
Interactivity and Transparency in Medical Risk
Assessment with Supersparse Linear Integer Models

Hans-Jürgen Profitlich
Daniel Sonntag

German Research Center for Artificial Intelligence (DFKI)
Technical Report

66123 Saarbrücken, Germany
profitlich@dfki.de
sonntag@dfki.de

Abstract—Scoring systems are linear classification models that
only require users to add or subtract a few small numbers
in order to make a prediction. They are used for example by
clinicians to assess the risk of medical conditions. This work
focuses on our approach to implement an intuitive user interface
to allow a clinician to generate such scoring systems interactively,
based on the RiskSLIM machine learning library. We describe
the technical architecture which allows a medical professional
who is not specialised in developing and applying machine learn-
ing algorithms to create competitive transparent supersparse
linear integer models in an interactive way. We demonstrate our
prototype machine learning system in the nephrology domain,
where doctors can interactively sub-select datasets to compute
models, explore scoring tables that correspond to the learned
models, and check the quality of the transparent solutions from
a medical perspective.

Index Terms—decision support; scoring systems; intelligent
user interfaces; interactive machine learning; linear classification
models; discrete optimisation problems

I. INTRODUCTION

Risk scores are simple linear classification models where
users assess risk by adding and subtracting a few numbers.
These methods are often used for criminological or medical
applications because they allow users to make quick pre-
dictions without the use of statistics or a calculator. Such
scoring systems are widespread and Wikipedia lists 42 ”med-
ical scoring systems”, such as the Simplified Airway Risk
Index for predicting difficult tracheal intubation. The score
ranges from 0 to 12 points, where a higher number of points
indicates a more difficult airway. A score of 4 or above
indicate a difficult intubation. Current medical scoring systems
were mostly created manually by clinicians, where a panel of
experts agrees on a model (see the CHADS2 score of Gage
et al. [Gage et al., 2001], for example).

Despite the widespread use of medical scoring systems,
there has been little to no work that has focused on machine
learning methods to learn these models from data. The goal
of the SLIM system [Ustun and Rudin, 2016] is to present a
principled approach to learn risk scores by solving a discrete
optimisation problem, namely the risk score problem. Models
should be fully optimised for feature selection, small integer
coefficients, and operational constraints. The risk scores (in
the medical domain) have to be rank-accurate, risk-calibrated,

sparse, and use small integer coefficients. Of particular interest
for interactivity is the fact that systems such as SLIM provide
additional operational constraints to limit the model size, the
range of coefficients or the maximal runtime to compute the
model.

With RiskSLIM (Risk-calibrated Supersparse Linear Integer
Model), [Ustun and Rudin, 2017] propose a new approach to
build risk scores that are fully optimised for feature selection,
small integer coefficients, and operational constraints without
parameter tuning or post processing. They provide software
to create optimised risk scores using Python and the CPLEX
API (IBM ILOG CPLEX Optimizer is a tool for solving
linear optimisation problems, commonly referred to as Linear
Programming (LP) problems). Our work focusses on providing
an interactive environment to test such improved models for
applicability in the medical domain, to be used by doctors.

The RiskSLIM implementation forms the core of our Web-
based interactive scoring system, and the new interactive
environment should provide the following:

• a user interface that should be used by a medical profes-
sional who is not specialised in developing and applying
machine learning algorithms

• interactive user support to generate suitable data sets;
• visual metaphors and help organise data sets and corre-

sponding models; and
• evaluation support to check and compare the quality of

different models.

Our work is aimed at building an architecture that over-
comes the short-comings of batch machine learning scoring
systems and enables the construction of scoring tables even
for end users (cf. topics of interactive machine learning, see
iml.dfki.de). In our medical use case, we rely on data from the
TBase R� data base of Charité Berlin [Schröter, 2000], [Linde-
mann, 2000] which contains data about nephrology patients.
We define a workflow and implement wrapper modules that
allows the user to create a project by defining a medical target
and a list of input features, generate corresponding data sets,
run the RiskSLIM algorithm, explore the resulting scoring
table, and check the quality of models on different data sets.
The whole process can be started and evaluated via a single

ar
X

iv
:1

91
1.

12
11

9v
2

 [c
s.H

C
]

28
 N

ov
 2

01
9

Web page interface. After explaining the project’s background,
we describe the system architecture and the implementation of
the Web-based user interface.

