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Rishav∗,1,2 Ramy Battrawy∗,1 René Schuster1 Oliver Wasenmüller1,3 Didier Stricker1,4

Abstract— Scene flow is the dense 3D reconstruction of
motion and geometry of a scene. Most state-of-the-art methods
use a pair of stereo images as input for full scene reconstruction.
These methods depend a lot on the quality of the RGB
images and perform poorly in regions with reflective objects,
shadows, ill-conditioned light environment and so on. LiDAR
measurements are much less sensitive to the aforementioned
conditions but LiDAR features are in general unsuitable for
matching tasks due to their sparse nature. Hence, using both
LiDAR and RGB can potentially overcome the individual
disadvantages of each sensor by mutual improvement and yield
robust features which can improve the matching process. In
this paper, we present DeepLiDARFlow, a novel deep learning
architecture which fuses high level RGB and LiDAR features
at multiple scales in a monocular setup to predict dense scene
flow. Its performance is much better in the critical regions
where image-only and LiDAR-only methods are inaccurate.
We verify our DeepLiDARFlow using the established data sets
KITTI and FlyingThings3D and we show strong robustness
compared to several state-of-the-art methods which used other
input modalities. The code of our paper is available at https:
//github.com/dfki-av/DeepLiDARFlow.

I. INTRODUCTION

Robust understanding about 3D geometry and dynamic
changes in the environment is very important for autonomous
vehicles, robot navigation, advanced driver assistance sys-
tems and so on. In this context, scene flow estimation is an
essential task which aims to the reconstruct 3D geometry as
well as 3D motion of each observed point in the entire scene.
Hence, dense scene flow enriches the perceptual information
which makes it very useful to increase the reliability of
autonomous systems.

Most of the popular scene flow methods use stereo images.
But there is an inherent disadvantage with image-based
methods because they depend completely on the quality of
the image. Therefore, scene flow estimation gets extremely
difficult if the images contain insufficient details in some
regions due to reflective surfaces, shadows, bad illumination
and many more.

LiDAR sensors are much less sensitive to the aforemen-
tioned environmental conditions. Thus, they can possibly act
as anchor points in the regions where the RGB features are
not robust. A problem with LiDAR sensors is that they get
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Conventional approach [2] Our DeepLiDARFlow

Fig. 1: We introduce our DeepLiDARFlow, a novel deep
learning architecture which fuses a monocular image and the
corresponding sparse LiDAR measurements (shown as green
spots on input image) for dense scene flow estimation. For
very sparse LiDAR (∼100 points), our DeepLiDARFlow out-
performs comfortably the conventional scene flow approach
(monocular version of [2]) which employs such a fusion.

expensive as the density of points they provide increases.
Hence an ideal method should be able to work with very
sparse LiDAR measurements in order to ensure its cost
effectiveness. The fusion of high level features of RGB im-
ages and robust features of LiDAR measurements for dense
matching can potentially result in highly accurate scene flow
estimates even under bad environmental conditions. Recently,
Battrawy et al. [2] proposed a conventional approach that
fuses LiDAR measurements into stereo images for dense
scene flow estimation. They show impressive improvement
compared to a stereo-only setup, however, their approach is
computationally inefficient. Thus, we propose an end-to-end
learning-based approach to estimate dense scene flow from
sparse LiDAR and RGB images (see Fig. 1). To the best of
our knowledge, our DeepLiDARFlow is the first approach
that uses the fusion of sparse LiDAR measurements and RGB
images in a monocular setup for dense scene flow estimation.

Our DeepLiDARFlow learns high level features of sparse
LiDAR measurements and RGB images at multiple scales
and fuses them into each other in an end-to-end learning-
based fashion. It aims to resolve critical regions of bad
illumination, shadows, reflective objects in RGB image and
produce robust features for matching. Overall, the main
contributions of this work are:



• A novel deep learning strategy for dense scene flow
estimation by fusing sparse LiDAR and RGB images in
a monocular setup.

