

ENHANCING MOBILE MANIPULATION WITH SYNCHRONIZED ARM-

LOCOMOTION CONTROL

Virtual Conference 19–23 October 2020

J. Ricardo Sánchez-Ibáñez1, Raul Domínguez2, Florian Cordes2, Carlos J. Pérez-del-Pulgar1

1Universidad de Málaga, C/Dr. Ortiz Ramos, 29071 Málaga, Spain,

E-mail: {ricardosan, carlosperez}@uma.es
2DFKI Robotics Innovation Center Bremen, Robert-Hooke-Str. 1, 28359 Bremen, Germany,

E-mail: {raul.dominguez, florian.cordes}@dfki.de

ABSTRACT

Autonomy on rovers with robotic arms is desirable

towards speeding up tasks like sample fetching. This

premise is the cornerstone of the work presented in this

paper. We describe here the software developed to

plan and control the motion of a mobile manipulator,

part of the ongoing H2020 project ADE. Its utilization

is complemented with the simulation environment

MARS, which serves to check the viability of those

motion plans created specifically for extreme cases,

like when the sample is located on top of a quite

difficult terrain. Furthermore, we provide details

regarding a series of tests carried out in Bremen with

the SherpaTT rover, with the purpose of validating the

implementation of the software and its use on a case

where a hypothetical sample is hardly accessible.

1 INTRODUCTION

Rovers equipped with robotic arms play a key role in

the scientific return of planetary exploration missions.

Their mobility capabilities allow them to reach more

places and as result enhance their possibilities to

interact with the environment. In this way, tasks such

as sweeping the ground at close range for hyper

spectral imaging or sampling ground material can be

performed in a higher number of times and situations.

Furthermore, upcoming missions foresee the

transportation back to Earth of extraterrestrial samples

[1]. This is the case in the Mars Sample Return

campaign, where an ESA rover, the Sample Fetching

Rover (SFR), shall take those samples left in advance

by the NASA rover Perseverance and return them to a

launcher that later puts them in orbit [2]. Nevertheless,

the automatic placement of the robotic arm to carry out

these tasks is a challenge. Some research works can be

found in the literature that propose different

approaches to overcome this problem [3][4]. Up to

now, the intervention of ground operators is still

mandatory in planetary missions to preserve the

integrity of the rover hardware. In the Mars Science

Laboratory (MSL) mission, for instance, operators

make use of a simulation environment named Surface

Simulation (SSim) to check the effect that may be

produced by the commands that are meant to be sent

to the Curiosity rover [5].

Figure 1: SherpaTT with the avionics box and mast

installed for the H2020 OG10-ADE project

(Autonomous DEcision making in very long

traverses, https://h2020-ade.eu).

In this paper we present a workflow approach that

aims at carrying out tasks where a rover and its

manipulation arm must move in a coordinated way to

reach a specific location or to use the mobile platform

to increase the effective workspace of the arm. By

combining the arm deployment with the location

approach the mission timing can be optimized and

important operational time can be spent either for

investigating more closely with instruments mounted

on the arm or for more terrain coverage per Sol. We

propose the use of the simulation step to validate the

plan produced by the control software -up to the final

motions in a physics simulation- based on the rover’s

environment representation, prior to sending it to the

rover. The main idea consists of the following: a

ground operator makes use of the same control

software that the real platform runs on-board but

connected instead to the rover within a simulation

environment. Thereafter, the operator commands the

rover in the simulation, sending it to the simulated

target location to perform the mobile manipulation

task. Then, for any approach operation the control

software deliberates two paths to be followed. Firstly,

one that guides the rover mobility system to make the

robot get closer to the destination. Later, a second one,

serves as a reference for the arm to adopt different

configurations according to the robot location, in order

to coordinate the motion of both. By completing the

operation in the simulation first, the operator has a

major degree of confidence to command the same

operations on the remote rover. In this way, we

provide an additional safety measure to avoid any

unforeseen risk, while we take advantage of the same

control software that is executed on-board.

2 TARGET PLATFORMS

We make use of MARS (Machina Arte Robotu

Simulans, https://github.com/rock-simulation/mars), a

modular robotics simulator, along with the SherpaTT

rover, depicted in Fig. 1.

