
Demand-based Data Stream
Gathering, Processing, and Transmission

vorgelegt von
M. Sc.

Jonas Traub

an der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
- Dr. rer. nat. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Manfred Hauswirth, Technische Universität Berlin
Gutachter: Prof. Dr. Volker Markl, Technische Universität Berlin
Gutachter: Prof. Dr. Amr El Abbadi, University of California, Santa Barbara
Gutachter: Prof. Dr. Albert Bifet, Télécom ParisTech

Tag der wissenschaftlichen Aussprache: 22. März 2019

Berlin 2019

Acknowledgements

I wish to thank my main advisors Volker Markl, Asterios Katsifodimos, Sebastian Breß,
and Tilmann Rabl for their great feedback and support which led to this thesis. I also
want to thank Manfred Hauswirth, Volker Markl, Amr El Abbadi, and Albert Bifet for
being part of my committee and for providing highly valuable feedback.

Many more people have been guiding and supporting me in the past years. In general
my thanks go the whole Databases and Information Management Group (DIMA) at TU
Berlin and DFKI. In my first year, I received great support to get started from my col-
leagues Sebastian Schelter, Max Heimel, Christoph Boden, and Alexander Alexandrov.
I thank Paris Carbone and Seif Haridi for our close cooperation, continuing the line of
research we started when I wrote my master’s thesis at KTH. I was always blessed with
a nice atmosphere in the office with most sofas. This was mainly the merit of Asterios
Katsifodimos, Sherif Sakr, and Alexander Renz-Wieland who shared the office with me.

I coauthored a total of thirteen publications and experienced great team work in
achieving our research goals. My thanks go to all the authors of these publications:
Ahmed Awad, Kaustubh Beedkar, Tobias Behrens, Janis von Bleichert, Sebastian Breß,
Paris Carbone, Bonaventura Del Monte, Morgan Geldenhuys, Dimitrios Giouroukis,
Philipp Marian Grulich, Felipe Gutierrez, Seif Haridi, Fabian Hueske, Julius Hülsmann,
Jeyhun Karimov, Asterios Katsifodimos, Clemens Lutz, Volker Markl, Tilmann Rabl,
Alejandro Rodríguez Cuéllar, Viktor Rosenfeld, Manuel Renz, Till Rohrmann, René
Saitenmacher, Sherif Sakr, Nikolaas Steenbergen, Tim Stullich, and Steffen Zeuch.

Many of the achievements presented in this thesis were made as part of SENSE and
related projects. These projects would not have been possible without the great work of
my student assistants. Jannis von Bleichert was the first member of the SENSE team
and contributed to our first prototypes. Andreas Osowski contributed to the initial C++
implementation of our sensor node system. Tim Stullich contributed to the implemen-
tation of the fault-tolerance features in the SENSE project and to the implementation
of the operator logic on sensor nodes. Philipp M. Grulich was a great support for the
development of the Scotty framework and the I2 demonstration. Together, we achieved

i

the best demonstration award at EDBT 2017 and gave two talks at FlinkForward. Julius
Hülsmann was a great partner for discussing all mathematical problems related to time
coherence guarantees and their optimization. His commitment and dedication to the
project have my deep respect and appreciation. Zbigniew Jerzak from SAP guided us
in the early stages of the SENSE project and provided an industrial point of view.

I am glad that I had the chance to advise highly motivated, exceptional bachelor
and master students. I wish to thank Chiao-Yun Li for her work on automatic tuning of
read-time tolerances, Vianney de Cibeins for his design of a benchmark for adaptive data
collection, Yusuf Güven Toprakkiran for his investigation of machine learning techniques
in heterogeneous computing environments, Alejandro Rodríguez Cuéllar for his work on
window aggregate sharing for out-of-order stream processing, Jerred Blankenburg for his
performance analysis on complex event processing engines, Robin Rabe for his evaluation
of cloud-dased stream processing systems, and Alexander Dadiani for his catalogue of
sampling algorithms for sensor data. I am thankful that these students made advising
theses one of the most satisfying tasks I had during the time of my doctoral studies.

As part of my teaching duties, I was responsible for our evaluation server, which
validates students’ submissions using unit tests. I want to thank Alexander Alexandrov
for implementing this system in the first place. I also want to thank Naveed Kamran,
Vianney de Cibeins, and Taifun Wiechert for continuously implementing new features.
I thank Martin Kiefer for taking over the responsibility for the system and our system
administrator Lutz Friedel who helped with technical issues of all kind.

I am grateful for the support I received with all administrative issues from Claudia
Gantzer, Melanie Neumann, Katrin Jung, and Anna Weymann, our excellent secretary
team. I appreciate the work of our academic director Ralf Kutsche who does a great job
in managing all teaching duties and turned out to be an excellent badminton player.

