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Abstract— In this paper, we propose deepRGBXYZ – a
feature descriptor to represent pixels for robust dense pixel
matching. To this end, we concatenate RGB image (appearance)
information with the depth (geometric) information represented
as XYZ in order to build a robust descriptor which is more
invariant to photometric and geometric changes. Both informa-
tion (RGB and depth) are embedded as an early fusion into one
neural network which is based on stacked dilated convolutions
for enlarging the receptive field. We alleviate the limitations
of image-only descriptors especially within ill-conditioned light
regions or textureless objects. Additionally, we overcome the
difficulty of using depth-only information which show less
descriptive details compared to image-only. We demonstrate the
superior accuracy of our deepRGBXYZ descriptor against the
state-of-the-art image-only descriptors and we verify our design
decision. In addition, we investigate the superior robustness of
our deepRGBXYZ descriptor by bringing it into the application
of optical flow and scene flow estimation on the established data
sets KITTI and FlyingThings3D.

I. INTRODUCTION

Pixel-wise matching is one of the fundamental require-
ments in many computer vision problems such as image
retrieval, object recognition and flow estimation. The task of
flow estimation presents more difficulty for aligning scenes
with dynamic objects. More attention was paid recently
in this task which can increase the robust perceptual in-
formation of the surroundings and the dynamic changes
for autonomous driving systems. Here, robust local feature
descriptors play a significant role for finding dense accurate
matches through comparing the distance of their local de-
scriptors (i.e. feature maps) [1], [2].

Many applications show a widespread use of handcrafted
descriptors in the past decade such as SIFT [5], DAISY [6]
and HOG [7]. However, the recent advances in deep neural
networks lean themselves to compute patch-based descriptors
by pruning the image contents into rich patches with strong
features (i.e. keypoints) and obtaining less norm distances
between the local descriptors of the similar patches (i.e.
correspondences) [8], [9], [10].

Furthest size of these patches increases the receptive field
of the feature space and encodes more details into the feature
maps. In this context, SDC [3] showed recently a promising
robustness and fast training approach based on triplet-based
similarity patches. It aims to enrich the textural information
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Fig. 1: Our deepRGBXYZ feature descriptor embeds photo-
metric and geometric information for improving dense pixel-
level matching. In the context of optical flow estimation,
our deepRGBXYZ achieves more density and lower error
rate (green color in Error map encodes inliers) compared
to image-only descriptor like SDC [3]. The comparison is
performed by CPM [1] on FlyingThings3D [4].

of the computed descriptor by increased receptive field.
However, the robustness of the aforementioned descriptors
depends on the provided details within the view of the
receptive field. Thus, insufficient details within the receptive
field due to the ill-conditioned light or textureless regions can
limit the accuracy of any image-only descriptors and cause
inaccurate matching. Such regions can be quite often faced
in outdoor scenes especially in the perception applications
of autonomous vehicles and inaccuracy in these areas can
cause dangerous situations.

With the wide availability of depth sensors (such as
LiDAR or RGB-D), many approaches aim to go further
toward using the depth and geometric clues of the observed
scene. However, the descriptors from only 3D information
provide normally less dense feature description compared to
image-only descriptors.

The fusion of both modalities; appearance (represented
as RGB image) and geometric (produced by 3D sensors);
proves a very impressive robustness in semantic segmenta-
tion [11], odometry [12], object detection [13] and many
other fields. Here, the key challenge is to utilize the geo-



metric information in a proper way and to complement the
information of RGB image.

We aim in this paper to concatenate RGB image and depth
together in a CNN-based dense descriptor with large recep-
tive field. In this paper, our contributions are the following:

• We propose deepRGBXYZ – the concatenation of rich
RGB information (generated by image sensor) and
depth (produced by 3D sensor) for learning local image
descriptor.

• We investigate several representations of depth with
RGB fusion.

• We verify our design decision compared to the archi-
tectures of recent learning-based descriptors.

• We show the superior accuracy of deepRGBXYZ de-
scriptor in pixel-wise matching for optical flow and
scene flow estimation.

