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Abstract—In-the-wild human pose estimation has a huge
potential for various fields, ranging from animation and ac-
tion recognition to intention recognition and prediction for
autonomous driving. The current state-of-the-art is focused only
on RGB and RGB-D approaches for predicting the 3D human
pose. However, not using precise LiDAR depth information limits
the performance and leads to very inaccurate absolute pose
estimation. With LiDAR sensors becoming more affordable and
common on robots and autonomous vehicle setups, we propose
an end-to-end architecture using RGB and LiDAR to predict
the absolute 3D human pose with unprecedented precision.
Additionally, we introduce a weakly-supervised approach to
generate 3D predictions using 2D pose annotations from PedX [1].
This allows for many new opportunities in the field of 3D human
pose estimation.

Index Terms—sensor fusion, 3D human pose estimation, Li-
DAR, RGB, autonomous vehicles, perception

I. INTRODUCTION

Human pose estimation and understanding is the foundation
for intention recognition and action recognition. In the con-
text of fully autonomous or highly automated vehicles, it is
essential to recognize and understand the pointing gestures of
a police officer or other traffic participants. The overall body
pose also enables the estimation of whether a pedestrian is
looking at a vehicle and waiting or crossing the street without
seeing the car. Thus, it allows the automated car to react
even before the pedestrian is on the road. Furthermore, it can
help with the rotation ambiguity for pedestrians. While it is
debatable if the foot, hip or torso direction is the front of a
pedestrian, with human pose estimation there is no need for
a decision, since all joints are provided and a more detailed
understanding is enabled.

However, there is presently a lack of human pose estimation
approaches for pedestrians. Currently most approaches in hu-
man pose estimation focus on controlled environments, and the
few that handle in-the-wild scenarios do not focus on the spe-
cific situation of pedestrian detection in autonomous driving.
Autonomous vehicles need a good detection rate. Furthermore,
algorithms should be tuned towards false positives rather than
false negatives, since the latter puts the pedestrians in great
danger. In contrast to most datasets and algorithms focusing
on human pose estimation, the distance at which pedestrian
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Fig. 1. Depth ambiguity is solved by incorporating LiDAR information. The
visualization of the predicted 3D poses and the ground truth 3D bounding
boxes shows a poor performance for the RGB only case due to the depth
ambiguity. But our HPERL can precisely predict the poses and their absolute
position, using LiDAR information. In 2D image space, the depth ambiguity
leads to visually appealing results for both approaches.

detection happens is a challenge. Relevant pedestrians on the
sidewalk are typically 5-50 meters away from the ego-vehicle.

Moreover, with LiDAR sensors becoming more affordable
and being used as a main sensor for other tasks in this field,
there is the opportunity to not only rely on RGB as the current
state-of-the-art does, but to use LiDAR as an additional input
modality. In 3D object detection, it has been shown that the
addition of LiDAR enables a game changing precision. We are
the first to show similar insights for human pose estimation
using our HPERL (Fig. 1).

To make 3D human pose estimation precise enough for the
demands of autonomous driving, we propose:

• A novel end-to-end architecture for multi-person 3D pose
estimation that fuses RGB images and LiDAR point
clouds for superior precision,

• a weakly-supervised training procedure for simultaneous
2D and 3D pose estimation using only 2D pose labels,

• evaluation metrics to assess the 3D performance of our
approach without expensive 3D pose annotations.
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Fig. 2. The two pedestrians (yellow, green) appear to be of the same size in
the RGB image, even though they have different distances from the camera.
A slight change in height can have an impact on the estimated distance. A
network can still partially reconstruct the depth from other cues, but this is
more difficult than with the correct LiDAR depth information.

II. RELATED WORK

Faster R-CNN [2] is one of the most influential object de-
tectors. Inspiring many approaches, it is also at the core of our
work. It has a region proposal network, that predicts regions
of interest in the image and then refines those predictions
with a second stage. Approaches following this scheme can be
observed in many fields related to our work. In the following
sections, we briefly introduce all the associated fields.