I thank my parents Sonja and Thilo Traub, my sisters Saskia Traub and Jenny
Trumpfheller, and my grandparents Wolfgang Traub and Renate Schuck for their trust
in me and for giving me the confidence required to pursue a doctoral degree. I further
thank Stephan Wypler for being the best possible co-tenant in the past years.

Throughout my doctoral studies, my girlfriend Melanie Kuffner was my closest per-
son. She was on my side, no matter if I was in a bad mood before deadlines, overworked,
or stressed out. She was the one who took my mind off things if needed and I cannot
imagine the past years without our shared vacations, free time, cooking evenings, and
bike tours. Whenever life gave me lemons, Melanie taught me to make lemonade!

ii

Abstract

The Internet of Things (IoT) consists of billions of devices which form a cloud of network-
connected sensor nodes. These sensor nodes supply a vast number of data streams with
massive amounts of sensor data. Real-time sensor data enables diverse applications
including traffic-aware navigation, machine monitoring, and home automation.

Current stream processing pipelines are demand-oblivious, which means that they
gather, transmit, and process as much data as possible. In contrast, a demand-based
processing pipeline uses requirement specifications of data consumers, such as failure
tolerances and latency limitations, to save resources. In this thesis, we present an end-to-
end architecture for demand-based data stream gathering, processing, and transmission.

Our solution unifies the way applications express their data demands, i.e., their
requirements with respect to their input streams. This unification allows for multiplexing
the data demands of all concurrently running applications. On sensor nodes, we schedule
sensor reads based on the data demands of all applications, which saves up to 87% in
sensor reads and data transfers in our experiments with real-world sensor data.

Our demand-based control layer optimizes the data acquisition from thousands of
sensors. We introduce time coherence as a fundamental data characteristic, which is the
delay between the first and the last sensor read that contribute values to a tuple. A large
scale parameter exploration shows that our solution scales to large numbers of sensors
and operates reliably under varying latency and coherence constraints.

On stream analysis systems, we tackle the problem of efficient window aggregation.
We contribute a general aggregation technique, which adapts to four key workload char-
acteristics: Stream (dis)order, aggregation types, window types, and window measures.
Our experiments show that our solution outperforms alternative solutions by an order
of magnitude in throughput, which prevents expensive system scale-out.

We further derive data demands from visualization needs of applications and make
these data demands available to streaming systems such as Apache Flink. This enables
streaming systems to pre-process data with respect to changing visualization needs. Ex-
periments show that our solution reliably prevents overloads when data rates increase.

iii

Zusammenfassung / German Abstract

Im Internet der Dinge (engl. Internet of Things/IoT) fungieren Milliarden von Geräten als
Sensorknoten und formen eine Datenwolke (engl. Cloud). Diese Sensorknoten produzieren in
Echtzeit eine Vielzahl von Datenströmen mit enormen Datenmengen und ermöglichen somit ver-
schiedenste Anwendungen, wie die Automation von Gebäuden, die Überwachung von Maschinen
und eine Navigation auf Basis aktueller Verkehrsdaten. Momentan werden in der Regel bedarf-
sunabhängig so viele Sensordaten wie möglich erhoben. Im Gegensatz dazu steht ein bedarf-
sorientiertes System, welches Anforderungsspezifikationen von Datennutzern, wie zum Beispiel
Fehlertoleranzen und zulässige Latenzen, verwendet, um Ressourcen zu sparen. Die vorliegende
Arbeit stellt eine Ende-zu-Ende Architektur vor, mit der Sensordaten bedarfsabhängig erhoben,
übertragen und verarbeitet werden können.

Der Datenbedarf einer Anwendung ergibt sich aus den Anforderungen an die Eingabedaten-
stöme. Die vorgestellte Lösung vereinheitlicht die Spezifikation des Datenbedarfs, sodass der
Bedarf aller laufenden Anwendungen gebündelt werden kann. An Sensorknoten können so Le-
sevorgänge abhängig vom gemeinsamen Bedarf aller Anwendungen ausgeführt werden. In Ex-
perimenten ergab sich dadurch eine Einsparung von bis zu 87% des Datenverkehrs.

Ein neuartiges Sensorkontrollsystem optimiert die Datenerhebung von einer Vielzahl von Sen-
sorknoten und etabliert die zeitliche Kohärenz als essentielle Eigenschaft von Datentupeln. Die
zeitliche Kohärenz beschreibt die Verzögerung zwischen dem ersten und letzten Lesevorgang, der
Sensorwerte zu einem Tupel beisteuert. Eine umfassende Untersuchung zeigt, dass das System
zu tausenden Sensorknoten skaliert und auch bei variierenden Rahmenbedingungen effizient ist.
Zur Optimierung der Performanz von Systemen zur Datenstromenanalyse wird eine allgemeine
Aggregationstechnik vorgestellt. Diese passt sich automatisch an die zeitliche Sortierung von
Datenströmen, die Art der Aggregationsfunktionen, die Art der Fenster und die Dimensionen,
in denen Fenster definiert sind, an. In Experimenten verzehnfachte dieser adaptive Ansatz den
Datendurchsatz im Vergleich zu alternativen Techniken.