II. RELATED WORK

Traditionally, local image features are the common types
of information which play a crucial role for matching
purpose. Several handcraft descriptors, such as SIFT [5],
DAISY [6] and HOG [7] encode the local features into
representative vectors. They consider defined patches to form
invariant and descriptive information. However, they fail to
represent high robustness in many cases. With the recent
advances in deep learning, numerous researches focus on the
powerful tools of neural networks to replace the handcrafted
descriptors. Indeed, they show high accuracy compared to
the handcrafted ones for matching purpose [14]. Many state-
of-the-art learning-based approaches apply the patch-based
similarity for computing descriptors. In this context, Match-
Net [15], DeepDesc [9] and DeepCompare [16] employ a
Siamese network [17] and learn (non-) similar patches using
non-linear distance metrics. PN-Net [18], Hard-Net [19]
and L2-Net [20] go further by using triplet-based similarity
network [21] and propose losses to separate the distribution
of matching and non-matching pairs. Different from L2-Net
[20] architecture, GeoDesc [22] follows each convolutional
layer by batch normalization except the last layer. Moreover,
it adds geometric constraints for training patches with strong
geometric similarities. To this end, it takes advantages from
3D information to measure the similarity between patches by
considering camera position and surface normal. UCN [23]
optimizes a deep metric learning to directly learn a feature
space that preserves either geometric or semantic similarity,
it shows more ability for extracting dense correspondences.
SDC [3] proposes a novel method to increase the receptive
field. It stacks multiple dilated convolutions in parallel and
combines each output by concatenation to form one SDC
layer. It enhances the robustness against photometric vari-
ations for dense matching especially for flow estimation.
Although all of the aforementioned CNN-based descriptors
show impressive accuracy for matching purpose compared
to handcrafted designs, they require sufficient details in their
receptive fields for more robust computation.

Alternative to 2D descriptors, series of 3D conventional
descriptors [24], [25], [26] are used for 3D matching. Unlike

to these descriptors, CSHOT [27] and BRAND [28] combine
texture and geometry for 3D registration, however they are
not suitable for dense correspondences registration. Fol-
lowing the CNN-based solutions, 3DMatch [29] introduces
3D CNN-based descriptor by training 3D patches using
volumetric representation. The method uses 3D convolutional
networks and presents a superior accuracy compared to
the conventional ones. However, using 3D-only descriptors
cannot generate robust descriptors for matching co-planar
surfaces in which insufficient feature details are expected.
Some conventional designs of 3D descriptors introduce a
combination between texture and geometry for 3D matching
[27], [28]. They are useful for sparse matching purposes, but
they seem not suitable for dense use.

In this paper, we introduce deepRGBXYZ for involving
depth information efficiently with appearance knowledge in
order to enhance the dense matching on image domain. To
serve our goal, we follow the concept of SDC [3], but we
consider the additional information of depth in our descriptor.

III. OUR DENSE FEATURE DESCRIPTOR

Our deepRGBXYZ is based on combining RGB image and
depth information on image domain. 3D sensors can perceive
measurements as depth maps on image domain using pattern
projection, Time-of-Flight or as point clouds using LiDAR
sensors. In case of capturing RGB and depth by two different
sensors, synchronization and well-calibration are the basic
demand for this combination. Additionally, we assume that
intrinsic calibration, i.e. the principal points of 2D image
sensor and focal length are known. Thereby the alignment
and projection of depth information into image plane are
possible.

A. Geometric Representation and Fusion Strategy

A proper selection of geometric representation of depth is
the anchor of many fusion designs. A direct use of depth
representation is inspired as an early fusion with RGB for
semantic segmentation [30]. We verified different approaches
for our needs.

One representation, called HHA [31], encodes depth into
three channels; horizontal disparity, height above ground,
and the angles between local surface normal and the gravity
direction. Estimating the gravity direction, surface normal
and ground are the main components for high quality.

Other approaches work completely on 3D domain using
the Voxel representation which shows a strong potential in
3D object detection [32].

Among these representations, we verify that involving the
3D Cartesian location XYZ can complement the image infor-
mation to generate a robust accuracy. Learning 3D Cartesian
coordinates in one-hot pixel by channel-wise concatenation
to image tensor is an advanced research which allows the
network to learn completely or partially the translation
invariance [33]. We investigate this design decision in our
experiments in Section IV-A.

We follow this principle and concatenate depth as 3D
Cartesian coordinates with RGB image. So that we have an
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Fig. 2: Our deepRGBXYZ architecture consists of 5 layers. Each layer applies 4 convolutions with kernels (K) and dilation
rates (d). The output feature map is dense with 128 channels.
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Fig. 3: Patch-based triplet training utilized in our
deepRGBXYZ network.

early fusion architecture with 6 channels image tensor as
shown in Fig. 2.

