

6 Forward Forward Forward No ErrP TN TN

8 Right Right Right No ErrP TN TN

9 Left Left Forward ErrP TP TP

10 Forward Forward Forward No ErrP TN TN

11 Right Right Right No ErrP TN TN

12 Forward Forward Forward No ErrP TN TN

13 Left Left Forward ErrP TP TP

15 Right Right Right No ErrP TN TN

16 Right Right Right No ErrP TN TN

B 1 Forward Forward Right ErrP TP TP

2 Right Right Right No ErrP TN TN

3 Forward Forward Forward No ErrP TN TN

4 Left Left Forward No ErrP FN FN

7 Left Left Forward No ErrP FN FN

14 Forward Forward Left ErrP TP TP

C 17 Left Right Right No ErrP FN TN

54 Left Right Right ErrP TP FP

62 Upward Forward Forward ErrP TP FP

72 Left Right Right No ErrP FN TN

73 Upward Forward Forward ErrP TP FP

95 Left Right Right ErrP TP FP

110 Upward Forward Forward ErrP TP FP

116 Right Left Left ErrP TP FP

D 69 Upward Forward Right ErrP TP TP

The learning progress of this example is shown in Figure 7. Four cases of interaction
between gesture errors and ErrP recognition performance and their effects on learning
progress were observed: (A) No occurrence of gesture errors and correct actions of the
robot from both perspectives, (B) No occurrence of gesture errors and wrong actions of
the robot from both perspectives, (C) occurrence of gesture errors and correct actions
of the robot from the robot’s perspective, but not from the human’s perspective, and
(D) occurrence of gesture errors and wrong actions of the robot from both perspectives.
CL: classification performance. robot CL: ErrP-detection performance from the robot’s
perspective. human CL: ErrP-detection performance from the human’s perspective. Note
that the robot’s perception (robot CL) affects learning progress and the elicitation of
ErrPs is based on the human’s perception (matching between human gesture and robot’s
action). Note that not all trials are described in this example.

For example, ErrP classifications (detections of No ErrP) were
wrong on gesture-action pairs (left-right pairs) from the human’s
perspective, whereas ErrP classifications (detections of No ErrP)
were correct on gesture-action pairs (right-right pairs) from the
robot’s perspective (see trial 17, 72 in Table 5C). In this case,
gesture errors had a positive effect on learning performance
because the ErrPs recognition was incorrect from the
human perspective.

3.4.4. Wrong Actions of the Robot With Gesture

Errors (Table 5D)
When gesture errors occurred and the robot’s actions were
wrong, the learning performance was affected only by ErrP-
detection performance. In this case, gesture-action pairs were
wrong from both perspectives (see trial 69 in Table 5D):

TABLE 6 | Different perceptions between human and robot due to gesture errors

(one gesture error in total in this example, see case D).

Case Trial
Human Recorded Robot’s ErrP Human Robot

gesture gesture action detection CL CL

A 5 Forward Forward Forward No ErrP TN TN

6 Forward Forward Forward No ErrP TN TN

9 Left Left Left No ErrP TN TN

11 Forward Forward Forward No ErrP TN TN

15 Forward Forward Forward No ErrP TN TN

16 Right Right Right Right TN TN

17 Right Right Right Right TN TN

18 Forward Forward Forward Forward TN TN

19 Left Left Left Left TN TN

B 1 Forward Forward Left ErrP TP TP

2 Right Right Left ErrP TP TP

3 Left Left Right No ErrP FN FN

4 Forward Forward Right ErrP TP TP

7 Right Right Forward ErrP TP TP

8 Left Left Right ErrP TP TP

10 Right Right Left ErrP TP TP

12 Left Left Forward ErrP TP TP

13 Right Right Left ErrP TP TP

14 Left Left Forward ErrP TP TP

20 Left Left Forward ErrP TP TP

56 Right Right Upward ErrP TP TP

72 Forward Forward Left ErrP TP TP

102 Forward Forward Upward ErrP TP TP

C – – – – – – –

D 101 Upward Forward Right ErrP TP TP

Learning progress of this example is shown in Figures 5A,B. Four cases of the interaction
between gesture errors and their impacts on learning progress were observed: (A) No
occurrence of gesture errors and correct actions of the robot from both perspectives, (B)
No occurrence of gesture errors and wrong actions of the robot from both perspectives,
(C) occurrence of gesture errors and correct actions of the robot from the robot’s
perspective, but not from the human’s perspective, and (D) occurrence of gesture errors
and wrong actions of the robot from both perspectives. CL: classification performance.
robot CL: ErrP-detection performance from the robot’s perspective. human CL: ErrP-
detection performance from the human’s perspective. Note that the robot’s perception
(robot CL) affects learning progress and the elicitation of ErrPs is based on the human’s
perception (matching between human gesture and robot’s action). Note that not all trials
are described in this example.

upward-right pair for human’s perspective and forward-right pair
for robot’s perspective. Hence, ErrP classifications (detections
of ErrPs) were correct (TP) and learning performance was not
negatively affected.