• A novel multi-scale fusion strategy of RGB and LiDAR
features for dense scene flow estimation.

• Exhaustive experiments, showing the superior perfor-
mance of our DeepLiDARFlow over image-based meth-
ods in critical regions with reflective objects, bad illu-
mination, etc.

• Overall competitive and robust results against different
state-of-the-art algorithms which use other input modal-
ities.

II. RELATED WORK

A. Image-based Scene Flow

Most of the image-based scene flow methods utilize a pair
of stereo images at two time steps, like the early variational
methods [5], [15], [17], [20]. The improvements brought
about by deep convolutional neural networks (CNNs) for
various computer vision tasks [13], [19] over traditional
approaches, were successfully transferred to dense pixel-wise
matching tasks. FlowNet [6] is the first deep learning method
developed to predict dense optical flow. SceneFlowNet [16]
is the first to use an end-to-end deep learning approach
for scene flow using a pair of stereo images. Recently,
PWOC-3D [26], DWARF [1] and SENSE [18] propose light
weight end-to-end networks which operate with the stereo
image setup. DRISF [22] applies piece-wise rigid planes
model [29] and employs a combination of deep learning and
conventional approaches.

As alternative to the stereo setup, some methods use RGB-
D cameras for dense scene flow estimation [11], [14], [25].
Qiao et al. [24] are the first to develop a deep learning
method that utilizes RGB-D images for scene flow estima-
tion. However, RGB-D setup performs poorly for outdoor
scene flow estimations due to sensor range limitations.
Approaches like [27], [30], [31], [32] use the power of
multi-task CNNs by poising scene flow estimation from
monocular images as a problem of single view depth and
optical flow estimation. Mono-SF [4] is a recent method that
jointly estimates the 3D structure and motion of the scene by
combining multi-view geometry and single-view depth infor-
mation. Unlike most of these methods, our DeepLiDARFlow
solves the scene flow problem as a whole in an end-to-end
fashion.

The major problem with purely image-based approaches
is their heavy reliance on the image quality. These methods
usually perform poorly in critical image regions with poor
illumination, shadows or reflective objects. These are the
regions where robust measurements from a LiDAR sensor are
extremely useful. Our DeepLiDARFlow takes the advantage
of these measurements and fuses them into the image domain
to improve scene flow estimates.

B. LiDAR-only Scene Flow

Some methods use point clouds to directly estimate scene
flow. In this context, FlowNet3D [21] is among the first to

propose a neural network architecture which utilize point
clouds only. PointFlowNet [3] uses a highly compartmental-
ized architecture to estimate scene flow from point clouds.
HPLFlowNet [12] takes inspiration from Bilateral Convolu-
tional Layers (BCL) [9] that restore structural information
from unstructured point clouds. The two major problems
with LiDAR-only approaches are the difficulty of matching
unstructured data and the inherent low resolution compared
to cameras. Our DeepLiDARFlow overcomes the individual
disadvantages of each sensor by mutual improvement, hence
proposing a novel sensor setup with strong potential for
robust and accurate dense scene flow predictions.

C. LiDAR and Image-based Scene Flow

Recently, scene flow estimation in a heterogeneous sensor
environment was proposed by LiDAR-Flow [2]. However,
this work focuses on considerable dense scene flow improve-
ment over stereo-only approach by using a pair of stereo
images and LiDAR measurements. Different from LiDAR-
Flow, our DeepLiDARFlow aims to resolve the stereo camera
dependency entirely by the fusion of a monocular camera
and a LiDAR sensor. This is a much more challenging task,
because the LiDAR information can not just be used to
resolve ambiguous image cues, but is the only source of
3D information of the scene. Therefore to obtain a dense
scene flow result, the sparse LiDAR measurements need to
be converted into a dense representation. To the best of
our knowledge, DeepLiDARFlow is the first approach that
explores to this sensor with monocular setup for dense scene
flow.