B. Network Architecture

CNN-based solutions result in promising accuracy com-
pared to the handcrafted systems. Many of the recent net-
works employ multiple of max-pooling and stride convolu-
tions to present the spatial coherence of the nearest pixels
into the resulted feature maps. They perform efficiently for
image classification tasks but they reduce significantly the
spatial resolution and generate sparse feature maps. Some
architectures follow the resulted feature maps by bilinear in-
terpolation to recover the full resolution of feature responses
[34] and others offer deconvolutional layers [35]. Tendency
of using dilated or Atrous convolutions shows a better choice
for maintaining the full resolution of feature responses. They
differ from the standard convolutional kernels by alternating
the dilation rates of convolutional kernels. This principle
shows strong potential for semantic segmentation [36] as
well as for learning descriptors [3]. Both approaches are
stacking layers with increasing rates of dilation.

We take the advantages of this design and originate our
fusion to improve the distinctiveness of the feature maps as
much as possible and to support the image regions which lack

some details in their receptive fields with depth information.
Here, we increase at the same time the receptive field for
3D information represented as XYZ and we support the
contextual information of 2D patches with 3D clues. By
early fusion, both 2D and 3D information share the same
receptive field. We consider the same parameters of the
architecture SDC [3]; we stack 5 layers; each applies 4
parallel convolutions with 5 × 5 kernels and with dilation
rates 1, 2, 3 and 4. The size of receptive field is 81 pixels
as shown in Fig. 2.

C. Training Details and Loss Function

We apply in our training the triplet-based network [21]
as shown in Fig. 3. The core of this approach encodes the
similar feature maps to be closer than the dissimilar ones. To
this end, the deepRGBXYZ training network accepts three
parallel patches – reference, positive and negative patches
– with shared weights. Sampling the images into patches
follows the process of [3]; where the reference and positive
patches are supposed to be with strong similarity and the
negative one is considered to be with large distance to the
reference one.

Hence, we aim to infer 3D information as an input for our
training, we select the data sets which offer depth data and
optical flow ground truth to support sampling the images
into the needed patches. Such requirements are available
in the established KITTI 2015 [37] and FlyingThings3D
[4] data sets. Thus, the optical flow ground truth facilitates
the sampling from second view the positive patch which is
strongly correlated to the reference patch in the first view.
The negative patch is obtained also from the second view
but with altered displacement which can be semi-correlated
to the positive patch.

We use the thresholded hinge embedding loss function for
training the aforementioned patches [38]. It tries to minimize
the L2 distance between reference and positive patches and
to increase the L2 between reference and negative patches.
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Fig. 4: Robustness curve of our deep descriptor by
using RGB and various geometric representation. Our
deepRGBXYZ descriptor presents more robustness com-
pared to other geometric representations.

IV. EXPERIMENTS

We conduct our deepRGBXYZ descriptor to versatile test
environments to show the superior performance among other
tested architectures. Firstly, we verify different types of
geometric representations and compare to other CNN-based
descriptors. Secondly, we justify our design decision. Finally,
we integrate our deepRGBXYZ into optical flow and scene
flow algorithms and we compare to an image-only descriptor
[3].

We utilize KITTI 2015 train set [37] in the Sections IV-A
and IV-B. In this context, we split KITTI into two groups;
one for training purpose and another for validation and test.
KITTI offers a beneficial alignment of depth information
(generated by LiDAR) to image plane. However, the resulted
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Fig. 6: Recall-precision curve compared to the state-of-the-
art architectures with RGB-XYZ concatenation.

projection does not fill the complete image with depth. To
overcome this issue, we fill these pixels with depth by using
a robust interpolation method [39]. Additional to KITTI, we
use FlyingThings3D (FT3D) [4] data set in the last section of
our experiments. We train our deepRGBXYZ and the other
methods for comparison on each data set separately and we
verify also each data set based on its trained model.

A. Comparison to other 3D Representations and Image-only
Descriptors

In this section, we verify the robustness of our deep
descriptor by concatenating different representations of depth
to RGB. Hence, we concatenate channel-wise RGB with
depth map, HHA map [31] and XYZ coordinates to compute
(deepRGBD), (deepRGBHHA) and (deepRGBXYZ) respec-
tively as an early fusion fashion. Thus, the input tensor with
(deepRGBD) has 4 channels and each of (deepRGBHHA)
and (deepRGBXYZ) has 6 channels. We verify also Voxel
representation by partitioning into 3D patches and learning
in 3D-CNN stream beside the 2D one then concatenating the
feature maps in a late fusion fashion (deepRGBVoxel).