II. BACKGROUND

We started with the clinical data intelligence project (KDI)
[Sonntag et al., 2016]; we transferred research and devel-
opment results (R&D) of the analysis of data which are
generated in the clinical routine in a specific medical domain.
We presented the project structure and goals, how patient care
should be improved, and the joint efforts of data and knowl-
edge engineering, information extraction (from textual and
other unstructured data), statistical machine learning, decision
support, and their integration into special use cases moving
towards individualised medicine. In particular, we described
some details of our medical use cases and cooperation with
two major German university hospitals, one of them providing
the nephrology data for medical risk assessment.

Then we focussed on integrated textual information extrac-
tion and interactive facetted search applications in nephrology;
these were KDI’s first integration steps of complex and partly
unstructured medical data into a clinical research database.
Our main application was an integrated facetted search tool in
nephrology based on automatic information extraction results
from textual documents.

Towards integrated decision support [Sonntag and Profitlich,
2017], the two next logical steps were the visualisation of
facetted search results and producing new results and insights
with the help of machine learning. [Sonntag and Profitlich,
2019] describes our steps to integrate complex and partly
unstructured medical data into a clinical research database
with subsequent decision support. Our main application is
an integrated faceted search tool, accompanied by the visu-
alisation of results of automatic information extraction from
textual documents, and second, case studies, illustrating how
the application can be used by a clinician and which questions
can be answered. For example, in nephrology we try to answer
questions about the temporal characteristics of event sequences
to gain significant insight from the data for cohort selection.
However, the identification of correlations in medical data by
faceted search has the potential to identify relevant groups
of patients, diagnoses, parameters, and to identify correlations
of influencing factors [Schmidt et al., 2017], but it cannot
directly propose guidelines as decision support. Scoring sys-
tems however are linear classification models that allow us to
infer not only influencing factors, but to build rule systems as
machine-learned medical guidelines that are transparent and
understandable by the medical experts. Examples are shown
in the implementation section.

Our domain is the nephrology department of the Charité
Berlin. The Web-based electronic patient record TBase R� was
implemented in a German kidney transplantation programme
as a cooperation between the Nephrology of Charité Uni-
versitätsmedizin Berlin and the AI Lab of the Institute of
Computer Sciences of the Humboldt University of Berlin .

Currently, TBase R� automatically integrates essential labora-
tory data (9.9 million values), clinical pharmacology (237.000
prescribed medications), diagnostic findings from radiology,
pathology and virology (146.000 findings), and administrative
data from the SAP-system of the Charité (70.000 diagnoses,
25.000 hospitalizations). All these facts are potential input
features for different models.

III. SYSTEM ARCHITECTURE

We implement a system architecture and user interface that
offers all necessary functionalities in a pipeline:

1) select a feature from some predefined set as the ’goal’
or medical target;

2) choose (from the remaining features) a set of features
as input parameters;

3) create data sets corresponding to these feature lists;
4) call RiskSLIM to learn a model;
5) aggregate an interactive scoring table representing this

learned model; and
6) compute and display some evaluation and quality mea-

sures of the model like precision or recall.
We define a project to be the specification of a target plus

a set of features (points 1 and 2 in the the list above). Data
sets are always created relative to a project. This is necessary
as the validation of a model can only be performed on data
sets with the same structures as the data set the model was
trained for. The workflow and architecture are shown in figure
1. The backend contains the user interface servlet and the PHP
server accessing the data sources, the created input data sets,
the RiskSLIM installation, and the learned models.

The RiskSLIM machine learning library creates customised
risk scores implemented in Python. The implementation is
available on GitHub1 and includes batch scripts that

• read the input data from comma-separated files;
• set some configuration parameters;
• run the algorithm which outputs an array of integers

representing the bias and coefficients for every input
feature.

The input files represent patient attributes with the target
value in the first column, see the table at the top of figure 2 as
an example: in the nephrology domain, an important target is
the likelihood of a rejection of a kidney transplant within one
week. For this purpose, the input features patient height, age
at transplant, blood group, and basis diseases are considered
(after selection by the medical expert).

The result of a RiskSLIM training cycle is a vector of
integers, representing the bias (first column/value) and the
weight of each feature (remaining columns/values). Most of
the input features have a weight of zero, the number of non-
zero values (e.g., the size of the model) is one of the input
parameters of the algorithm. In most cases we aim to create
small models of sizes about five to seven features. The vector
can be visualised as a scoring table (see bottom of figure2).