2.1 SherpaTT

This four-legged articulated rover is equipped with a

6DoF robotic arm. The four legs can keep all wheels

in permanent ground contact, while actively

controlling the roll and pitch of the central body, hence

the orientation of the manipulator arm. The SherpaTT

rover already proved its field readiness in two 4-week

field deployments in Utah (2016) and Morocco

(2018). The control software for the overall combined

platform and manipulator movements is the Mobile

Manipulation component developed for the H2020

project ADE and will be tested in a field campaign on

Fuerteventura by the end of 2020.

2.2 MARS

The simulation of SherpaTT has been developed in

MARS. It is a robotics simulator developed and used

extensively by DFKI, used traditionally to validate

modifications in the robotic software and find and

debug any failure. Moreover, it is also convenient to

continue a development when the robot is not

available or to save time avoiding robotic setups. In

addition, the simulator can be used to assess the

suitability of certain commands, for instance, to

evaluate if the robot would be capable of traversing a

certain slope.

In the core of MARS lies the physics engine Open

Dynamics Engine (ODE, https://www.ode.org/),

which provides realistic physics simulations of rigid

body dynamics including collisions. Around ODE, a

large set of libraries has been implemented that allows

the use of convenient features. These include the

control of the simulation execution (e.g. starting,

stopping, going step-by-step), the load of URDF-

based robot models and virtual environments (scenes),

the visualization of the simulation execution in real-

time and the simulation of the functioning of motors

and sensors. MARS software design incorporates a

plugin mechanism that eases the addition of new

functionalities without modifying the core libraries.

The Control Center is the central class in charge of the

management and communication with the physics

engine. Around this class, managers for Entities,

Motors, Joints, Sensors, Simulation Nodes,

Controllers and Graphics provide all needed features

for development, testing and identifying advantages

and disadvantages of both robot controllers and

design.

To simulate a robotic mission in a realistic way, only

running the robotics simulator is not enough. A

Robotics Control Operating System is needed as well

to connect the different software components that run

on the system as in the real case. For this reason, the

RObot Construction Kit or ROCK (http://rock-

robotics.org) framework is used to develop tasks that

allow the use of the simulation environment in

coordination with other robotic software components.

This is in fact consistent with the components that will

control the low-level mechanisms of SherpaTT when

running on the non-simulated system.

The SherpaTT simulation robot model developed at

DFKI is completely compatible with MARS. It

includes all the sensors and actuators that the robot

currently has, including the avionics box and the mast

integrated for the OG10-ADE project. In Fig. 2 is

shown this model of SherpaTT, placed within the

simulated environment that includes the virtual model

of the area where the tests described later in this work

are made. The simulation environment was produced

using a point cloud generated by a drone survey of

such area. Furthermore, communications with both

simulated and physical robot are possible thanks to the

same API, which is shown in the schematic Fig. 3

depicts.

Figure 2: The SherpaTT Simulation includes all

sensors available on the rover and the software that

controls the simulated rover are the same except for

the hardware drivers.

Figure 3: Schematic of the mobile manipulation

software architecture, showing its connections with

targets and libraries.

3 MOBILE MANIPULATION SOFTWARE

3.1 Architecture

The planning and control software developed for

performing mobile manipulation tasks is based on four

classes as shown in Fig. 3. The main class, the

MobileManipMotionPlanner, serves as the interface

with the harness component, which in turn uses the

API to communicate with either the SherpaTT rover or

its virtual equivalent within the MARS environment.

This class receives a Digital Elevation Model or DEM

and creates consequently an instance of the

MobileManipMap class to handle it. The latter class

includes such DEM and oversees the computation of

the obstacles and the creation of the cost map that is

later used to generate a motion plan. Once a motion

plan is deliberated by means of the corresponding

class (MotionPlan), it can be executed by creating an

instance of the MobileManipExecutor class, which in

turn contains such motion plan.

This software is implemented with the intention of

performing two kinds of operation. The first of them

is the Atomic Operation, which consists of exclusively

controlling the arm to make a certain movement, and

therefore is out of the scope of this paper. The second

operation is the Coupled Arm-rover Motion

Operation, which must be produced by means of the

Path & Motion Planning libraries based on the 2D and

3D versions of the Fast-Marching Method (FMM) [6].