In general, the number of gesture errors varied between
subjects and sets. We visualized two examples for different
numbers of gesture errors: 9 gesture errors (Figures 7A,B, and
Table 5) vs. one gesture error (Figures 5A,B, and Table 6).

3.4.5. Correlation Between Gesture Errors and

Mapping Errors and Correlation Between Gesture

Errors and ErrP-Classification Performance
Table 4B shows the correlation between gesture errors and
mapping errors for both learning conditions and both
perspectives and its descriptive visualization is shown in
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Figure 8B (more details, see Supplementary Figure 2). We
found a correlation between gesture errors and the robot’s
learning performance for warm-start learning but not for
cold-start learning [cold-start learning vs. warm-start learning:
r = 0.803 vs. r = −0.089 for human’s perspective; cold-start
learning vs. warm-start learning: r = 0.503 vs. r = −0.274 for
robot’s perspective]. Furthermore, the reason why the correlation
between gesture and mapping errors was only shown for
warm start learning can be explained by further correlation
analysis. Table 4C shows the correlation between ErrP-detection
performance and gesture errors for both learning conditions
and both perspectives and its descriptive visualization is shown
in Figure 8C (more details, see Supplementary Figure 2).
For both perspectives, we found a correlation between ErrP
misclassifications and gesture errors for warm-start learning,
but not for cold-start learning [cold-start learning vs. warm-start
learning: r = −0.221 vs. r = 0.488 for human’s perspective;
cold-start learning vs. warm-start learning: r = −0.090 vs.
r = 0.573 for robot’s perspective]. Both correlation analyses
(Tables 4B,C) showed that gesture errors had an impact on
learning performance (mapping errors), only when gesture
errors correlate with ErrP misclassifications (Table 4B vs.
Table 4C, Figure 8B vs. Figure 8C).

In summary, it can be said that gesture errors affected the
learning performance of the robot in other ways. Due to gesture
errors, an incorrect feedback (human evaluation) was sent to
the robot, although the human evaluation itself was correct.
However, such negative effects of gesture errors on robot learning
performance disappeared if the ErrP classification was incorrect.
Furthermore, we could find out afterwards that gesture errors had
no effect on the robot’s learning performance if the robot action
selection was wrong and the ErrP classification was correct.

3.5. Summary of Results
We showed that the robot learned actions that were best assigned
to human gestures based on EEG-based reinforcement signals. In
the proposed HRI scenario, human gestures were not predefined,
i.e., no initial semantics of gestures was given to the robot. Rather,
the robot learned the current meaning of human gesture (i.e.,
the meaning of human gesture that can be changed online). To
this end, we used a contextual bandit approach that maximizes
the expected payoff by updating the current human intention
(human gesture) and the current human feedback (ErrP) after
each action selection of the robot.

Robot learning and its online adaptation were successful for
both warm-start learning and cold-start learning. Only for one
subject robot learning was not successful in cold-start learning
due to a very low detection performance of ErrPs used for
human’s intrinsic feedback (rewards). Further, cold-start learning
required more data to reach a stabilization of the learning curve
compared to warm-start learning before adding a new context
(e.g., before adding a new gesture). However, cold-start learning
was less affected by changes of the current context (e.g., after
adding a new gesture) compared to warm-start learning, which
indicates that cold-start learning was stable for updating of the
learned strategy once learning reached convergence.

Online detection of ErrPs used for rewards in the used
learning algorithm was successful for both learning conditions
except for one subject who showed a very low performance
of ErrP detections in cold-start learning. Our assumption
that the ErrP-classification performance affects robot’s learning
performance was supported by a high correlation between
robot’s learning performance and ErrP-detection performance
in both learning condition (Table 4A). Further, a descriptive
analysis showed a higher variability between datasets in cold-
start learning compared to warm-start learning, which can be
shown in Figure 8. For example, five datasets of cold-start
learning were placed in the light green boxes, whereas all datasets
of warms-start learning were placed in the dark green boxes
(Figure 8). However, correlation coefficients were computed
for each learning condition and the comparison between both
learning conditions (inference statistics) was not possible, since
there was only one coefficient value for each learning condition.