III. METHOD

For scene flow estimation, the input of our
DeepLiDARFlow is RGB images (It, It+1) and the
corresponding LiDAR measurements (Dt, Dt+1) at two
consecutive time steps t and t + 1 respectively. Our
DeepLiDARFlow fuses the high level features of It, It+1

and Dt, Dt+1 to predict dense scene flow through three
main modules: The feature extraction module, the fusion
module, and the scene flow module. The following sections
describe each module in details.

A. Feature Extraction Module

The feature extraction module consists of four multi scale
feature pyramid networks for It, It+1, Dt, and Dt+1.
PWOC-3D [26] uses a feature pyramid network to extract
features with strong semantics and localization at multiple
scales. Having features at multiple scales helps in tackling
problems like large motion for dense pixel-wise matching.
The pyramids of RGB and LiDAR input are similar in
structure to the feature pyramid network in PWOC-3D.
However, feature extraction from LiDAR data differs in
the set of operations and layers we use. In [28] it was
shown that regular convolution fails to perform equivalently
with varying density or pattern of sparse input. Therefore,
sparsity-aware convolution is proposed, which uses a binary
sparsity mask for normalization. As a further development,
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Fig. 2: Detailed architecture of our DeepLiDARFlow. Residual connections from the feature pyramid are omitted for clarity.
RGB features from the RGB pyramid and confidence volume along with the depth features from the confidence pyramid
are sent to Fusion Module (FM). The fused features are then sent to the Scene Flow Module (SFM). The numbers 2 to 6
denote the levels which are used for multi-scale prediction. The output of level 2 is refined in the context network (CN) to
form the final scene flow. The number of channels are same for blocks of similar size.

Eldesokey et al. [8] propose a confidence convolution which
uses differentiable confidence volumes to indicate sparsity
and the reliability of the densification. We use the same con-
cept of confidence convolution [8], max-confidence pooling
(for down-sampling), and nearest neighbor up-sampling to
account for the sparse nature of LiDAR measurements during
feature extraction. The resolution of features is halved at
each level of the pyramid and each level consists of two
convolutions. All pyramids have 6 levels, hence the final
map is of 1

64 resolution of the original input. Afterwards,
the features are successively decoded and up-sampled until
1
4 of the input resolution is reached again. The final features
at a particular level l are denoted by itl , i

t+1
l , dtl , and dt+1

l

for RGB and LiDAR input at the two time steps respectively.
Feature pyramids for either the two RGB images or the two
LiDAR measurements share their weights. Fig. 2 presents
more details of the feature extraction module.

B. Fusion Module

The fusion of heterogeneous RGB and depth information
is an important part of our approach. On the one hand, the
depth information from the LiDAR feature is supposed to
refine the image features to improve dense matching. On
the other hand, dense RGB information is used to guide the
densification of the sparse LiDAR measurements to obtain
a dense depth representation. Previous work [7], [8] experi-
mented with early and late fusion, of which the late fusion

strategy was shown to perform better. Our DeepLiDARFlow
builds on this finding and extends the late fusion of high level
RGB and LiDAR features into a multi scale late fusion and
prediction strategy. With increasing level l, dtl (and dt+1

l ) get
more and more dense and semantically strong, but there is
only little structural information depending on the density of
the LiDAR input. The RGB features itl and it+1

l are rich in
structural information. The fusion module is responsible for
the combination of structured RGB and unstructured LiDAR
features to produce high level features for matching. These
features combine the robustness and accuracy of LiDAR
measurements and the rich textural and structural information
from RGB images. The features at a particular level l (itl
and dtl , same for it+1

l and dt+1
l ) are concatenated along the

channel dimension into a feature volume which then goes
through several convolutions while maintaining the input
spatial dimensions (see Fig. 3). The fusion is performed
for levels l = 6 till l = 2, i.e. there is continuous fusion
during the top down branch of the feature pyramids. The
fusion modules for the two time steps t and t+1 share their
weights. The fused features at a level l are denoted as f t

l

and f t+1
l (the features of the reference frame and the next

frame respectively). These features are then sent to the scene
flow module for final prediction of dense scene flow on each
scale.