The latter operation consists of coordinating the rover

and the arm in a synchronous fashion to reach the

location of a sample and place the end effector on it.

Thereafter, it is foreseen the execution of a particular

task to do something with the sample, e.g. place the

end effector in contact with the sample, pick up a

sample of soil or drop it.

The sequence of actions taken to make the rover

perform a Coupled Arm-rover Motion Operation is

explained as follows. First, the harness component

calls the MobileManipMotionPlanner to instantiate

the class. This constructor has the rover surrounding

DEM, with all its metadata, as parameter. This DEM

is then processed to calculate the obstacles and cost

maps. Later on, the harness component requests a

motion plan that is based on the initial rover pose

(position and orientation) and the estimated sample

location. This method generates the rover path and

manipulator trajectory using the FMM algorithm. Both

depend on the provided information and the

MobileManipMap object. If the sample can be in fact

reached, a MotionPlan instance is sent to the

MobileManipExecutor with the class constructor.

Once it is stored, the subsystem would be ready to run

the motion plan, which would begin once the harness

indicates so.

3.2 Path & Motion Planning

The objective of the motion planner is to reach the

sample position and place the rover manipulator close

to it, i.e. 10-20 cm far. The proposed algorithm for

rover path and arm trajectory generation is, as stated

before, based on the FMM algorithm, making use of

2D and 3D workspaces respectively. In a few words,

this method computes the numerical solution of a

wave that propagates through the environment starting

from a certain point. The rate at which the wave

propagates depends on the cost assigned to every part

of such an environment, which is discretized into a

grid. Thus, FMM computes the minimal time at which

the wave arrives at each grid node. Then, by making

use of the gradient descent method, a path is retrieved

from any point to the one from which the wave started

expanding. The main advantages of using this method

are:

- Smooth trajectories generation: unlike other

methods like A* or D*, the turning angles of the paths

obtained through FMM are not restricted at all.

Besides, the location of the waypoints making up these

paths are not constrained to the location of the grid

nodes, meaning they can be anywhere within the

workspace. In this way, it is not necessary to apply any

post-processing to the path to smooth it.

- Optimal solution. FMM numerically solves the

propagation of a wave using the eikonal equation, an

expression that correlates the propagation rate with a

cost value defined at any workspace point. In this way,

the retrieved paths always tend to be optimal, and the

only error committed is due to the grid discretization.

Other grid-search based methods like Field-D*[7] or

Theta*[8] cannot ensure this, since, although the

computed paths can be also smooth, they make use of

estimation methods that introduce more error and, in

some cases, can produce suboptimal solutions.

- Computer complexity. It is like other path

planning algorithms with fewer features, using a

Dijkstra-based grid-search method to visit each grid

node. The computer complexity is similar to A* and

D*, the most typical path planning algorithms.

However, as shown, this method is much better in

some features.

- Parallelization. Since FMM computes the

optimal solution of a wave propagation, by using its

bi-directional version it can be parallelized: two waves

can be propagated, one originated from the start and

the other from the goal location. Then, they encounter

at an intermediate point and, because of the nature of

FMM, the whole path between start and goal is the

concatenation of the path between the intermediate

point and the start and between the intermediate point

and the goal. This would be useful in the case of using

multiple cores processors.

Therefore, the proposed algorithm can generate the

rover path and the manipulator end effector trajectory,

given a 2D cost map, an initial rover position and the

sample location, which corresponds to the desired

final manipulator end effector position. Then, by using

the inverse kinematics, a profile of the rover joint

references can be generated depending on the relation

between the rover path and the end effector trajectory.

Since the cost map has a direct effect on the resulting

path and end effector trajectory, the error committed

to build it is here relevant. In this sense, the rover and

the sample positions, as well as the DEM, are provided

with their respective accuracy. The sum of all

estimation errors provided has an impact on the

uncertainty of the end effector position as shown in

Fig. 5. In this figure, the main reference frames from

the rover and manipulator are shown. The first one is

the rover position frame with respect to the world

frame. Any error on the rover pose is extended to the

end effector frame, e.g. a yaw error would increase the

end effector position error based on the distance

between the rover and the end effector frames (L). On

the other hand, an error on the sample location would

also increase the total error committed by the

manipulator. Taking into consideration these errors, a

sphere can be defined. It represents the error space, i.e.

the manipulator end effector would be in any place

within the sphere. Therefore, the size of this sphere is

proportional to the amount of introduced error.