Gesture errors that were not detected online but analyzed
offline had no direct impact on robot’s learning performance.
Rather, gesture errors affected robot’s learning performance only
when gesture errors interacted with ErrP-detection performance.
Especially, we observed a correlation between gesture errors and
ErrP-detection performance in warm-start learning (Table 4C),
which led to a correlation between robot’s learning performance
and gesture errors in warm-start learning (Table 4B). In contrast,
we observed no correlation between gesture errors and ErrP-
detection performance in cold-start learning (Table 4C), which
resulted in no correlation between robot’s learning performance
and gesture errors in cold-start learning (Table 4B).

4. DISCUSSION

In this paper, we analyzed errors that occur in HRI and their
impacts on online learning performance of the robot. Our results
indicate that a little prior knowledge facilitates learning progress
and allows a faster stabilization of the learning curve compared
to learning without prior knowledge. Warm-start learning was
advantaged, since a few trials (i.e., gesture-action pairs) were
pre-trained with the perfect human feedback (correct detections
of ErrP/No ErrP). Further, the reason for the faster learning
can be explained by the higher ErrP classification performance,
i.e., the significant reduction of ErrP misclassifications in warm-
start learning compared to cold-start learning. Especially the role
of the FN, i.e., the absence of robot mistakes (mapping error),
seems to be very important for learning performance both for
learning with prior knowledge and for learning without prior
knowledge. In contrast, false alarm (FP) seems to have a small
overall effect on the robot’s learning performance with a greater
effect on warm-start learning compared to cold-start learning.
This is supported by correlations between FN and mapping
errors in both learning conditions and correlations between
FP and mapping errors shown for warm-start learning but
not for cold-start learning (Table 4A, Supplementary Figure 1).
The reason why FN had a higher influence on the learning
performance of the robot compared to FP can be explained
by the use of different weights of rewards depending on the
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FIGURE 8 | A descriptive visualization of correlation analysis: (A) correlation between mapping errors and ErrP misclassifications, (B) correlation between mapping

errors and gesture errors, and (C) correlation between ErrP misclassifications and gesture errors. A statistical analysis of three types of correlation (A–C) is reported in

Table 4. For each perspective, the comparison between both learning conditions is depicted in different colors: pre-training (yellow) vs. no pre-training (blue). Each dot

represents each dataset (details, see text). A descriptive visualization of further correlation analyses are depicted in Supplementary Figures 1, 2.

results of ErrP classifications (Table 2): our HRI scenario was
designed that the predictions of correct mappings (No ErrP) were
highly rewarded compared to the predictions of wrong mappings
(ErrP), since a correct gesture-action pair should be learned by
the UCB algorithm. Further, our results suggest that not only
ErrP misclassifications (FN, FP) but also correct classifications
of ErrPs/No ErrPs (TP, TN) can have an impact on learning
performance of the robot under both learning conditions. This

is supported by the findings of negative correlations of TN
with mapping errors and positive correlations of TP with
mapping error (Table 4A, Supplementary Figure 1). Further,
the faster stabilization of the learning curve in warm-start
learning seems to cause the lower number of TPs (correct
detections of erroneous actions of the robot) in warm-start
learning compared to cold-start learning, although the number
of TNs (correct detections of correct action of the robot) in
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warm-start learning was higher compared to cold-start learning.
Another possible reason why the ErrP classification performance
was higher for warm-start learning compared to cold-start
learning is that the subjects started always with warm-start
learning before cold-start learning and thus the subjects could
be more tired in cold-start learning compared to warm-start
learning. The effect of tiredness on ErrP expression is relevant
for continuous interaction and learning and will be investigated
in future.