A. 3D Detection proves importance of LiDAR

For 3D object detection in the field of autonomous driving,
there is a division of approaches based on the sensor modalities
used for detection. There are RGB only approaches, LiDAR
only approaches and RGB+LiDAR approaches. RGB only
approaches are actively researched [3] but cannot achieve
the performance of LiDAR approaches [4], [5]. Most ap-
proaches [6]–[9] are in the RGB+LiDAR category, but majorly
influential to our HPERL are AVOD [10] and LRPD [11].
LRPD [11] has shown that for detecting far away pedestrians
precisely, the details of the RGB image and the precision of
LiDAR are both essential. This indicates that RGB+LiDAR
fusion can yield great performance improvements for precise
human pose estimation.

AVOD [10] follows a two stage approach like Faster R-
CNN. In the first stage, they generate region proposals from
the RGB and LiDAR inputs and fuse them using the RoI
crops. The second stage then operates on the RoI feature
crops like the refinement stage of Faster R-CNN, with the
main conceptual difference being that the regression is for
3D boxes instead of 2D boxes. This structure allows it to be
adapted to human pose estimation approaches following the
Faster R-CNN [2] schema.

B. 2D Human Pose Estimation

In the past, 2D human pose estimation has been success-
fully solved by various approaches on RGB images only.
DeepPose [12] applied CNNs in a cascaded regressor for 2D
human pose estimation, whereas Tompson et al. [13] predicted
heatmaps for the joints instead of direct regression. In [14]
and [15], the heatmap idea is further improved upon. With the

advent of multi-person pose estimation, two main categories
of pose estimators emerged.

1) Bottom-Up: Approaches predicting a heatmap of the
joint positions first, and then combining the joints into human
poses are called bottom-up methods [16]–[18].

2) Top-Down: These follow the opposite approach, by
first predicting a bounding box around the person and then
regressing the joints of that person [19]–[22]. As a direct de-
scendant of Faster R-CNN [2], Mask R-CNN [23] is the most
adaptable approach from this category proving the strength of
its architecture in bounding box regression, segmentation and
human pose estimation. DensePose [24] is a descendant of
Mask R-CNN that maps the UV-coordinates of a 3D model
to a person in the image, demonstrating the versatility of top-
down estimators.

Our approach is inspired by Faster R-CNN [2] and can be
attributed to the top-down category. This method was chosen,
as 3D object detectors with fusion typically rely on Faster
R-CNN like approaches.

C. 3D Human Pose Estimation
Li et al. [25] solve the 3D pose estimation task by directly

regressing the joint positions and then detecting the actual
3D joints. In contrast, Chen et al. [26] predict 2D poses,
match them to a 3D pose library and use the best match
as the 3D pose. Similarly, Martinez et al. [27] use a simple
neural network to predict 3D poses from the 2D poses. But
Zhou et al. [28] observe that the sequential nature of separated
sequential approaches [26], [27] hinders performance. So, they
integrate the learning process by having images from 2D in-
the-wild and 3D indoor datasets in one batch. The 2D module
is trained with 2D images and the 3D module is trained using
2D constraints and 3D regression data.

Further, there are RGB-D approaches like [29], [30]. But
as VNect [31] shows, RGB-D methods suffer from limited
application domains, mostly restricted to indoors. Moreover,
the precision is not superior to RGB only methods.

LCR-Net [32], [33] is a simple yet effective representative
of the 3D pose estimation category. Its overall architecture
is similar to Faster R-CNN [2]. However, instead of just
predicting regions of interest, it adds pose proposals, which
are then refined in a second stage. The refinement has multiple
parallel regression heads, one for each pose proposal, allowing
a high degree of specialization in the poses.

Although 3D object detection has shown the importance
of LiDAR, mainly for resolving scale ambiguity errors as
in Fig. 2, none of the presented pose estimation approaches
use a fusion of RGB and LiDAR. Analysing the state-of-the-
art, Faster R-CNN [2] style methods in 3D object detection
(AVOD) and in 3D human pose estimation (LCR-Net) share
a common structure that can be exploited. To the best of our
knowledge, there have been no experiments on the fusion of
RGB and LiDAR for 3D human pose estimation.