The robustness of the aforementioned representations is
justified to each other and compared as well to image-only

TABLE I: Mean Average Precision (mAP) (%) for state-of-
the-art architectures by feeding them once using RGB tensor
and another with RGBXYZ.

Architecture Patch Size RGB RGB-XYZ

SDC [3] 81 98.55 –

PatchBatch [40] 51 97.79 51.04

2-Stream [16] 64 96.96 91.64

GeoDesc [22] 32 98.41 98.09

L2-Net [20] 32 98.42 98.63

deepRGBXYZ 81 – 99.14
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Fig. 7: The optical flow after consistency check of FF++ [2] (first and second columns) and optical flow from CPM [1] (third
and last columns) are computed once using SDC [3], and another with our deepRGBXYZ. The visual comparison as well
as the quantitative results in Table II and III show that our deepRGBXYZ descriptor increases the density of matches and
increases the inliers (encoded as green in Error map). The results are impressive in the low-illuminated areas (i.e. textureless)
marked as red rectangles in KITTI examples and near to depth discontinuities areas in FT3D examples. Note that the upper
side of KITTI images appears less dense by using our deepRGBXYZ descriptor because it is not covered by depth and the
interpolation in those areas is not accurate enough.

TABLE II: Comparison between image-only SDC [3] descriptor and our deepRGBXYZ in the context of flow estimation
using FF++ [2].

Matching Consistency Check Interpolation

Data set SDC [3] deepRGBXYZ SDC [3] deepRGBXYZ SDC [3] deepRGBXYZ
EPE KIO EPE KIO EPE KIO Density EPE KIO Density EPE KIO EPE KIO

K
IT

T
I bg 28.76 24.87 21.55 24.00 3.81 8.51 – 3.31 7.47 – 6.98 14.37 6.57 14.29

fg 9.77 16.79 6.99 15.91 2.20 9.98 – 2.11 8.91 – 4.58 12.61 5.49 13.49

all 27.74 25.00 20.52 24.06 3.54 8.91 78.78 3.07 7.78 78.50 7.06 15.03 6 .93 15.17

FT3D 37.10 32.55 36.26 27.30 3.41 9.85 68.96 2.99 7.60 73.85 9.36 16.72 9.62 15.69

descriptors: SDC [3], L2-Net [20], GeoDesc [22], PatchBatch
[40], 2-Stream [16], SIFT [5] and DAISY [6]. The mentioned
learning-based descriptors are trained using triplet-based
principle with the same epochs, batch size, hyper-parameters
and threshold of the hinge loss function. The patch size
of each learning-based descriptor is selected based on the
receptive field size of its neural network design as shown in
Table I. The robustness of fusing 3D Cartesian locations with
RGB (deepRGBXYZ) overcomes other geometric represen-
tations and outperforms the image-only descriptors as shown
in Fig. 4. We measure the robustness curve in Fig. 4 and 5 by

computing the possibility of obtaining smaller L2 distances
between reference and positive patches (i.e. correct matches)
compared to those between reference and negative ones.
More negative patches are generated with various distances
(in pixels) to the positive ones (i.e. correct matches).

B. Verification of deepRGBXYZ Architecture

In this part of experiments, we verify the design of
deepRGBXYZ against other recent neural networks. We
replace the image-only tensor of the aforementioned image-
only descriptors in Section IV-A, with the concatenated input



TABLE III: Comparison between image-only SDC [3] de-
scriptor and our deepRGBXYZ in the context of flow esti-
mation using CPM [1].

Data set SDC [3] deepRGBXYZ
EPE KIO Density EPE KIO Density

K
IT

T
I bg 3.40 8.87 – 3.18 8.01 –

fg 2.38 10.97 – 2.18 9.76 –

all 3.24 9.45 8.74 3.01 8.56 8.77

FT3D 3.63 11.35 7.64 2.81 8.01 8.06

tensor (i.e. RGB + XYZ). We train with the same strategy of
deepRGBXYZ and we validate the results. Among the tested
architectures, the robustness curve in Fig. 5 shows a superior
accuracy of deepRGBXYZ architecture over all distances to
correct matches. We compare by computing the precision,
recall curve in Fig. 6 which presents another confidence of
the superior accuracy with deepRGBXYZ descriptor using
stacked dilated convolution method.