Our results indicate that learning without prior knowledge
requires more trials to stabilize the learning curve compared to
warm-start learning. This can be shown in the learning curve
descriptively (e.g., Figure 5). However, cold-start learning was
less affected by changes of the current context (e.g., after adding
a new gesture) compared to warm-start learning, once learning
reached convergence. This was shown by the result that the
mean number of incorrect robot actions over all subjects was
even statistically reduced during cold-start learning, although
a new gesture was added to online learning (Figure 4). The
reason why the number of erroneous actions of the robot was
increased after adding a new gesture in warm-start learning in
contrast to cold-start learning can be explained in the following
way. For both learning conditions (warm-start learning/cold-
start learning), the new gesture (upwards) was not chosen before
and thus had a high variance, i.e., a high upper confidence
interval (UCI), which leads to a high expected payoff, i.e., a
high upper confidence bound (UCB) accordingly. In cold-start
learning, the expected payoff of the previous learned gesture-
action pairs (left, right, forward) could not be higher compared to
the expected payoff of the new gesture (upwards) before adding
the new gesture. Thus, for example, when the subject adds a new
gesture, the probability that the new gesture is chosen could be
high due to a high expected payoff caused by a high variance.
That means, the transition to the learning of the new gesture
could be very smoothy due to a high UCB caused by a high UCI.
Thus, the algorithm could explore in a natural way. In contrast,
the expected payoff of previous learned gesture-action pairs (left,
right, forward) could be substantially higher compared to a new
gesture-action pair (upwards) in warm-start learning. Hence, the
algorithm could have no soft transition to the learning of the new
gesture-action pair in warm-start learning. In fact, the expected
payoff of three gesture-action pairs (left, right, forward) could be
already high, since the UCB algorithm could reach very quickly
convergence due to pre-training before adding the new gesture.
For this reason, the transition to the learning of a new gesture-
action pair could not be smoothly in warm-start learning, which
could lead to the increased number of erroneous actions of the
robot in warm-start learning immediately after adding a new
gesture (Figure 4).

Our assumption that ErrP-classification performance used as
rewards affects learning performance of the robot was confirmed
by a high correlation between ErrP-classification performance
and robot’s learning performance in both learning conditions.
However, gesture errors had an impact on robot’ learning
performance, only when gesture errors correlated with ErrP-
classification performance. This indicates that gesture errors have
an indirect effect on learning performance of the robot, whereas

ErrP-classification performance has a direct impact on robot’s
learning performance.

Different effects of ErrP-classification performance on robot’s
learning performance between both learning conditions, e.g., the
lower number of learning performance of the robot (mapping
error) and the lower number of ErrP misclassifications in
warm-start learning compared to cold-start learning cannot be
explained by our investigation. One could possibly explain it
by assuming the following: a subject might eventually have
recognized a systematic repetition of wrong assignments of
human gesture and robot’s action, e.g., left-right pairs, the human
can expect the upcoming action of the robot (e.g., right action)
after performing a specific gesture type (left gesture) before
observing the robot’s action. We assume that such an expectation
of the human would affect the online detection of ErrPs. We
further assume that such situations would occur more often in
cold-start learning compared to warm-start learning. The chosen
algorithm is capable of correcting the wrongly learned gesture-
action pairs (relearning). We assumed that more experiences
(i.e., more data) are required for relearning (correction of
wrong assignments) compared to learning in the initial state
(blank state). However, this is a vague interpretation. Thus,
the relearning pattern between both learning condition can be
investigated in the future to analyze different effects of ErrP-
classification performance on learning performance of the robot
between both learning conditions.

Further, the descriptive analysis of learning progress in
individual datasets (i.e., descriptive visualization of 74 datasets)
shows that most subjects showed a stabilization of learning curve
after 30 trials (i.e., after adding a new gesture). However, in
cold-start learning some subjects seem to require considerably
more trials to stabilize the learning curve. This indicates
that the time point of adding a new context (gesture) was
not optimal for some subjects in cold-start learning. Note
that we did not depict all 74 visualizations of learning
progress (learning curve) in this paper (just two datasets
as examples). We analyzed learning progress by performing
inferential statistical analysis, i.e., by statistically comparing
mean differences over all subjects between three learning phases
(Figure 4), since learning progress of individual datasets can
be visualized only descriptively. Note that we visualized 74
learning curves from 74 datasets for each perspective (human’s
perspective/robot’s perspective): 20 datasets × 2 perspectives
= 40 datasets; 17 datasets × 2 perspectives = 34 datasets).
On the other hand, an outlier can be easily interpreted
without explicitly performing an inference statistics as shown
in Figure 8 (light green box in the top right side of the
visualization). Note that Figure 8 descriptively shows variability
between individual datasets in ErrP-classification performance
and learning performance of the robot (mapping errors). This
outlier (one dataset of one subject) had an extremely low learning
performance of the robot and also an extremely low ErrP-
classification performance (especially a high number of FN).
Actually it is reasonable to understand that the robot could
hardly learn correct actions if the ErrP decoder constantly
failed to recognize ErrPs. Future investigations should focus
on the relationship (correlation) between ErrP-classification
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performance and learning progress of the robot per learning
phase, where the determination of learning phase is also a
relevant issue for investigations of interaction errors on robot’s
learning progress.