III. APPROACH

Here we outline the main components of our end-to-end
trainable pose estimation network, with the first stage as the
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Fig. 3. Our HPERL architecture processes the RGB images and LiDAR point clouds as input modalities, using an RPN based on AVOD [10] as the Feature
Extraction Stage. Inspired by LCR-Net [32], our Pose Estimation Stage predicts scores and deltas for the K anchor poses. In contrast to other approaches,
the anchor poses are generated from the 3D boxes of the first stage. By adding the deltas to these anchors and selecting based on the classification scores,
the poses are predicted. These poses are then in a last step combined and filtered, whereas there may be multiple proposals per pedestrian.

Region Proposal Network (RPN) and the second stage com-
posed of the classification and regression branches (Fig. 3).
We use an AVOD [10] inspired first stage for HPERL and a
Faster R-CNN [2] inspired first stage for the RGB baseline. As
for the second stage, we use an LCRNet [32] inspired module
in both cases. Thus, we perform the pose estimation in a top-
down approach by first generating the region proposals and
then estimating the human poses in the defined regions.

A. Network Architecture
1) Multimodal Feature Extraction: For the case of using

both RGB and LiDAR data as input modalities, we first
process the LiDAR point clouds by following the procedure
in MV3D [7] to create a six channel Bird’s Eye View (BEV)
representation. The first stage of AVOD [10] has two parallel
VGG-16 modules for extracting features from the RGB and
BEV inputs. We modified these VGG-16 modules to use group
normalization and 256 output channels in the feature maps.
Using the anchor grid defined in Section III-B, we project
the 3D anchors onto the respective views and apply RoI align
to crop the feature maps. The channel dimension is reduced
to one by a fully connected layer, and the RGB and LiDAR
views are averaged. Then, the objectness scores and regression
offsets for the region proposals are predicted.

In contrast to AVOD [10], we use the RoI align operation
to extract the features for a region proposal. RoI align avoids
rounding off operations and preserves the spatial information,
helping the overall performance of the network [34]. But un-
like AVOD [10], the two streams of cropped RGB and LiDAR
features are concatenated instead of averaged, preventing loss
of information. These features are then passed to the second
stage of HPERL.

2) Unimodal Feature Extraction: For the baseline model
having only RGB data as the input modality, we use the
first stage of Faster R-CNN [2] with a Resnet50 [35] fea-
ture extractor and a Feature Pyramid Network (FPN) [36]
backbone. The weights are initialized from a COCO [37] pre-
trained version provided in the TorchVision library. For this

Fig. 4. The pose proposals are generated by fitting the anchor poses into the
predicted RoIs during inference. This is done by offsetting the anchor poses
by an amount equal to the lowermost coordinates of the bounding box and
then scaling them by the width and height of the RoI.

network, the RoI align operation is used to crop and resize the
features to enable a fair comparison between the multimodal
and unimodal approaches.

3) Classification and Regression: Based on the RoI features
of the first stage, the second stage of our model classifies the
proposals and predicts the regression deltas. A fully connected
layer is used for classifying each region proposal into one of
the K anchor poses or the background. Another parallel fully
connected layer predicts a set of 5×J × (K+1) pose deltas.
Here, J = 13 is the number of joints, 5 represents the two
values for 2D regression and three values for 3D regression.
These pose deltas are then added to the anchor pose proposals
to regress the actual 2D and 3D poses.

B. Anchor Generation

1) Anchor Boxes: For the first stage of HPERL, we pass
a pre-defined grid of 3D anchor boxes which is defined by
the ground plane and area extents. The ground plane for our
task is represented using the point-normal form of a plane
n · (r − r0) = 0, with a normal n = (a, b, c) and a point
r0 = (x0, y0, z0). We define n = (0,−1, 0) to match our
known camera orientation. The offset point r0 is estimated
using the RANSAC [38] algorithm with an additional offset
of 1.8m to cover the ground.

We compute x and z ranges of the area extents by taking
the minimum and maximum values of 3D pedestrian locations



in the ground truth. The anchors are distributed over these
area extents with a stride of 0.2m and the corresponding y
coordinates are computed using the plane equation.