Abschließend betrachtet die vorliegende Arbeit den Datenbedarf von Anwendungen, die

Datenstöme in Echtzeit visualisieren. Dabei wird der Datenbedarf von Visualisierungseinstel-

lungen abgeleitet, welche von Benutzern jederzeit interaktiv verändert werden können, und dann

Systemen zur Datenstromanalyse, wie zum Beispiel Apache Flink, bereitgestellt. So können diese

Systeme große Datenmengen bedarfsorientiert und in Echtzeit vorverabeiten. Experimete zeigen,

dass die gezeigte Lösung auch bei steigenden Datenraten eine Systemüberlastung verhindert.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Problems and Contributions . 3

1.2.1 Layer 1: Sensor Nodes (Chapter 2) 4
1.2.2 Layer 2: Sensor Control (Chapter 3) 5
1.2.3 Layer 3: Stream Analysis Systems (Chapter 4) 6
1.2.4 Layer 4: Front-End Applications (Chapter 5) 7

1.3 High-Level Architecture . 8
1.4 Impact of Thesis Contributions . 11
1.5 Structure of the Thesis . 13

2 Optimized On-Demand Data Streaming from Sensor Nodes 14
2.1 Introduction . 15
2.2 A Motivating Example . 17
2.3 Background . 19

2.3.1 Pull- and Push-Based Data Transfer 19
2.3.2 Adaptive Sampling . 19
2.3.3 The User’s Perspective . 23

2.4 System Architecture . 25
2.5 User-Defined Sampling . 27

2.5.1 Enabling Read and Traffic Sharing 27
2.5.2 Global Read Time Optimization 28
2.5.3 Modelling Read Requests . 30
2.5.4 User-Defined Sampling Functions 30
2.5.5 Local Filter Functions . 32

2.6 Multi-Query Read Scheduling . 33
2.6.1 Minimizing Sensor Reads . 33

v

2.6.2 Optimizing Read Times . 34
2.6.3 The Overall Scheduling Algorithm 39

2.7 Analytical Evaluation . 41
2.7.1 Key Properties of Sampling Functions 41
2.7.2 Distribution of Tolerance Intervals 42
2.7.3 The Fraction of Prevented Sensor Reads 43
2.7.4 Differentiation from the Erlang B Formula 46

2.8 Experimental Evaluation . 47
2.8.1 Experimental Setup . 47
2.8.2 Detailed Experiments . 47
2.8.3 Discussion . 53

2.9 Related Work . 53
2.10 Conclusion . 55

3 Scalable Data Acquisition with Guaranteed Time Coherence 56
3.1 Introduction . 57
3.2 Application Example: Precision of Multilateration 59
3.3 Sources of Incoherence . 61
3.4 SENSE Architecture . 64

3.4.1 Definition of Coherence Measures 64
3.4.2 General Network and Node Setup 65
3.4.3 Global Architecture . 67
3.4.4 Internal Architecture . 69

3.5 Coherence Guarantees and Coherence Estimates 71
3.5.1 Coherence Guarantees . 71
3.5.2 Coherence Estimate . 72
3.5.3 Coherence Tradeoff (Ce-Cg-Tradeoff) 74

3.6 Optimizing Time Coherence . 74
3.6.1 Solution Overview . 75
3.6.2 Sensor Node Algorithm . 75
3.6.3 Loop Node Algorithm . 76
3.6.4 Example Calculation . 80
3.6.5 Splitting and Merging Sensing Loops 80
3.6.6 Additional Optimizations . 82
3.6.7 Multilateration: Revisiting our Application Example 82

vi

3.6.8 Mathematical Details . 84
3.7 Scheduling Sensor Reads . 89
3.8 Failure Handling . 90

3.8.1 Introducing Fallback Nodes . 91
3.8.2 Managing Buffer Overflows . 91

3.9 Evaluation . 93
3.9.1 Experiment Setup . 93
3.9.2 Optimizing Time Coherence . 93
3.9.3 Throughput, Latency, and CPU Load 96
3.9.4 Coherences and Read Time Deviations 97
3.9.5 Large Scale Parameter Exploration 99

3.10 Related Work . 100
3.11 Conclusion . 102

4 Efficient Window Aggregation with General Stream Slicing 103
4.1 Introduction . 104
4.2 Preliminaries . 106
4.3 Window Aggregation Concepts . 108

4.3.1 Tuple Buffer . 108
4.3.2 Aggregate Trees . 108
4.3.3 Buckets . 110
4.3.4 Stream Slicing . 111

4.4 Workload Characterization . 112
4.4.1 Characteristic 1: Stream Order . 112
4.4.2 Characteristic 2: Aggregation Function 112
4.4.3 Characteristic 3: Windowing Measure 113
4.4.4 Characteristic 4: Window Type . 114