In general, the number of attempts plays a critical role in
reinforcement learning and the agent updates the policy based on
rewards that are predefined before learning begins. InHRI, on the
other hand, the rewards (human feedback) are generated during
online learning and can therefore be influenced by interactions
with the robot, i.e., the online learning performance of the robot
(e.g., changes in online learning performance during interaction
with humans). Therefore, not only the number of attempts but
also interaction effects of online learning performance on the
generation of human feedback can have an influence on the
robot’s learning performance (mapping error). Assuming that
only the number of trials has an influence on the learning
performance of the robot, our results suggest that for some
subjects in cold start learning more than 90 trials might be
necessary. In practice, it is not always possible to record more
than 90 trials from subjects, and recording large numbers of
trials is not realistic for some subjects and many applications.
One limits oneself to recording a sufficient number of human
examples within a reasonable period of time. Indeed, research
is needed into the interaction effects between the generation of
human feedback and the online learning performance of the
robot. It is known that the number of trials (episodes) has an
influence on the learning performance of the robot. However,
we do not know if increasing the number of trials has a clear
effect on the robot’s learning performance if there is a human-
robot interaction and this interaction influences the generation
of EEG-based human feedback. For example, we do not know
whether the learning curve stabilizes with the increase in the
number of trials (more than 90 tests) for a subject considered
an outlier. In our study we did not investigate the effects of
the online learning performance of robots on the generation of
human feedback, which is very challenging to investigate. As
shown in our investigations, the generation of human feedback
can also be influenced by other interaction components in HRI
(e.g., human gestures). Hence, it is not straightforward to explain
subject variability in online learning performance of the robot.
In this paper we analyzed the interaction effects of two different
interaction components (human feedback and human gesture)
on the robot’s online learning performance. The question of the
interaction effects between the generation of human feedback
and the robot’s online learning performance, i.e., the effects of the
robot’s online learning performance on the generation of human
feedback, can be investigated in the future.

In most EEG-based BCIs the robot actions were directly
corrected binary based on ErrP detections [e.g., left (wrong)→
right (correct) or right (wrong)→ left (correct)] (Salazar-Gomez
et al., 2017) or the control policy of robots were learned and
optimized based on online ErrP detections (Iturrate et al., 2015;
Kim et al., 2017). In a recent study, ErrPs were used for co-
adaptation of human and robot (Ehrlich and Cheng, 2018) and
for modeling of co-adaptation of human and robot (Ehrlich and
Cheng, 2019a). In most studies there was only one interaction
component (human feedback, i.e., ErrP) (Iturrate et al., 2015). In
our study we have two interaction components (human feedback

and human gestures) that can separately or jointly influence
the online performance of robots. In this paper, we investigated
individual effects of two interaction components on the learning
performance of a robot and interaction effects of two interaction
components on the learning performance of the robot. Even
if learning in a robot is possible without prior knowledge and
despite errors in the interpretation of gestures or the detection
of ErrP, our results show that it is quite useful to use prior
knowledge. They also show that learning with prior knowledge
regarding the subjects variability is more stable, which should
be investigated more systematically in the future. In general, we
could show that errors in both interaction components have less
impact on the general learning behavior if previous knowledge is
used, whereas false positive results have a greater effect. However,
false negative results, i.e., not recognizing mistakes, should be
considered more critical. We were able to explain our results
partly by the way the learning algorithm used works. However,
there are still open questions. For example, the influence of
humans is a factor that is difficult to model, but has a great
influence on the results. In the future, therefore, the effects of
interactions with the robot (changes in the robot’s online learning
performance) on the online generation of EEG-based human
feedback should be analyzed to study the variability of the robot’s
learning performance depending on the interacting human.
Furthermore, our results indicate that both warm start learning
(fast convergence) and cold start learning (more exploration)
have advantages. For example, it would be possible to give specific
prior knowledge (warm start learning) when a change of state is
not strongly expected, or to let the agent do natural exploration
(cold start learning) to enable the robot to adapt more quickly to
likely state changes.
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