2) Anchor Poses: In order to choose a representative set
of pedestrian poses, we define eight anchor poses which are
a subset of the anchor poses used in LCRNet [32]. Amongst
these, we exclude all the half body anchor poses because the
pedestrian pose estimation task has only full body poses. Out
of the remaining ones, we choose the ones that have a non-
zero occurrence in the PedX [1] dataset. To align the anchor
poses to the world coordinate system, we use the re-alignment
procedure described in LCRNet [32]. In addition, we negate
the y coordinates, as the negative y direction is the up-axis
in our system. During the training phase, since there is no
3D ground truth available to assign the target deltas directly,
we create the pose proposals as a pre-processing step using
the ground truth bounding boxes. We add the predicted deltas
to these pose proposals and train our model using only the
2D pose annotations and the projected 3D predictions. For
inference, the pose proposals are generated by fitting anchor
poses into the predicted RoIs as depicted in Fig. 4.

C. Loss Computation

Since we aim to simultaneously predict the 2D and 3D
poses in our model, we use a weighted multitask loss function
composed of the RPN losses, the classification loss, the 2D
loss and the projected 3D loss as follows:

Ltotal = LRPN + Lcls + L2D + L3D (1)

1) RPN Loss: LRPN is composed of two components -
the objectness loss Lobj and the box regression loss Lreg .
For HPERL, we compute these as specified in the first stage
of AVOD [10] using 3D ground truth boxes as the targets.
Whereas for the RGB baseline, we compute the LRPN as in
Faster R-CNN [2] with the targets as 2D ground truth boxes.

2) Anchor Pose Classification Loss: Assignment of the
anchor pose ground truth is a two step process. First a
categorization in foreground and background is done by IoU
matching to the ground truth, then for foreground objects a
similarity score is used to assign the best anchor pose.

The IoU computation between the ground truth and pre-
dicted RoIs varies with input modalities. For the 3D RoIs of
HPERL, we project them into the 2D BEV space and then
calculate the 2D IoUs. But for the RGB baseline, we directly
use the predicted 2D RoIs to compute the IoUs. If the IoUs
with all ground truth boxes are lower than 0.3, the RoI is
assigned to the background class. Otherwise, it is assigned
the box with the highest IoU.

Given the assignment of ground truth to the RoI, similarities
between the ground truth and anchor poses are computed for
non-background RoIs. The anchor pose having the highest
euclidean similarity is used as the classification target:

ktarget = argmax
k∈K

J∑
j=1

||ak,j − gj ||, (2)

where ak,j is the position of joint j of the k-th anchor pose, gj
represents the joint j of the ground truth, J is the number of
joints and K is the number of anchor poses. For computing the
loss, we use a sparse cross entropy function given the target
index ktarget.

3) 2D Pose Refinement Loss: For L2D, we add the pre-
dicted 2D regression deltas to the anchor poses to obtain a
set of final 2D predictions P2D. Using the IoU comparison
method described above, we assign the target values T2D for
each of the Nfg foreground RoIs as the corresponding 2D
ground truth poses. The 2D regression loss is computed as a
smooth L1 loss between the target poses T2D and the predicted
pose proposals P2D. The regression loss is computed only for
the foreground classes:

L2D(P2D, T2D) =
1

Nfg

Nfg∑
i=1

li · smooth_l1(pi, ti) (3)

where li = 1 if yi > 0 else li = 0.
4) 3D Pose Refinement Loss: For L3D, we add the re-

gressed deltas to the 3D anchor poses to obtain absolute 3D
poses P3D. Since the 3D ground truth is not available, we
project the 3D poses into the 2D image space and compute
the smooth L1 loss using a projection function Pr(·) and the
2D ground truth poses T2D. Similar to the 2D loss, this is also
computed for the foreground classes:

L3D(P3D, T2D) =
1

Nfg

Nfg∑
i=1

li · smooth_l1(Pr(pi), ti) (4)