1https://github.com/ustunb/risk-slim

https://github.com/ustunb/risk-slim

Fig. 1. Workflow and Architecture

The predicted risk for the defined target is computed by the
formula

P (Y = +1) = 1/(1 + exp(bias� score))

where score is the sum of points related to the individual items
of the scoring table.

In order to use the RiskSLIM software in clinical practice,
we implement software modules to create data sets for training,
testing and validating models and to interactively check the
validity of models.

IV. IMPLEMENTATION

RiskSLIM is implemented as a Python package without any
support for non-expert users. The Python package can only
be run in a Python environment like PyCharm2 or Anaconda
Spyder3 or from command line. In the following we describe
additional modules that embed this script into an environment
consisting of a backend and a user front end that allow any
clinician to generate scoring tables without any additional
knowledge of the algorithms interfaces.

2www.jetbrains.com/pycharm/
3anaconda.org/anaconda/spyder

The necessary functionalities can be roughly divided into
two groups: 1) communication with the data base and 2)
operations on the file system. We use the file system to
organise projects and their corresponding data sets and models
as illustrated in figure 3.

A. The Backend

We implemented an additional Python script which can be
given a data set and some runtime parameters. The script
computes a model and saves the solution (and some additional
data from the call) as a JSON file.

Data will be taken from the TBase R�, a relational database,
so we have to specify a pool of data the algorithm can use
and how to access them. As a first step we defined a list
of features corresponding to patient meta data (like sex, age,
weight, etc) and transplantation facts (like donor sex, donor
age, previous transplants, diagnoses, events like rejections or
graft failures within some time after the transplantation, etc).
For ever feature we specified

• an SQL statement
• a readable label
• a short text explaining what was used as a source for the

feature value

www.jetbrains.com/pycharm/
anaconda.org/anaconda/spyder

Fig. 2. Input and output format of the RiskSLIM module and the visualisation of the computed model as a scoring table.

• a flag telling whether all values are integers
• a flag telling whether this is a multi-valued feature
• a flag telling whether a feature can be chosen as a goal
Some of these features are straight-forward, simple at-

tributes of patients, like age or blood group. But there are
also more complex features like ’same sex of donor and
patient’ or the duration of dialysis before the transplantation
was carried out (in years). There is also groups of features
representing the span of time between a transplantation and a
graft failure (within one month, one year, two years, etc.) and
similar relations. This initial list of features is more or less
arbitrary and only serves as a starting point. As all system
parts using features rely on this declarative representation

additional features can easily be added without changing any
other module.

To communicate with the TBase R� we implemented a Java
module and a servlet that offers the following functionalities:

• getFeatureList: get a list of all defined features (with some
of the additional facts mentioned above),

• createProject: create a new project according to a given
configuration (a goal and a list of features),

• createDataSet: create a new data set given a project
configuration4,

• validateModel: evaluate a model on a data set.

4The data set can be restricted to a list of patients by supplying their ids.

Fig. 3. Folder structure

Data sets are matrices with a header row representing
the feature names, a first column with the target value and
trailing columns corresponding the remaining feature values
(see figure 2). When a data set is created from a list of features,
the module has to ensure that all values are integers. We have
to differentiate between three cases:

1) the feature has only one single value of type integer: the
value is stored on a single column,

2) the feature has n non-integer values (e.g., blood group):
the feature is represented by n columns. The module
creates a sparse vector of ’0’s and one single ’1’,
column names are generated as ’featureEQvalue1’, ’fea-
tureEQvalue2’, etc.,

3) the feature is multi-valued (e.g., biopsy results): analo-
gously to case 2 a list of columns represents the different
values, but this time more than one ’1’ is possible.

The module automatically transforms the values read from the
data base into the target format according to the flags specified
for every feature.

A PHP script is used for operations on the file system
(the projects, data sets and models are organised using an
appropriate folder structure, see figure 3) and to call the main
RiskSLIM script:

• getProjects: get a list of projects already defined for a
(target) feature,

• loadProject: get the configuration of a project (mainly the
list of features),

• getDataSets: get a list of generated data sets for a project,
• getModels: get a list of all models computed for a project,
• loadModel: load the data of a specific model,
• createModel: call RiskSLIM to compute a model.