Moreover, we compute mean Average Precision (mAP)
once using the image-only tensor and another with RGBXYZ
tensor as in Table I. The use of RGBXYZ tensor decreases
significantly the accuracy with PatchBatch [40] and shows
also negative influence on the other neural networks except
L2-Net [20] which shows marginal improvement by using
RGBXYZ tensors. Among them, the architecture of our
deepRGBXYZ presents a superior accuracy and outperforms
all of other architectures using RGBXYZ tensors.

C. Accuracy of Matching-based Optical Flow and Scene
Flow Estimation

For the final part of our experiments, we verify the com-
puted deepRGBXYZ descriptor for dense matching in the
context of optical flow and scene flow estimation. To this end,
we conduct our analysis to optical flow algorithms of Flow-
Fields (FF++) [2] and CPM [1] and scene flow algorithm
of LiDAR-Flow [41] by replacing their original descriptors
with our deepRGBXYZ. These algorithms follow coarse-to-
fine pyramid images for seeking the matches, however, FF++
and LiDAR-Flow are dense matching approaches and the
matching phase in each of them is followed by consistency
check for removing mismatches and then sparse-to-dense
interpolation [42] for filling the gaps after consistency check.

Since SDC [3] in its nature is developed for dense
matching and outperforms the aforementioned CNN-based
descriptors in Section IV-A and IV-B, we compare against it
to show the influence of the depth knowledge as 3D Cartesian
representation. We utilize the over all 200 images in KITTI
train set and 199 frames from FT3D train set; selected one
frame each 100 frames (i.e. [0, 100, 200, ...]). We use the
common metrics of KITTI represented as the average of end
point error (EPE) and outliers rate (KIO)[%] for those pixels
whose EPE is bigger than 3 pixels and their relative error >
5% compared to ground truth. Additional to over all pixels
evaluation (all), the dynamic parts called as foreground (fg)
and static parts called as background (bg) in KITTI train set

are evaluated. Green color in quantitative results marks better
accuracy of our deepRGBXYZ compared to SDC [3] and the
red color marks the less accuracy; where the saturated colors
describe an absolute difference of bigger than 2.

The quantitative results of optical flow from FF++ [2] are
shown in Table II. The comparison states that the image-
based matching with our deepRGBXYZ descriptors reduces
the outliers rate (KIO) by ∼1% and ∼5% on KITTI and
FT3D respectively. In terms of EPE, our deepRGBXYZ
shows also superior accuracy but significantly appears with
KITTI data set over all KITTI components (fg), (bg) and
all pixels. Additionally, our deepRGBXYZ descriptor con-
tributes also the improvement with consistency check (in-
verse matching process) and outperforms SDC [3] in terms of
EPE and KIO but decreases slightly the density with KITTI
data set only. The results of interpolation shows that our
deepRGBXYZ descriptor outperforms SDC [3] but not over
all terms in KITTI data set. With FT3D, our deepRGBXYZ
shows better accuracy in terms of outliers rate compared to
SDC [3] but a little bite worse in terms of EPE. We have to
mention here that the interpolation algorithm of FF++ [2] is
completely independent of using any descriptors.

The quantitative comparison on CPM algorithm [1] is
shown in Table III. Our deepRGBXYZ outperforms SDC
[3] on both data sets KITTI and FT3D.

The qualitative results visualize also the superior accuracy
compared to SDC [3] in Fig. 7. KITTI examples show
that our deepRGBXYZ can resolve more inliers in low-
illuminated areas within the red rectangles. FT3D examples
also present more accuracy especially to the areas near to
depth discontinuities.

In the context of scene flow estimation using LiDAR-
Flow [41], we adapt our deepRGBXYZ to the algorithm
and compare the results to SDC [3] in terms of estimating
matches of disparities D0 and D1, optical flow terms Fl
and SF as shown in Table IV. The matching step shows
high accuracy over all terms but significantly in terms of
EPE on KITTI data set and KIO on FT3D. This reflects also
more accuracy after consistency check. After interpolation,
we see some negative behavior in some terms but mostly our
deepRGBXYZ outperforms the image-only descriptor SDC
[3]. Like FF++ [2], the interpolation method in LiDAR-Flow
[41] is completely independent of using any descriptors.