4.5 General Stream Slicing . 114
4.5.1 Storing Tuples vs. Partial Aggregates 116
4.5.2 Slice Management . 117
4.5.3 Processing Input Tuples . 120
4.5.4 User-Defined Windows and Aggregations 122

4.6 Stream Slicing for Session Windows . 125
4.6.1 Aggregate Sharing for Session Windows 125
4.6.2 Session Windows on Out-Of-Order Streams 126

vii

4.7 Evaluation . 127
4.7.1 Experimental Setup . 127
4.7.2 Stream Slicing Compared to Alternatives 129
4.7.3 Studying Workload Characteristics 135
4.7.4 Parallel Stream Slicing . 142

4.8 Related Work . 142
4.9 Conclusion . 144

5 Interactive Real-Time Visualization for Streaming Data 145
5.1 Introduction . 146
5.2 Visualization of Time Series . 148
5.3 I2 Development Environment . 150
5.4 Example Application . 152
5.5 Evaluation . 153
5.6 Related Work . 155
5.7 Conclusion . 155

6 Additional Contributions 156

7 Conclusion 160

List of Notations 162

List of Figures 168

List of Tables 174

Bibliography 175

viii

1
Introduction

1.1 Motivation

Real-time sensor data is the basis for many applications, such as dynamic traffic control,
smart manufacturing, and early warning systems. Such applications connect our infras-
tructure with state-of-the-art information and communications technology to optimize,
secure, and individualize our everyday life. For example, a navigation software can use
real-time traffic data to individually optimize suggested routes based on current traffic
conditions; smart factories can monitor machine data to predict failures and prevent
accidents; and weather services can detect seismic activities to issue tsunami warnings.

We observe a trend towards an Internet of Things (IoT), leading to billions of
network-connected devices which supply vast amounts of real-time sensor data [191].
This growth has even lead to a production shortage on electronics components - espe-
cially sensors [89, 90]. Driven by the fast growth of the IoT, the goal of this thesis is
to efficiently gather, transmit, and process sensor data from a large number of sensor
nodes, and to make it available to a large number of applications in real-time.

To meet real-time requirements of applications, stream analysis systems, such as
Apache Flink [35] and Apache Storm [175], process data in stream processing pipelines.
A stream processing pipeline is a series of concurrently running operators for data gath-
ering, data transmission, and/or data processing. Each operator of a stream processing
pipeline continuously consumes input data from its preceeding operator(s) and imme-
diately transmits output data to its succeeding operator(s) [167]. This reduces the
end-to-end latency compared to processing batches of data in consecutive stages [49].

1

Chapter 1. Introduction

Figure 1.1:
A typical demand-oblivious

processing pipeline in the IoT.

Figure 1.2:
Demand-based data stream gathering,

processing, and transmission.

Current stream processing pipelines are demand-oblivious, which means that systems
gather, transmit, and process as much data as possible without considering the data
demand of data consumers (Figure 1.1). The data demand of a data consumer (e.g., a
front-end application or an operator in a processing pipeline) is the minimum number
of data points which allows for providing a desired functionality (e.g., computing an
aggregate with a desired precision). An operator of a processing pipeline is demand-
based if it utilizes requirement specifications (e.g., failure tolerances) of data consumers
to reduce resource utilization (e.g., to reduce network traffic).

Demand-oblivious pipelines cause several problems in the IoT: (i) sensor nodes trans-
fer large amounts of data which causes high network traffic, often charged by (mobile)
network providers. (ii) Processing all these data requires large clusters for stream anal-
ysis systems which leads to high scale-out costs. (iii) Front-end applications, which
visualize data in real-time, are exposed to high velocity result streams which causes
overloads and application crashes when data rates increase.

The fast growth in the number of sensors and the resulting vast volume of data are
grand challenges in the IoT [40, 106, 125]. We address these challenges with an architec-
ture change towards demand-based data stream gathering, processing, and transmission.

We introduce control interfaces between sensor nodes, stream analysis systems, and
front-end applications, and unify the way in which applications express their data de-
mands (Figure 1.2). We further provide a sensor control system which orchestrates sensor
nodes in adaptive pipelines and joins values of all sensors to concise sensor data tuples,
reducing the number of concurrent input streams at central system components. The
result is an end-to-end architecture which optimizes state-of-the-art stream processing
technology based on the data demands of applications.

2

Chapter 1. Introduction

1.2 Research Problems and Contributions

In this section, we state the research problems addressed in this thesis and outline our
contributions. The following chapters will then discuss our contributions in detail.

Figure 1.3: Infrastructure Stack.

Figure 1.3 shows our infrastructure stack. At
the bottom of the stack are distributed sensor
nodes 1 , which capture sensor data and trans-
mit it to upstream systems. Sensor nodes are
managed by a sensor control layer 2 . The result-
ing data streams are processed by stream analysis
systems 3 , which perform central data analy-
sis (e.g., correlation detection among sensors) on
compute clusters. Users access the results of the
analysis through front-end applications 4 which
offer domain-specific user interfaces.