D. Implementation Details

For HPERL, we trained our model for a total of 50 epochs
with a batch size of 1, an Adam optimizer and an initial
learning rate of 5e−5. Learning rate is not decayed as the
network is trained from scratch for both the inputs and so
a higher value is required. Whereas for the RGB baseline,
we trained our model for a total of 170 epochs with a batch
size of 4 and an initial learning rate of 1e−3. We decayed
the learning rate by a factor of 0.8 after every 50 epochs and
use a COCO pre-trained backbone. RMSProp optimizer from
the PyTorch library was used. In order to make the networks
direction-invariant, we extend the existing dataset with left-to-
right flipped versions of the training set. We flip the RGB
image from left to right, followed by flipping the LiDAR
point cloud along the x-axis. Note that in our work, the x-axis
represents the right direction and the origin lies at the camera
center. For the pose annotations, we represent the flipped x
coordinate of the 2D pose in terms of the image width w as
f(x) = w − x. Additionally, we filter out the samples having
missing joints or missing segmented point clouds during the
data loading phase. For the post processing, we follow the
pose proposals integration described in LCRNet [32].

Overall, we introduced a novel architecture for multi-person
3D human pose estimation, using RGB and LiDAR data for
in-the-wild scenarios of autonomous driving.



TABLE I
COMPARISON OF RGB BASELINE VS HPERL ON PEDX. LIDAR

SIGNIFICANTLY IMPROVES THE PRECISION OF 3D LOCATION (1/5 CDE,
1/3 XYE). 2D RESULTS IMPROVE SLIGHTLY (MPJPE AND PCKH@0.5).

Model Type 2D MPJPE PCKh CDE XYE
RGB Base. [ours] 2D 87.76px 65.02% - -
(RGB only) 3D 87.66px 65.92% 4.88m 1.44m
HPERL [ours] 2D 45.66px 70.08% - -
(RGB + LiDAR) 3D 45.65px 70.22% 0.95m 0.39m

IV. EVALUATION

We evaluated our HPERL network architecture on the
PedX [1] dataset and validated our RGB baseline against
state-of-the-art on the MPII [39] dataset. In contrast to MPII,
the PedX dataset is new and has not yet been widely used.
The dataset has 9380 images with instance segmentation
on pointclouds and 2D pose annotations. 3D bounding box
annotations were generated by using the outer hull of the
outlier cleaned 3D instance segmentation. The dataset does
not provide 3D pose annotations, which leads to our indirect
performance evaluation via newly introduced metrics. We use
common evaluation metrics such as Percentage of Correct
Keypoints (PCKh@0.5), 2D Mean Per Joint Position Error
(MPJPE) and add new metrics for indirect 3D evaluation.
Center Point Depth Error (CDE) computes the axis aligned
bounding box around the predicted pose and computes the
depth error against the correct 3D bounding box. Center Point
X-Y Error (XYE) uses the same aligned bounding boxes
and computes the error orthogonal to the depth, allowing
separate inspection of error sources. Therefore, these metrics
can capture the absolute position error of the predictions.

Since there are no baselines on the PedX dataset, we im-
plemented an RGB baseline (RGB only version of our model)
similar to LCR-Net++ [32] and tested it on MPII [39] and
PedX [1]. Table II and Table III prove a similar performance
to the original LCR-Net++ for our RGB baseline. The sole
difference between the RGB baseline and HPERL is in the
LiDAR extension. This allows us to attribute all performance
gains over the baseline to adding LiDAR.

To show the improvements by including LiDAR, we com-
pare our RGB baseline against our HPERL with as identical
parameters as possible. Both networks were trained to optimal
accuracy with similar parameters, the same training procedure
and the same data. The current state-of-the-art typically eval-
uates 3D performance root-joint relative. With the availability
of LiDAR, we can evaluate absolute 3D performance. Most
approaches only provide root relative results, however our
RGB baseline and HPERL produce absolute 3D predictions.
In our evaluation, we capture the error of the root joint by the
CDE and XYE metrics introduced above.

A. RGB Baseline vs HPERL

The 2D MPJPE and PCKh@0.5 metrics capture improve-
ments in the pose predictions. Our HPERL reduces the 2D
MPJPE by a factor of 1.9 and improves the PCKh for 2D and
projected 3D by +4.3% (Table I). The improvements in CDE

TABLE II
RGB BASELINE (INSPIRED BY LCRNET++) VERIFICATION ON MPII

Model Category Type 2D MPJPE PCKh@0.5
LCRNet++ [32] single 2D - 74.61%
RGB Baseline (ours) single 2D 58.30px 81.95%
RGB Baseline (ours) multi 2D 61.53px 79.82%

TABLE III
RGB BASELINE (INSPIRED BY LCRNET++) VERIFICATION ON PEDX.