B. The Front End

The complete functionalities necessary to control the pro-
cesses are bundled in a single user interface in one Web
page. The Web user interface was built using AngularJS
1.35, a JavaScript-based open-source Web application frame-
work mainly maintained by Google to address challenges

5www.angularjs.org

encountered in developing single-page applications. It aims
to simplify the development of such applications by providing
a framework for client-side model-view-controller (MVC) and
model-view-view-model (MVVM) architectures.

The Web page supports the user in the execution of all
working tasks and steps as shown in figure 1. In every step
(define a goal, a feature list, a data set, create a model) the user
can create a new item or choose from existing and compatible
items.

The first phase consists of defining a project, that is, to
specify a goal (a single feature) and a list of input features,
which could be relevant for the goal. These specifications are
then used to generate matching data sets.

In the next phase, a call to the RiskSLIM algorithm can
be initiated after specifying some simple parameters (runtime,
model size). The resulting model is visualised as an interac-
tive scoring table representing the computed most important
features with their coefficients and showing the resulting risk
scores for the defined target feature, see figure 5.

As this process can easily get confusing for a non-technical
expert, we represent each step as a block with a heading
line, some explanations, options to choose from and a value
representing the result of this step. A block can be opened or
closed, showing only the header and the current value when
closed. Figure 4 shows the open block for specifying the list of
features for a project (top) and the same block closed showing
only the current value (bottom).

If the user wants to change the options in a block, he
or she just has to click the block showing the result to re-
open the block. By this we can support the user to focus
on the current step in the workflow by providing just the
information needed at this moment and, at the same time,
offering all flexibility needed. This progressive disclosure
model is an interaction design technique often used in human
computer interaction. It helps to maintain the focus of a
user’s attention by reducing clutter, confusion, and cognitive
workload [Nielsen and Loranger, 2006].

As a last step we added some functionalities to validate
the quality of solutions. As the model serves to compute the
probability of a target feature, its value depends on a chosen
threshold above which the target is assumed to be true. Two
menus allow us to select a model and a data set (belonging
to this project) for validation. After two values are chosen,
a graph shows some quality measures (i.e., precision, recall,
accuracy, and F1) for different possible thresholds (see figure
6). Additional thresholds can be entered and are automatically
added to the diagram. When other models or data sets are
chosen, their diagram is appended (the previous diagrams
remain visible) to allow for a direct comparison of different
solutions. Figure 7 shows the complete Web page at the end
of the workflow.

V. CONCLUSION AND OUTLOOK

We presented an intuitive and user friendly work environ-
ment for Medical Risk Assessment with Supersparse Linear

Fig. 4. Top: Block ’Input Features’: specifying the complete list of features;
bottom: closed block showing current value (name of the project)

Integer Models. It enables medical doctors to generate their
own scoring tables based on the RiskSLIM library.

The complete workflow from selecting a goal to the gener-
ation of data sets, the computation of models, the interactive
testing of scoring tables up to the validation of different
solutions can be performed from one Web page without
any additional knowledge. Currently the software is being
deployed and tested at Charité Berlin by clinicians to check
its utility for TBase R� and its usability. The evaluation of the
resulting scoring tables can only be performed by medical
doctors with the knowledge about a reasonable selection of
features to compute the probability of target features, and the
interpretation of the scoring systems themselves, which we try
to interpret as clinical guidelines.

Additional steps can be included in the workflow in the
future, e.g., data engineering tasks like handling outliers or
missing values, the binning of data, automatic partitioning
of data sets for training, testing and validation, or automatic
cross-validation, or including medical ontologies [Sonntag
et al., 2009b]. In addition, the set of features can be increased
by including more potentially relevant attributes of patients
or transplantations by using concepts of interactive machine
learning (iml.dfki.de) and intelligent user interfaces [Sonntag,
2017] in multimodal environments for the doctor [Sonntag
et al., 2009a], [Oviatt et al., 2017], [Sonntag, 2019].

ACKNOWLEDGEMENTS

This research is part of the project ”clinical data intel-
ligence” (KDI) which is founded by the Federal Ministry
for Economic Affairs and Energy (BMWi), and EIT Digital
Skincare founded by Horizon 2020. Out thanks go out to
Klemens Budde and Danilo Schmidt for providing access to
TBase R�.