Modern cars are a good example of sensor
nodes with thousands of sensors [54]. Manufac-

turers deploy sensor control systems to collect sensor data from their fleets and to feed
back current traffic information [114]. Stream analysis systems allow for analyzing sen-
sor data in real-time to facilitate diverse applications such as red light aware cruise
control [141], traffic prediction [48, 146], and locating parking spots [207]. All these ap-
plications share the same data sources (connected cars) but have different data demands.

We introduce techniques to express the data demand of an application, and methods
for combining data demands. This allows for sharing computations among applications
and prevents redundant data transmissions. On the sensor node layer 1 , we introduce
an on-demand read scheduling technique which operates based on the data demands of
all running applications. We further introduce a sensor control system 2 which contin-
uously monitors performance characteristics, tunes configuration parameters, and reacts
on failures automatically. In stream analysis systems 3 , we improve the performance of
a major bottleneck, namely windowing and aggregation, and enable computation shar-
ing among concurrently running stream processing jobs. Finally, we show through an
example application 4 how interactive visualizations can expose their data demand to
streaming systems. These systems can then adapt to changing visualization settings
(i.e., data demands) with low latency and without a need to restart cluster applications.

3

Chapter 1. Introduction

1.2.1 Layer 1: Sensor Nodes (Chapter 2)

Current stream analysis systems such as Apache Flink [7, 35], Apache Storm [175], or
Apache Spark [203] require data at high frequencies to serve all possible use-cases. This
is suboptimal because it forces us to read and transfer sensor values beyond the data
demand of applications. We call this problem oversampling :

The data demand of a query is the minimum number of data points which allows for
answering a query with the desired precision. Oversampling is reading or transmit-
ting additional data points that are not required to achieve the desired precision.

Problem 1: Oversampling on Sensor Nodes

The massive growth in the amount of sensors makes oversampling a critical problem.
The available data of a sensor is the maximum number of samples a sensor node can
acquire from a sensor. For example, if a sensor node (e.g., a smart phone or a Raspberry
Pi) can collect samples from a sensor (e.g., a photo cell or an accelerometer) at a 10kHz
frequency, the available data are ten thousand samples per second. As the number of
available sensors in the IoT increases rapidly, systems cannot transfer and process all
available data with maximal frequencies any more. We thus need to trade-off sampling
rates against scale out and data transfer costs.

In order to prevent oversampling, sensor nodes need to adapt their sampling rates
on-the-fly. For example, sensors which experience anomalies should provide detailed
data (high sampling rates). However, most sensors, which do not experience anomalies
at the moment, should reduce their sampling rates. Thus, at any time, we process high
frequency data from a few sensors but we reduce sensor reads and data transmissions
for the majority of sensors to prevent unnecessary costs.

Existing systems lack support for adapting sampling rates on-the-fly depending on
anomalies in sensor data and the combined data demands of multiple queries.

Problem 2: Missing Adaptivity

We contribute a technique that optimizes communication costs while maintaining the
desired accuracy. Our technique schedules sensor reads across large numbers of sensors

4

Chapter 1. Introduction

based on the data demands of a large number of concurrent queries. We introduce user-
defined sampling functions (UDSFs) to overcome the oversampling problem. UDSFs
define the data demand of queries and facilitate various adaptive sampling techniques,
which decrease the amount of transferred data. Moreover, we share sensor reads and data
transfers among queries. Our experiments with real-world data show that our approach
saves up to 87% in data transmissions in a practical use case.

1.2.2 Layer 2: Sensor Control (Chapter 3)

Stream analysis systems combine data streams from many distributed sensors to derive
insights in real-time. Currently, these systems assume that sensor nodes have syn-
chronized clocks, which assign accurate timestamps to measurements. However, this
assumption does not hold in the IoT where diverse sensor nodes such as smart phones
and single board computers are operated by many different organizations and users. In
this case, sensor nodes may travel between timezones, use diverse synchronization tech-
niques, and connect to different reference clocks. Thus, events with the same timestamps
are not necessarily recorded at the exact same time and data tuples have an unknown
time incoherence. This incoherence can lead to undetected application failures, such as
false correlations and wrong predictions.

Sensor values from distributed sensors, which have the same timestamps, are not
guaranteed to be recorded at the same time because sensor node clocks are affected
by clock drifts, imprecise clock synchronization, and other failures.

Problem 3: Time Incoherence

In this thesis, we introduce time coherence as a fundamental data characteristic.
Time coherence measures are an addition to common time synchronization techniques.
They allow for monitoring the synchronization precision, for detecting synchronization
failures, and for quantifying the imprecision of sensor node clocks. The time coherence
of a data tuple is the time span in which all values contained in the tuple have been
read from sensors. We explore concepts and algorithms to quantify and optimize the
time coherence of sensor data tuples that combine values from a large number of dis-
tributed sensor nodes. For each tuple, we provide a guaranteed time coherence which is
independent of clock synchronization among sensor nodes.