To give meta-guidance to the fusion module, the confi-
dence volumes of the LiDAR features are concatenated with



X 16 16 16

16 XX 64 64 64 64

Confidence
Volume

RGB 
Features

Depth 
Features

To Next 
Pyramid 

Level

Fused 
Features

Fig. 3: The fusion module at a particular scale level. The
depth features obtained from the confidence pyramid go
through a series of convolutions as a preprocessing step
before finally being used for fusion. X denotes the number
of channels in the feature pyramid for that specific level. The
fused features go through a series of convolutions to ensure
proper mixing of the two heterogeneous information.

the (raw) RGB features before fusion (see Fig. 2), at each
scale (l = 6 to l = 2). Since the confidence is a reliability
measure of the depth features, this way, the fusion module
is more flexible in how the two heterogeneous feature maps
are fused. The improvement brought about the concatenation
of confidence maps is proved with the help of an ablation
study discussed in Section IV-C.

C. Scene Flow Module

The scene flow module (Fig. 4) is the final component
of DeepLiDARFlow. At any particular level l (l = 2 to
l = 6), it comprises of a warping layer, a cost volume layer,
and the scene flow estimator. The blocks mentioned above
differ from the ones used in PWOC-3D [26] in the following
aspects. The input to this module are f t

l and f t+1
l , i.e., the

output features from the respective fusion modules. Only
a single 2-dimensional warping operation is needed, which
warps f t+1

l towards f t
l to form wt+1

l . wt+1
l and f t

l are fed
to the cost volume layer, which computes a 2D cost volume
(denoted as cl) in the same way as PWOC-3D [26]. cl, wt+1

l ,
and f t

l are then concatenated and given as input to the scene
flow estimator which predicts the final, dense 4D scene flow
at level l. When the final level l = 2 is reached, the dense
prediction is further refined with a residual prediction from
the context network. The context network gets f t+1

l , f t
l and

the last level features from the scene flow estimator as input.
Fig. 4 gives a schematic view of the entire module. Note
that at l = 6, i.e. the lowest resolution, there is no previous
flow estimate. Instead the initial flow is assumed to be zero,
resulting in no warping, i.e. wt+1

6 = f t+1
6 .

IV. EXPERIMENTS

We conduct several experiments to verify the results of
our DeepLiDARFlow. Firstly, we verify our design decisions.
Secondly, we show the robustness of our DeepLiDARFlow

Up-flow
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Fig. 4: The scene flow module. f t
l ,f t+1

l are the fused
features of the frames at time t and t+1. Up-flow denotes the
optical flow estimate from the previous level. This module
further comprises of the warping layer, the cost volume layer
and the scene flow estimator. The output of the last level is
further refined by a context network as in [26].

compared to state-of-the approaches and we investigate fi-
nally the performance over different sparsity levels of the
LiDAR, compared to a conventional approach.

A. Data Sets and Evaluation Metrics

Data Sets: Since the prime objective of this work is
to predict scene flow for autonomous systems, KITTI [10]
is a direct choice. The train set of KITTI consists of 200
consecutive frames with ground truth of scene flow aligned
to a reference frame at time step t and represented as optical
flow components (Fl) and disparity maps (D0) and (D1) for a
consecutive time steps t and t+1 respectively. The disparity
maps are generated using a high resolution LiDAR sensor
and projected into image coordinate as disparity maps by
using the calibration parameters. We de-warp the LiDAR
frame of time step t + 1 to mimic the real capture of
the second LiDAR frame same as in [2]. However, the
established LiDAR frames are insufficient for training a deep
neural network, hence, for all our experiments, we first pre-
train our DeepLiDARFlow on FlyingThings3D (FT3D) [23]
and then fine tune it on KITTI [10]. We split the train set
of KITTI into training and validation splits and we conduct
the same validation frames to the stat-of-the art methods
mentioned in Section IV-D for a fair comparison.