Model Type Trained On 2D MPJPE PCKh@0.5
LCRNet++ [32] 2D non PedX 246.98px 52.35%
LCRNet++ [32] 3D non PedX 250.60px 47.44%
RGB Base. (ours) 2D non PedX 151.73px 36.53%
RGB Base. (ours) 2D PedX 87.76px 65.02%
RGB Base. (ours) 3D PedX 87.66px 65.92%

and XYE depict the performance of our model with respect
to absolute positioning of the pose. Here HPERL reduces the
CDE and XYE by a factor of 5.1 and 3.7 respectively (Table I).
The best 3D object detectors specialized and evaluated on
the very competitive KITTI [40] benchmark currently achieve
errors of 0.11− 0.22m on pedestrians [11]. Our HPERL sig-
nificantly outperforms RGB only pose estimators and achieves
3D precision (0.39m XYE) almost similar to the state-of-the-
art in pedestrian detection on KITTI.

Furthermore, we visually inspected the performance of our
algorithm. Fig. 5 shows a case where our HPERL is able to
precisely locate the pedestrian despite heavy occlusion by a
silver SUV. In Fig. 6, we do a qualitative comparison of the
RGB baseline and HPERL.

B. Ablation Studies

To verify the effectiveness of all the components of our
approach, we derived ablation studies. We changed the fea-
ture extractor, pre-training, internal network parameters and
recorded the metrics (Table IV). We observed that for the
3D performance (CDE and XYE), adding LiDAR information
has the biggest performance impact. Even poorly configured
versions of HPERL outperform the RGB baseline.

Analysing the results of the ablation study, we found that
having a customized model with fewer parameters and less

Fig. 5. Heavily occluded pedestrians can be located precisely with limited
pose quality using the LiDAR pointcloud. The pedestrians occluded by the
silver SUV (manually marked blue) are precisely located. 2D predictions are
shown in yellow, 3D predictions in red, 3D ground truth in orange and the
occluding car in blue.
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Fig. 6. Qualitative comparison of performance between the RGB baseline and HPERL. The poses are depicted in yellow. In common scenarios shown on the
left, both algorithms detect the pedestrians, but the baseline struggles with false positives at multiple depths. Albeit a rare case, the cyclist on the bicycle is
well detected by both methods. Pushing a bicycle however causes false positives for RGB baseline and an imprecise detection for HPERL. Partial occlusions
are difficult for both approaches, however HPERL is able to detect the pedestrian but at the cost of a false positive.

generalization gap outperforms initializing the model with
Imagenet [41] pre-trained weights. For the fusion strategy,
we observed that concatenation is better suited than the mean
operation. But for the data augmentation, we were able to see
only a minor improvement, which is explained by the natural
variance in poses and a roughly symmetrical distribution of
poses regarding the LR-axis.

V. CONCLUSIONS

In this paper, we presented HPERL using a fusion of RGB
images and LiDAR point clouds to precisely locate pedestrians
and predict their pose. This method was trained to detect
the 3D human poses without using any 3D pose annotations.
Our approach applied an implicit formulation of the learning
goal via projection and 3D bounding boxes to learn the 3D
predictions. Thus, we introduced the CDE and XYE metrics to
capture the 3D precision of the predictions. This opens up new
opportunities to deploy human pose estimation in the wild.

Our research shows the versatility of a 3D detector’s fusion
schema. In this work we used AVOD [10] as a backbone,
however all backbones following the two stage approach
introduced by Faster R-CNN [2] are compatible with our
proposed architecture.

The results of our empirical analysis demonstrate a promis-
ing performance, which can be attributed to the inclusion
of LiDAR as an additional input modality. However, the
lack of in-the-wild datasets hinders large scale evaluations

and development. We hope that our work encourages the
creation of datasets and further research, enabling the usage
of human pose estimation for autonomous vehicles and other
applications requiring high absolute precision.
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