Assuming the manipulator has a Force/Torque sensor

on the end effector, the vertical error could be reduced

by detecting the instant time the manipulator is in

contact with the surface. It would belong to the final

stage of the manipulator movement.

Figure 5: Relation between the estimation errors.

The provided DEM is processed to detect obstacles in

the surrounding area of the rover. Two parameters are

derived from the elevation data: the slope and the

roughness. By means of thresholds values based on

previous experiments [9], obstacles can be determined

on the map. Thereafter, thanks to the OpenCV library,

a metric indicating the distance from any pixel to the

closest obstacle can be computed. It serves to produce

a cost map that tends to make paths get further from

obstacles by means of repulsive fields. The size of

these obstacles may be larger due to the amount of

estimation error introduced. Therefore, reachability of

some samples could be set as unfeasible by the

algorithm because of the DEM error, although they

could in fact be reached. For example, in Fig. 6 there

is a small corridor in position (5,15) that could be

closed if there were a big estimation error on the DEM.

Therefore, it is important to reduce DEM error to avoid

those cases where the algorithm would state that the

sample cannot be reached even when it could be in

fact.

Figure 6: Cost map example.

The FMM does not ensure by itself the arrival of the

path following a certain heading final condition. This

is because rather than the direction the vehicle is

heading, only the 2-D position of the waypoints is

considered when computing a path, being the heading

of each of these waypoints just the tangent to the path

they make up. Moreover, this method does not

consider the shape and kinematic configuration of the

vehicle, using a simplification in the form of a single

point in space. Nevertheless, it is still possible to

define a cost map that considers the distance between

the rover center and the sample location, while at the

same time the rover arrives facing the sample.

Figure 7: Example case of ensuring the path goes

straight to the sample. (Above) The rover, depicted as

a blue circle, follows the path towards the sample in

the red dot. (Below) Corresponding Traversability

and Cost maps created using the DEM.

Figure 8: URDF model of SherpaTT (grey) and its

manipulator (yellow).

Once the base trajectory is planned, the algorithm

generates a new path for the manipulator to reach the

sample. During the planning phase, it is necessary to

consider possible collisions of the arm with the rover

itself (legs, wheels, cameras mast…). To do this, the

open source library DART (Dynamic Animation and

Robotics Toolkit) is used to detect collisions, together

with an URDF model of the whole rover. This model

contains the virtual collision objects corresponding to

the whole system, as depicted in Fig. 8. By using it, a

reachability volume of the manipulator can be

generated, which defines what positions of the arm are

fully safe. The reachability volume of SherpaTT is

shown in Fig. 9. If the planner places the arm wrist

inside this reachability volume, it is completely

ensured that the arm will not collide with the rover. So,

to later obtain a 3D path to be tracked by the wrist, a

tunnel shaped volume of cost is built surrounding the

rover base path, employing the stated reachability

volume of the manipulator. An example of this cost

tunnel is shown in Fig. 10, where a section of the

tunnel shows its interior cost distribution. Basically,

the cost is defined in a way it gets higher values while

being closer to the limits of the tunnel. In this way, we

benefit keeping the wrist as far as possible from the

non-reachable areas.

Figure 9: Reachability volume of the manipulator,

where reachable zones are colored from red (far

from limits) to blue (near limits).

Figure 10: Rover path (white), with the generated

tunnel volume associated to it.

Inside this tunnel, the FMM in a 3D version generates

a trajectory for the manipulator to reach the sample.

An example of a trajectory is shown in Fig. 11, where

the initial configuration of the arm is also shown. Next,

it is needed to match the manipulator waypoints with

the rover planned path. In this stage, it can be

configured how the arm is deployed: at the beginning,

during the trajectory or close to the sample. Finally,

the arm positions profile is obtained by means of the

inverse kinematic model of the manipulator at every

waypoint of the trajectory. The end-effector joints

positions are set ensuring the last segments of the arm

do not collide with anything.

Figure 11: Rover path (white) and arm wrist (blue)

trajectories, together with the initial arm

configuration (black).