Evaluation Metrics: We split our metrics into two
categories: Dense scene flow evaluation – We compute the
average KITTI outlier rate for scene flow (SF) and its
components (i.e. (D0), (D1) and (Fl)) over all pixels for
which the endpoint error is > 3 pixels and the relative error
is > 5 % compared to the ground truth. Additionally, the
euclidean distance (the endpoint error (SF-EPE)) is computed
over all scene flow components. Sparse scene flow evaluation
– Same thresholds as in dense evaluation are used to compute
the outlier rate of optical (Fl) and we also compute the
endpoint error for 2D optical flow (Fl-EPE) but only for
the sparse input. In addition to these metrics, we consider
3D space metrics by projecting the input points and the
measured displacement of scene flow as well as the ground
truth into 3D Cartesian points. The average outlier rate of
scene flow (SF-3D) is computed over all 3D input points



whose euclidean distance to ground truth (endpoint error
(SF-EPE-3D)) is > 0.3 meters and the relative error is >
10 %.

B. Implementation and Training

Since FT3D and KITTI data sets have dense disparity
maps, we use a uniform random sampling strategy to sam-
ple disparity points. Most real LiDAR sensors have some
inherent amount of noise and to mimic this characteristic,
some noise is simulated into the sampled depth points during
training and fine tuning. Additionally, we apply the same data
augmentation as in [6] for the RGB input. For training our
architecture, we use the hyper-parameters and a multi-level
losses as in [26]. Noticeable, when trained with a fixed num-
ber of LiDAR points, the accuracy of DeepLiDARFlow is
deteriorated a lot when testing with differently dense LiDAR
input which is not a desirable characteristic. To overcome this
problem, we generalize our model across different sparsity
levels of LiDAR (i.e. resolutions) by varying the number of
LiDAR samples on the fly (points are varied from 0.2% to
20% of full density) for both pre-training and fine-tuning.
Using this strategy, our DeepLiDARFlow is able to achieve
an almost constant accuracy for a wide range of LiDAR
points.

C. Design Decisions

Our DeepLiDARFlow handles simultaneously the densi-
fication of LiDAR features to predict the dense scene flow.
In this context, there are several questions that may come
up, do we really need confidence convolution? Do we need
to concatenate the confidences during fusion?. To answer
these questions, we conduct an experiment where the LiDAR
pyramid uses regular convolution layers (i.e. no confidence
convolution) and the results with this case are worse than
when using confidence convolutions as shown in Table I. In
the fusion module, confidence volumes are concatenated to
the RGB and LiDAR features. These confidence volumes act
as meta-guidance to the fusion module, this also improves
the final results as shown in Table I.

D. Robustness and Comparison to State-of-the-Art

Since our DeepLiDARFlow claims that a fusion approach
can yield robust estimates as compared to image-only and
LiDAR-only approaches, we compare its performance to
several state-of-the-art methods which utilize different input
modalities. We verify the run time in milliseconds (ms) of our
method compared to other methods using a GeForce GTX
1080 Ti.

TABLE I: Ablation study on various design choices for our
DeepLiDARFlow. We test all variants 5000 points as LiDAR
input on our test splits of FT3D and KITTI.

Confidence
Convolution

Confidence
Concatenation

FT3D [23] KITTI [10]
SF SF-EPE SF SF-EPE

7 7 30.97 8.77 16.33 3.75

3 7 21.83 8.70 16.31 4.05

3 3 20.20 7.64 13.77 3.67

One of the main advantages of using LiDAR as an
input for scene flow methods is its robustness. Image-based
methods rely heavily on the quality of the image and hence
often fail in regions of the image which contain mirror-
like reflections, ill-conditioned environment etc. For the
qualitative results, we visualize multiple examples in Fig.
5 to verify the robustness, the strong localization and the
superior performance of our DeepLiDARFlow compared to
image-only and LiDAR-only methods.