5

Chapter 1. Introduction

Current stream analysis systems combine data from many distributed sensors cen-
trally. Thus, they receive individual sensor measures in the form 〈time, value〉 from
many data steams and join them to tuples in the form 〈t, v1, . . . , vn〉. This central corre-
lation has four major issues: (i) it misses edge computing opportunities, (ii) it provides
no time coherence guarantees, (iii) it relies on costly stream joins, and (iv) it results in
a vast amount of parallel network connections at the streaming system.

With the rise of the IoT, we aim to join measurements from thousands of sensors.
Therefore, we are facing the performance limits of central stream joins with respect
to throughput, latency, and network utilization.

Problem 4: Scaling to huge Numbers of Sensors

We explore architectures for gathering data tuples from huge numbers of distributed
sensors. Our technique adapts data gathering and processing pipelines automatically
to optimize resource utilization and time coherence while maintaining guaranteed upper
limits for time incoherence. We show that our solution scales to thousands of sensors,
operates efficiently under latency and coherence constraints, adapts to changing network
conditions automatically, and avoids central bottlenecks caused by stream joins.

1.2.3 Layer 3: Stream Analysis Systems (Chapter 4)

Our sensor control layer prevents a bottleneck caused by central stream joins (see above).
Another bottleneck in stream analysis systems are window discretization and aggre-
gation. Window aggregation is a redundancy-prone operation. Overlapping (sliding)
windows and concurrent queries regularly share data and the corresponding aggregate
computations. The many-to-many mapping between applications and sensors in the IoT
makes this redundancy a critical problem which leads to an expensive system scale-out.

Large computation overlaps caused by sliding windows and multiple concurrent
queries lead to redundant computations which limit throughput and scalability.

Problem 5: Redundant Aggregate Computation

Existing aggregation techniques focus on reducing latency, eliminating redundant
computations, and minimizing memory usage. However, each technique operates under

6

Chapter 1. Introduction

different assumptions with respect to workload characteristics such as properties of ag-
gregation functions (e.g., invertible, associative), window types (e.g., sliding, sessions),
windowing measures (e.g., time- or count-based), and stream (dis)order.

Existing efficient aggregation techniques are limited by different assumptions with
respect to workload characteristics. Violating the assumptions of a technique can
deem it unusable or drastically reduce its performance.

Problem 6: Limited Applicability of Efficient Aggregation Techniques

In this thesis, we introduce a general technique for window aggregation based on the
concept of stream slicing. Our technique automatically adapts to workload characteris-
tics to improve performance without sacrificing its general applicability. As a prerequi-
site, we identify workload characteristics which affect the performance and applicability
of aggregation techniques. Our experiments show that our general stream slicing tech-
nique outperforms alternative concepts by up to one order of magnitude. Our solution
is generally applicable to all data flow systems which adopt a tuple-at-a-time processing
model (e.g., Apache Storm, Apache Flink, and other Apache Beam-based systems).

1.2.4 Layer 4: Front-End Applications (Chapter 5)

Front-end applications for live data visualization experience the same issues as stream
analysis systems with respect to massive amounts of streaming data in the IoT. The
amount of available data frequently makes it impossible to visualize all data points at
the same time in front-end applications.

Due to the massive amount of available real-time data, it is impossible to visualize
all data points at the same time. Streaming data to front-end applications without
appropriate pre-processing results in an overload which causes applications to crash.

Problem 7: Visualization Overload

Because we cannot visualize all data points at the same time, it is important to allow
for interactive data exploration in the IoT. To this end, we need to connect front-end
applications with pre-processing jobs, which run on stream analysis systems, in order to
synchronize data pre-processing with changing visualization needs.

7

Chapter 1. Introduction

Stream processing pipelines of current systems do not adapt to changing visualiza-
tion needs. This makes it hard to allow for interactive and graphical data exploration
without causing visualization overload and/or heavy cluster utilization.

Problem 8: Missing Interactivity

We present I2, an interactive development environment for front-end applications and
corresponding pre-processing jobs. I2 coordinates running cluster applications and cor-
responding visualizations such that only the currently depicted data points are processed
and transferred. To this end, we generalize M4 [91], an algorithm for the visualization
of time series, to enable real-time visualization of data streams. M4 is proven to be
correct and minimal in terms of transferred data. Moreover, we show how cluster pro-
grams can adapt to changed visualization properties at runtime to allow interactive data
exploration on data streams.

Our experiments show that the amount of transferred data, the memory utilization,
the CPU load, and the frame rate remain constant when I2 is active. Without I2, the
visualization becomes unresponsive due to the massive amount of arriving data which
needs to be filtered and aggregated in dashboard applications.