In the context of run time, our deepRGBXYZ requires
549.5 milliseconds for a 0.5 megapixel image on GPU
GeForce RTX-2080 Ti using C++.

V. CONCLUSION

In this paper, we proposed our deepRGBXYZ descriptor
which concatenates RGB image with 3D Cartesian locations
of the observed scene to build a robust dense pixel descriptor
for dense matching on image domain. The concatenation was
embedded with dilated convolutions in order to increase the
contextual information of RGB image and the depth at the
same time. This recovered the lack of the information in
some regions of the scene due to low illuminated regions
or textureless objects, in which the image-only descriptors



TABLE IV: Comparison between image-only SDC [3] descriptor and our deepRGBXYZ in the context of scene flow
estimation using LiDAR-Flow [41].

Matching Consistency Check Interpolation

Data set SDC [3] deepRGBXYZ SDC [3] deepRGBXYZ SDC [3] deepRGBXYZ
EPE KIO EPE KIO EPE KIO EPE KIO EPE KIO EPE KIO

K
IT

T
I

D
0

bg 7.64 7.75 5.18 7.73 0.68 0.95 0.67 0.91 1.04 4.37 1.04 4.35

fg 6.34 9.41 5.18 8.99 0.77 1.84 0.75 1.64 1.50 7.73 1.52 7.74

all 8.44 8.77 5.91 8.70 0.70 1.11 0.68 1.04 1.14 4.98 1.14 5.00

D
1

bg 16.49 24.50 10.88 23.72 0.88 2.07 0.85 1.98 1.42 6.55 1.42 6.65

fg 10.19 15.31 5.89 14.69 0.99 3.12 1.34 2.86 1.95 11.75 1.89 10.85

all 16.78 24.46 10.73 23.62 0.89 2.17 0.86 2.05 1.58 7.62 1.55 7.50

F
l

bg 39.50 25.26 29.49 24.38 1.36 2.48 1.28 2.22 3.13 7.52 3.37 7.61

fg 18.02 18.11 12.79 17.02 1.38 3.81 1.45 3.48 6.11 15.93 5.49 15.42

all 38.84 25.65 28.71 24.67 1.30 2.50 1.22 2.17 4.11 9.24 3.98 9.09

S
F

bg – 29.89 – 28.97 – 3.38 – 3.12 – 9.30 – 9.38

fg – 25.48 – 24.42 – 6.21 – 5.69 – 18.90 – 18.33

all – 30.94 – 29.96 – 3.62 – 3.28 – 11.19 – 11.05

FT
3D

D0 all 23.61 23.13 22.67 18.11 0.52 1.31 0.45 0.98 2.37 7.55 2.22 6.73

D1 all 32.78 30.49 38.64 27.34 0.83 1.86 0.67 1.38 3.24 9.49 3.23 9.03

Fl all 44.58 34.32 40.82 27.56 1.02 1.57 0.72 0.96 12.62 18.45 19.54 17.89

SF all – 44.52 – 38.10 – 2.71 – 1.89 – 20.23 – 19.41

could be inaccurate. Exactly, these regions are very important
for autonomous vehicles applications and accuracy here can
increase the safety of these vehicles.

We compared several geometric representations of depth
with early and late neural network fusion strategies and
verified the robustness to our deepRGBXYZ descriptor.
In addition, we justified our design decision compared to
the recent CNN-based descriptors and showed that our
deepRGBXYZ descriptor introduced a superior accuracy
over all experiments. In our comprehensive evaluation on
KITTI and FlyingThings3D, we demonstrated the impact of
our deepRGBXYZ descriptor in the context of optical flow
and scene flow estimation. Compared to image-only descrip-
tors, our deepRGBXYZ resolved the lack of information in
challenging image regions and improved the overall accuracy
of matching-based optical flow and scene flow algorithms.

REFERENCES

[1] Y. Hu, R. Song, and Y. Li, “Efficient Coarse-to-Fine PatchMatch for
Large Displacement Optical Flow,” in IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[2] R. Schuster, C. Bailer, O. Wasenmüller, and D. Stricker, “Flow-
Fields++: Accurate Optical Flow Correspondences Meet Robust In-
terpolation,” in IEEE International Conference on Image Processing
(ICIP), 2018.