REFERENCES

[Gage et al., 2001] Gage, B. F., Waterman, A. D., Shannon, W., Boechler,
M., Rich, M. W., and Radford, M. J. (2001). Validation of clinical
classification schemes for predicting stroke: results from the national
registry of atrial fibrillation. JAMA, 285 22:2864–70.

[Lindemann, 2000] Lindemann, G. (2000). A web-based patient record for
hospitals - the design of tbase2. In Bruch, H.-P., editor, New Aspects
of Hight Technology in Medicine: Hannover (Germany), pages 409–414.
Monduzzi Editore, International Proceedings Division.

[Nielsen and Loranger, 2006] Nielsen, J. and Loranger, H. (2006). Prioritiz-
ing Web Usability. New Riders Publishing, Thousand Oaks, CA, USA.

[Oviatt et al., 2017] Oviatt, S., Schuller, B., Cohen, P. R., Sonntag, D.,
Potamianos, G., and Krüger, A., editors (2017). The Handbook of
Multimodal-Multisensor Interfaces: Foundations, User Modeling, and
Common Modality Combinations - Volume 1, volume Volume 1. Asso-
ciation for Computing Machinery and Morgan & Claypool, New York,
NY, USA.

[Schmidt et al., 2017] Schmidt, D., Budde, K., Sonntag, D., Profitlich, H.-J.,
Ihle, M., and Staeck, O. (2017). A novel tool for the identification of
correlations in medical data by faceted search. Computers in Biology and
Medicine, 85:98 – 105.

[Schröter, 2000] Schröter, K. (2000). Tbase2, a web-based electronic patient
record. Fundamenta Informaticae, 43(1-4):343–353.

[Sonntag, 2017] Sonntag, D. (2017). Intelligent user interfaces - A tutorial.
CoRR, abs/1702.05250.

[Sonntag, 2019] Sonntag, D. (2019). Medical and health systems. In Oviatt,
S., Schuller, B., Cohen, P. R., Sonntag, D., Potamianos, G., and Krüger,
A., editors, The Handbook of Multimodal-Multisensor Interfaces, pages
423–476. Association for Computing Machinery and Morgan & Claypool,
New York, NY, USA.

[Sonntag and Profitlich, 2017] Sonntag, D. and Profitlich, H. (2017). In-
tegrated decision support by combining textual information extraction,
facetted search and information visualisation. In Bamidis, P. D., Kon-
stantinidis, S. T., and Rodrigues, P. P., editors, 30th IEEE International
Symposium on Computer-Based Medical Systems, CBMS 2017, Thessa-
loniki, Greece, June 22-24, 2017, pages 95–100. IEEE Computer Society.

[Sonntag and Profitlich, 2019] Sonntag, D. and Profitlich, H. (2019). An
architecture of open-source tools to combine textual information extraction,
faceted search and information visualisation. Artificial Intelligence in
Medicine, 93:13–28.

[Sonntag et al., 2009a] Sonntag, D., Sonnenberg, G., Neßelrath, R., and
Herzog, G. (2009a). Supporting a rapid dialogue system engineering
process. In Proceedings of the First International Workshop On Spoken
Dialogue Systems Technology (IWSDS).

[Sonntag et al., 2016] Sonntag, D., Tresp, V., Zillner, S., Cavallaro, A.,
Hammon, M., Reis, A., Fasching, P. A., Sedlmayr, M., Ganslandt, T.,
Prokosch, H.-U., Budde, K., Schmidt, D., Hinrichs, C., Wittenberg, T.,
Daumke, P., and Oppelt, P. G. (2016). The clinical data intelligence project.
Informatik-Spektrum, 39(4):290–300.

[Sonntag et al., 2009b] Sonntag, D., Wennerberg, P., Buitelaar, P., and Zill-
ner, S. (2009b). Pillars of ontology treatment in the medical domain. J.
Cases on Inf. Techn., 11:47–73.

[Ustun and Rudin, 2016] Ustun, B. and Rudin, C. (2016). Supersparse linear
integer models for optimized medical scoring systems. Machine Learning,
102(3):349–391.

[Ustun and Rudin, 2017] Ustun, B. and Rudin, C. (2017). Optimized risk
scores. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August
13 - 17, 2017, pages 1125–1134. ACM.

Fig. 5. Interactive scoring table

Fig. 6. Validation diagram

Fig. 7. Web page showing the complete workflow