1.3 High-Level Architecture

We provide an end-to-end architecture, which affects all layers of the infrastructure
stack presented in Section 1.2. We present a novel system for operating sensor nodes
(Layers 1 and 2) and extend stream analysis systems (Layer 3) with novel algorithms
to address new requirements posed by the IoT. Finally, we introduce an interactive
development environment which connects front-end applications (Layer 4) with stream
analysis systems (Layer 3). It is important to highlight that our architecture is modular.
Thus, sensor nodes, sensor control, stream analysis systems, and front-end applications
can run independently of each other but are connected through unified interfaces. The
modular design allows for replacing layers (e.g., changing the stream analysis system) and
for skipping layers (e.g., applications can also request data from sensor nodes directly).
To simplify the explanation, we present our architecture based on an example processing
pipeline (Figure 1.4 on Page 9).

8

Chapter 1. Introduction

Figure 1.4: Architecture overview of on-demand data stream processing.

1 Sensor Nodes (s1, s2, ..., sN) are the origin of data streams () (left of Fig-
ure 1.4) and transmit live sensor data to upstream layers of our infrastructure stack. The
core of each sensor node is a sensor read scheduler (shown for s2) which decides when to
read values from sensors and when to transmit them. We introduce an on-demand
scheduling technique which produces tailored data streams based on data demands
() expressed by data consumers. For each sensor, we perform read schedul-
ing such that sensor reads and corresponding network traffic are shared among users
and queries. One of our contributions is to unify the way in which data consumers
express their data demands. In Figure 1.4, the control layer 2 derives and posts data
demands as control messages () based on performance metrics and observed failures.
In general, any user, streaming system, or application can submit their data demand to
any sensor node and will receive the requested data stream.

2 The Sensor Control Layer manages the data acquisition from huge numbers of
sensors located at distributed sensor nodes. Thereby, the control layer solves scalability
and data quality issues which arise when operating huge numbers of sensors. The control
layer continuously monitors performance metrics and trades latency and result precision
against resource utilization making sure that all application requirements are met.

The control layer arranges sensor nodes in pipelines to prevent scalability issues
(Problem 4 in Section 1.2.2). As part of the control layer, we join () sensor values
(v1, v2, . . . , vN) from distributed nodes (s1, s2, . . . , sN) to combined sensor data tuples in
the form 〈t, v1, v2, . . . , vN 〉. Our solutions supports acquisitional query processing [118] to
apply data transformations within sensor node pipelines. For example, one can compute
spatial aggregates [43, 63, 154] to receive result tuples in the form 〈t, agg(v1, v2, . . . , vN)〉.
Each result tuple provides a time coherent snapshot of sensor values taken at time t.

9

Chapter 1. Introduction

3 Stream Analysis Systems receive coherent data tuples from a joint input stream
instead of individual sensor values scattered over hundreds or thousands of data streams
originating from IoT devices (i.e., individual sensor nodes). This prevents the need to
join a huge number of streams centrally and, thus, avoids a central bottleneck.

Another typical bottleneck in stream processing pipelines are temporal aggregations.
The IoT trend poses new challenges in this context: Many concurrently running ap-
plication (i.e., queries) aggregate the input stream based on many different window
specifications (e.g., different sliding windows [82], session windows [5], user-defined win-
dow [36], and data-driven windows [74]). We solve these challenges with a multi-query
windowing () and aggregation () framework which is highly efficient and flex-
ible with respect to window types. Our solution shares partial aggregates among all
queries, including all window types, and thereby prevents redundant computation steps.
We conduct an extensive experimental evaluation which shows that our solution scales
seamlessly to thousands of concurrent windows and outperforms existing solutions by
one order of magnitude in terms of throughput.

4 Front-End Applications such as browser-based dashboards and smart phone
apps visualize live-data and allow for monitoring current events. However, front-end
applications cannot display all available IoT data at the same time because the amount
of data would immediately overload the visualization application. Thus, front-end ap-
plications rely on data pre-processing steps () such as filtering and aggregation
which are performed on stream analysis systems. We present I2, an interactive envi-
ronment for visualization supported development of stream analysis applications. I2

establishes an interface between stream analysis systems and front-end applications.
Through this interface, front-end applications propagate current visualization properties
() to running pre-processing jobs in stream analysis systems. This enables stream
analysis systems 3 to pre-process data adaptively and to minimize the output data
with respect to visualization needs. We introduce a four step data reduction ():
The first step handles data arriving out-of-order (). The second step discretizes the
stream to windows (), before windows are aggregated in the third step (). Finally,
we apply an additional data compression (). With I2, users can explore live data in
an interactive visualization while pre-processing jobs adapt at runtime to data demands
of the visualization and deliver tailored data streams.