[3] R. Schuster, O. Wasenmüller, C. Unger, and D. Stricker, “SDC-
Stacked Dilated Convolution: A Unified Descriptor Network for Dense
Matching Tasks,” in IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[4] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy,
and T. Brox, “A Large Dataset to Train Convolutional Networks
for Disparity, Optical Flow, and Scene Flow Estimation,” in IEEE
International Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[5] D. G. Lowe, “Object Recognition from Local Scale-Invariant Fea-
tures,” in IEEE International Conference on Computer Vision (ICCV),
1999.

[6] E. Tola, V. Lepetit, and P. Fua, “DAISY: An Efficient Dense Descriptor
Applied to Wide-Baseline Stereo,” IEEE transactions on pattern
analysis and machine intelligence (TPAMI), 2009.

[7] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), 2005.

[8] D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperPoint: Self-
Supervised Interest Point Detection and Description,” in IEEE In-
ternational Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2018.

[9] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-
Noguer, “Discriminative Learning of Deep Convolutional Feature
Point Descriptors,” in IEEE International Conference on Computer
Vision (ICCV), 2015.

[10] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “LIFT: Learned Invariant
Feature Transform,” in European Conference on Computer Vision
(ECCV), 2016.

[11] L. Deng, M. Yang, T. Li, Y. He, and C. Wang, “RFBNet: Deep Mul-
timodal Networks with Residual Fusion Blocks for RGB-D Semantic
Segmentation,” arXiv preprint arXiv:1907.00135, 2019.

[12] M. Jaimez, C. Kerl, J. Gonzalez-Jimenez, and D. Cremers, “Fast
Odometry and Scene Flow from RGB-D Cameras based on Geometric
Clustering,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), 2017.

[13] C. Premebida, J. Carreira, J. Batista, and U. Nunes, “Pedestrian Detec-
tion Combining RGB and Dense LiDAR Data,” in IEEE International
Conference on Intelligent Robots and Systems (IROS), 2014.

[14] J. L. Schonberger, H. Hardmeier, T. Sattler, and M. Pollefeys, “Com-
parative Evaluation of Hand-Crafted and Learned Local Features,”
in IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[15] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, “MatchNet:
Unifying Feature and Metric Learning for Patch-Based Matching,”
in IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[16] S. Zagoruyko and N. Komodakis, “Learning to Compare Image
Patches via Convolutional Neural Networks,” in IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR),
2015.

[17] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
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[31] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning Rich Fea-
tures from RGB-D Images for Object Detection and Segmentation,”
in European Conference on Computer Vision (ECCV), 2014.

[32] Y. Zhou and O. Tuzel, “VoxelNet: End-to-End Learning for Point
Cloud Based 3D Object Detection,” in IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[33] R. Liu, J. Lehman, P. Molino, F. P. Such, E. Frank, A. Sergeev, and
J. Yosinski, “An Intriguing Failing of Convolutional Neural Networks
and the CoordConv Solution,” in Advances in Neural Information
Processing Systems (NIPS), 2018.

[34] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks
for Semantic Segmentation,” in IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

[35] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Con-
volutional Networks,” in European Conference on Computer Vision
(ECCV), 2014.

[36] F. Yu and V. Koltun, “Multi-Scale Context Aggregation by Dilated
Convolutions,” in International Conference on Learning Representa-
tions (ICLR), 2016.

[37] M. Menze and A. Geiger, “Object Scene Flow for Autonomous
Vehicles,” in IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

[38] C. Bailer, K. Varanasi, and D. Stricker, “CNN-based Patch Matching
for Optical Flow with Thresholded Hinge Embedding Loss,” in IEEE
International Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[39] R. Schuster, O. Wasenmüller, C. Unger, G. Kuschk, and D. Stricker,
“SceneFlowFields++: Multi-frame Matching, Visibility Prediction, and
Robust Interpolation for Scene Flow Estimation,” arXiv preprint
arXiv:1902.10099, 2019.

[40] D. Gadot and L. Wolf, “PatchBatch: A Batch Augmented Loss for
Optical Flow,” in IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[41] R. Battrawy, R. Schuster, O. Wasenmüller, Q. Rao, and D. Stricker,
“LiDAR-Flow: Dense Scene Flow Estimation from Sparse LiDAR and
Stereo Images,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019.

[42] Y. Hu, Y. Li, and R. Song, “Robust Interpolation of Correspondences
for Large Displacement Optical Flow,” in IEEE International Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017.