Comparison with Image-only Method: Our
DeepLiDARFlow uses concepts like pyramids, warping,
occlusion and cost volume. PWOC-3D [26] also uses similar
concepts but with a pair of stereo images as an input. Our
DeepLiDARFlow is able to obtain good performance for a
wide range of sparsity levels with an optimum of just 5000
LiDAR points. For this input density, our DeepLiDARFlow
is compared to PWOC-3D on KITTI [10] and FT3D [23]
as shown in Table II. Moreover, we visualize the robustness
and the localization in three examples as shown in Fig. 5a.
These examples present occlusions, reflective surfaces and
shadows which are often challenging examples for any of
image-only approaches. In these areas, our DeepLiDARFlow
has the capability to resolve them and to result in more
accurate scene flow estimations.

Comparison with LiDAR-only Method: HPLFlowNet
[12] utilizes LiDAR scans represented as 3D Cartesian
coordinates (i.e. a point cloud) at two time steps to es-
timate scene flow. Since they use sparse points, we per-
form a sparse evaluation on KITTI using 8192 of Li-
DAR points (proposed sparse level in HPLFlowNet) to
compare between HPLFlowNet and our DeepLiDARFlow.
Since HPLFlowNet is originally evaluated without including
ground surface, we present the results for HPLFlowNet
once by excluding the ground surface and once with the
ground surface included. However, we include the ground
surface in our DeepLiDARFlow but evaluate the same
sparse locations of LiDAR measurements as in HPLFlowNet
only. Note that DeepLiDARFlow produces a dense re-
sult (w.r.t the image resolution) independent of the in-
put density. Our DeepLiDARFlow outperforms comfortably
HPLFlowNet over (Fl) and (Fl-EPE) metrics and achieves
comparable results to HPLFlowNet in terms of the 3D
metrics (SF-3D and SF-EPE-3D) as shown in Table III.
The qualitative results show as well our superior accuracy
compared to [12] (see Fig. 5b).

Comparison with Image plus LiDAR Method: The
only other method available in literature which uses the
fusion of LiDAR and RGB images is LiDAR-Flow [2]
but it operates in a stereo setup and utilizes both stereo
images and the corresponding LiDAR measurements. There-
fore, it has much more information given as input than
our DeepLiDARFlow which uses only monocular images
and the corresponding LiDAR measurements. For having a
fair comparison, we adopt a monocular setup with LiDAR
measurements (called MonoLiDAR-Flow). To this end, we
firstly densify the sparse LiDAR input by using the edge-
preserving interpolation algorithm described in [2]. Secondly,
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Fig. 5: Our DeepLiDARFlow presents high robustness using LiDAR features and the rich textural information of RGB
features. Here we compare some results from DeepLiDARFlow against an image-only approach [26] and a LiDAR-only
approach [12]. DeepLiDARFlow shows superior performance in regions of bad illumination compared to the image-only
approach, and overcomes the problem of unstructured point clouds yielding a result of much higher resolution, compared
to LiDAR-only.

TABLE II: Comparison of scene flow results for PWOC-3D [26], LiDAR-Flow [2], MonoLiDAR-Flow (monocular version
of LiDAR-Flow), and DeepLiDARFlow on the test splits of KITTI [10] and FT3D [23]. LiDAR methods are evaluated with
an input of 5000 depth measurements.

Method Modality KITTI [10] FT3D [23] Time (ms)
D0 D1 Fl SF SF-EPE D0 D1 Fl SF SF-EPE

PWOC-3D [26] Stereo-Only 4.07 6.1 10.29 12.24 3.15 8.04 9.30 16.64 19.30 6.97 130
LiDAR-Flow [2] Stereo + LiDAR 2.30 5.03 8.46 9.33 4.67 3.69 6.48 15.10 16.00 29.97 65900

MonoLiDAR-Flow Monocular + LiDAR 2.10 6.55 13.37 14.11 7.31 4.04 5.80 15.04 16.02 24.29 34700

Our DeepLiDARFlow Monocular + LiDAR 4.18 7.33 11.26 13.77 3.64 6.13 7.75 18.51 20.34 6.87 310

TABLE III: Sparse evaluation of DeepLiDARFlow and HPLFlowNet [12] with and without ground surface on KITTI. When
grounds are included, our DeepLiDARFlow outperforms HPLFlowNet significantly over all terms. HPLFlowNet is able to
outperform our DeepLiDARFlow only in terms of 3D metrics (i.e. SF-EPE-3D and SF-3D) when the ground surface is
removed. Even then, our DeepLiDARFlow has better performance in terms of optical flow estimation.