Finally, the MobileManipExecutor class serves as the

controller that provides the commands to the Sherpa

API. According to the state of both the rover and the

arm, it returns the rotational and translational

velocities of the mobile platform, as well as the

position reference of the arm joints. It also makes use

of DART to continuously check the status of the rover

and prevent any collision during the operation

execution. The control algorithm used to control the

rover motion is based on the c-pursuit algorithm

implemented by ESA [10].

(a)

(b)

Figure 12: Terrain setup chosen for the tests (a) and

a virtual model of it built in MARS (b).

4 TESTS

A series of tests were performed to validate the initial

version of the component. This implementation is

being integrated into the autonomy software of the

ADE project. The tests in question were taken in

Bremen with SherpaTT, in a certain terrain located

close to the DFKI facilities, portrayed in Fig. 12a. This

terrain is a square area large enough to execute short

traverses with a length of few meters. It contains on its

corners a series of elements in the form of ramps and

tubes that serve as obstacles. The idea behind the first

test is to assign the rover the task of going to a certain

location next to one of the ramps and place the arm end

effector on top of the terrain surface. Thereafter it is

emulated an operation to cover the area with the end

effector by sweeping it, and later the arm is retrieved

and folded.

To preserve the safety of the system, the same tests

were also performed in simulation using MARS and

the same component software. It was checked the

implementation of the mobile manipulation

component would behave as expected. Fig. 12b

depicts a screenshot of the MARS environment with a

virtual model of the terrain. This model was built

thanks to the georeferenced images taken from a drone

and later processed by the Pix4D software

(https://www.pix4d.com). Moreover, the input DEM

used to feed the MobileManipMap class was taken

from this processing as well. For solving the

localization problem, the position of the rover was

obtained by means of an onboard differential GPS

antenna.

Fig. 13 presents some pictures showing the SherpaTT

in action. After a few seconds processing the DEM and

deliberating the plan, it proceeds to start moving. Its

first action is to unfold the arm, which usually starts

being at a predefined parking position. Thereafter the

mobile platform performs Ackermann maneuvers that

are combined with the continuous deployment of the

arm. The rover reaches a position in which it stops, far

enough from the goal location but at the same time

close enough to ensure the arm can reach it. In the final

step, the rover places the end effector on top of the goal

location and starts carrying out a sweeping motion.

Such motion serves to cover a certain area, which in

turn results from all the uncertainty derived from all

the accumulated errors. The main idea behind this is

that by executing this sweeping motion we can ensure

the arm tip will effectively be in contact with the

(fictional in this case) sample. Then, the arm is safely

retrieved and left in its initial parking configuration.

(a)

(b)

(c)

Figure 13: First test done to check the proper

functioning of the mobile manipulation software.

The goal of the second test was to prove a hypothetical

situation in which it is of great interest to deploy the

arm on top of an obstacle. The main idea was to make

the rover reach a position that the component would in

nominal functioning consider as forbidden, but in fact

would be reachable. In the current state of the

component, the software would state that there would

not exist any feasible plan since it does not allow the

rover to get so close to an obstacle. For this particular

case, the rover would stop in a place where for certain

heading angles its wheels could collide with the

obstacle element, so special care is needed for

performing this operation. It is worth mentioning, we

are not accounting for the reconfiguration capabilities

of SherpaTT to modify its footprint but considering it

as static. Therefore, we lay out this situation to justify

the utilization of a workflow including the simulation

tool to complement the Mobile Manipulation planning

component.

To effectively make the rover reach such a location,

obstacles are not considered, i.e. the threshold values

for slope and roughness mentioned in the previous

section are not considered. This entails the problem of

ensuring the rover's safety is not jeopardized. As

stated, this is solved thanks to the use of the simulator:

it serves to verify that the integrity of the rover would

be in fact preserved. Fig. 14 shows how the rover

manages to get quite close to the ramp, enough to be

inadvisable to turn on the spot, i.e. turn with zero

radius. The sweeping operation was slightly modified

to make the end effector move at a higher height, on

top of the ramp.

(a)

(b)

(c)

(d)

Figure 14: Second test where the plan produced

allows the rover to get closer to the ramp. (a-c) It is

simulated beforehand to identify the exact

parametrization to be used on the operation (d).