Method Modality Ground
Surface

Output
Density

KITTI [10] Time (ms)
Fl-EPE Fl SF-EPE-3D SF-3D

HPLFlowNet [12] LiDAR-Only excluded ∼ 2 % 5.94 47.54 0.14 12.79 301
HPLFlowNet [12] LiDAR-Only included ∼ 2 % 9.77 71.62 0.27 33.84 301

Our DeepLiDARFlow Monocular + LiDAR included 100.0 % 2.89 11.74 0.15 13.27 310

we dissolve the stereo images in LiDAR-Flow pipeline [2]
to adopt only monocular setup with LiDAR. The chart
in Fig. 6 compares MonoLiDAR-Flow, LiDAR-Flow and

our DeepLiDARFlow with varying LiDAR densities on
KITTI. LiDAR-Flow outperforms MonoLiDAR-Flow and
our DeepLiDARFlow in terms of scene flow outliers (SF
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Fig. 6: Our DeepLiDARFlow comparison against other
fusion-based approaches in terms of scene flow outliers and
scene flow endpoint error with varying number of LiDAR
points. Dotted lines show the trend for endpoint error (SF-
EPE) in pixels and the solid lines represent the outlier rate
(SF) in percent. LiDAR-Flow [2] outperforms all methods in
terms of outlier rate (SF) since it exploits both LiDAR and
RGB information in a stereo setup. Our DeepLiDARFlow
performs better than its direct competitor MonoLiDAR-
Flow for very sparse input. In terms of endpoint error, our
DeepLiDARFlow comfortably outperforms all other meth-
ods.

[%]), a probable reason being the large amount of extra
information it has due to the presence of a second cam-
era view. Our DeepLiDARFlow outperforms MonoLiDAR-
Flow for very sparse inputs, even for denser inputs; our
DeepLiDARFlow results in an equivalent outliers rate com-
pared to MonoLiDAR-Flow but our DeepLiDARFlow op-
erates at a much higher speed than MonoLiDAR-Flow. In
terms of (SF-EPE [px]), our DeepLiDARFlow outperforms
LiDAR-Flow and MonoLiDAR-Flow consistently for all in-
put densities. Table II presents a detailed comparison of these
methods with all other metrics, when evaluated with a con-
stant number of points (5000 points). Our DeepLiDARFlow
performs as good as these methods (and better on sev-
eral metrics) while operating at a much higher speed. As
qualitative comparison, we visualize an example in Fig.
1 which shows strong localization and robust scene flow
estimation compared to MonoLiDAR-Flow approach using
∼100 points.

V. CONCLUSION

In this paper, we presented our DeepLiDARFlow – a novel
deep learning architecture which takes monocular images
and the corresponding sparse LiDAR measurements as input,
employs a multi-scale late fusion of LiDAR and RGB fea-
tures, and predicts dense scene flow. In critical regions which
contain difficulties like reflective surfaces, ill conditioned en-
vironment, shadows, and more, our DeepLiDARFlow shows
superior performance over image-only methods. Moreover,
we provided a robust localization compared to an image-only
approach as well as a conventional approach. Compared to
a LiDAR-only approach, we achieved a superior accuracy

for scene flow estimation. Our method obtained competitive
performance on the challenging KITTI and FlyingThings3D
data sets with very sparse LiDAR input (< 1000 points)
and almost constant accuracy with different levels of input
density.
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