5 CONCLUSIONS

This paper serves as an introductory text describing in

an overall way the work we are carrying out in mobile

manipulation for rovers. We have here explained how

the Mobile Manipulation component is built, stressing

the workflow created to plan and execute the

coordinated motion of both rover and arm. This

implementation is integrated within the H2020 ADE

project autonomy software. Moreover, a special case

in which the MARS simulation is involved to

effectively carry out a risky task to make the rover get

close to an obstacle is set out. A brief description of

the two tests carried out in Bremen are also included.

The first served to validate the current implementation

of the software, while the second served to emulate a

special case in which the simulation verifies the safety

of the vehicle in a plan where the thresholds to

determine obstacles are artificially removed.

For the near future, it is foreseen that the

implementation is further refined and tested. The final

goal is to have a mobile manipulation component

oriented to sample fetching missions, with the

capability to autonomously reach a sample from

relatively far in a single run, given the errors that may

affect. Some improvements include determining the

best position to reach the sample in energetic terms, as

in similar research in the past [11], stressing the

combined movement of arm and platform by seeing

the manipulation as integral part of mobility and

increasing the workspace considering the

reconfigurable mobile base. Moreover, the arm could

be used to enhance mobility by using it actively as a

leg.

Acknowledgement

This work is supported by the ADE (Autonomous

DEcision making in very long traverses) OG10

project, funded by the European Commission Strategic

Research Cluster under Grant Agreement No 821988.

References

[1] Gao, Y., and Chien, S. (2017). Review on space

robotics: Toward top-level science through space

exploration. Science Robotics, 2(7).

https://doi.org/10.1126/scirobotics.aan5074

[2] Muirhead, B. K., & Karp, A. (2019, March). Mars

Sample Return Lander Mission Concepts. In 2019

IEEE Aerospace Conference (pp. 1-9). IEEE.

https://doi.org/10.1109/AERO.2019.8742215

[3] Lehner, P., Brunner, S., Dömel, A., Gmeiner, H.,

Riedel, S., Vodermayer, B., & Wedler, A. (2018,

March). Mobile manipulation for planetary

exploration. In 2018 IEEE Aerospace Conference (pp.

1-11). IEEE.

https://doi.org/10.1109/AERO.2018.8396726

[4] Liao, J., Huang, F., Chen, Z., & Yao, B. (2019).

Optimization-based motion planning of mobile

manipulator with high degree of kinematic

redundancy. International Journal of Intelligent

Robotics and Applications, 3(2), 115-130.

https://doi.org/10.1007/s41315-019-00090-7

[5] Verma, V., & Leger, C. (2019, March). SSim:

NASA Mars Rover Robotics Flight Software

Simulation. In 2019 IEEE Aerospace Conference (pp.

1-11). IEEE.

https://doi.org/10.1109/AERO.2019.8741862

[6] Sethian, J. A. (1999). Fast marching

methods. SIAM review, 41(2), 199-235.

https://doi.org/10.1137/S0036144598347059

[7] Ferguson, D., & Stentz, A. (2006). Using

interpolation to improve path planning: The Field D*

algorithm. Journal of Field Robotics, 23(2), 79-101.

https://doi.org/10.1002/rob.20109

[8] Daniel, K., Nash, A., Koenig, S., & Felner, A.

(2010). Theta*: Any-angle path planning on

grids. Journal of Artificial Intelligence Research, 39,

533-579. https://doi.org/10.1613/jair.2994

[9] Cordes, F, Kirchner, F, Babu, A. (2018) Design

and field testing of a rover with an actively articulated

suspension system in a Mars analog terrain. Journal of

Field Robotics. 2018; 35: 1149– 1181.

https://doi.org/10.1002/rob.21808

[10] Gerdes, L, Azkarate, M, Sánchez‐Ibáñez, JR,

Joudrier, L, Perez‐del‐Pulgar, CJ. (2020). Efficient

autonomous navigation for planetary rovers with

limited resources. Journal of Field Robotics. 2020; 37:

1153: 1153– 1170. https://doi.org/10.1002/rob.21981

[11] Pan, S., & Ishigami, G. (2017). Strategy

optimization for energy efficient extraterrestrial

drilling using combined power map. IEEE Robotics

and Automation Letters, 2(4), 1980-1987.

https://doi.org/10.1109/LRA.2017.2709912