10

Chapter 1. Introduction

1.4 Impact of Thesis Contributions

Research Publications. The primary results of this thesis have been presented in the
following peer-reviewed publications at international top-tier venues:

1. Jonas Traub, Sebastian Breß, Tilmann Rabl, Asterios Katsifodimos,
Volker Markl: Optimized On-Demand Data Streaming from Sensor Nodes. ACM
Symposium on Cloud Computing (SoCC), 2017.

2. Jonas Traub, Julius Hülsmann, Tim Stullich, Sebastian Breß, Tilmann
Rabl, and Volker Markl: SENSE: Scalable Data Acquisition from Distributed
Sensors with Guaranteed Time Coherence. https://arxiv.org/abs/1912.04648, 2019.

3. Jonas Traub, Philipp Grulich, Alejandro Rodríguez Cuéllar, Sebastian
Breß, Asterios Katsifodimos, Tilmann Rabl, Volker Markl: Efficient Win-
dow Aggregation with General Stream Slicing. International Conference on Extend-
ing Database Technology (EDBT), 2019.

4. Jonas Traub, Philipp M. Grulich, Alejandro Rodríguez Cuellar,
Sebastian Breß, Asterios Katsifodimos, Tilmann Rabl, Volker Markl:
Scotty: Efficient Window Aggregation for out-of-order Stream Processing.
IEEE International Conference on Data Engineering (ICDE), 2018.

5. Jonas Traub, Nikolaas Steenbergen, Philipp M Grulich, Tilmann Rabl,
Volker Markl: I2: Interactive Real-Time Visualization for Streaming Data. In-
ternational Conference on Extending Database Technology (EDBT), 2017.

Research Talks. Parts of the work on Optimized On-Demand Data Streaming from
Sensor Nodes (Chapter 2) have also been presented at the 2nd BMBF Big Data All
Hands Meeting (BDAHM) and the 2nd Smart Data Innovation Conference (SDIC) 2017
at KIT Karlsruhe (joint conferences), at the Stream Reasoning Workshop 2018 at the
University of Zurich (UZH), and in several invited talks at international universities.

Parts of the work on stream discretization and window aggregation presented in
Chapter 4 have also been presented at the FlinkForward Berlin conference 2018. The I2

development environment presented in Chapter 5 was also presented at the FlinkForward
Berlin conference 2017. These talks at developer conferences bridge the gap between
research and practice and support the adoption of our contributions in industry.

11

Chapter 1. Introduction

Open Source Contributions. Our general and efficient window discretization and
aggregation technique (Chapter 4) addresses an urgent need in industry [29, 168, 197] and
is available as an open source framework which can be connected to diverse streaming
engines including Apache Flink and Apache Beam. Our I2 development environment
(Chapter 5) comes as a ready-to-run Docker container and was implemented as an open
source project based on Apache Flink [35] and Apache Zeppelin [12]:

• General Stream Slicing with the Scotty Window Processor:
Project Website: https://tu-berlin-dima.github.io/scotty-window-processor/
Open Source Repository: https://github.com/TU-Berlin-DIMA/scotty-window-processor

• The I2 Development Environment for Interactive Real-Time Visualization:
Project Website: https://tu-berlin-dima.github.io/i2/
Open Source Repository: https://github.com/TU-Berlin-DIMA/i2
Docker Hub: https://hub.docker.com/r/tuberlindima/i2/

Our sensor control software (Chapter 3) is the first to our knowledge, which provides
guaranteed upper bounds for the time incoherence within sensor data tuples and con-
tinuously optimizes time coherence based on current network conditions and failures.
In combination with our on-demand scheduler for sensor reads and data transmissions
(Chapter 2), we provide a complete solution for efficient sensor data gathering and trans-
mission in the IoT [179]. We plan to release our read scheduler and our sensor control
software as an open source library, which will become part of the NebulaStream platform
for application and data management in the IoT [204].

Summary. The contributions made in this thesis are highly relevant for emerging IoT
databases which need to bridge the gap between data acquisition and data processing to
solve scalability issues. Our examples show great potential with respect to resource sav-
ings, scalability, and sensor management. Our open source releases allow for integrating
the system components presented in this thesis into novel IoT database systems as well
as existing stream processing systems. Our research publications provide a basis for fu-
ture research. For example, one can investigate optimal implementations of user-defined
sampling functions, extend our failure handling mechanisms, or invent new benchmarks
for demand-based data stream gathering, processing, and transmission.

12

https://tu-berlin-dima.github.io/scotty-window-processor/
https://github.com/TU-Berlin-DIMA/scotty-window-processor
https://tu-berlin-dima.github.io/i2/
https://github.com/TU-Berlin-DIMA/i2
https://hub.docker.com/r/tuberlindima/i2/

Chapter 1. Introduction

1.5 Structure of the Thesis

Chapter 1 - Introduction
Chapter 1 gave an introduction to the thesis by presenting the thesis objectives
and a high-level overview of our solution architecture. For each layer of our archi-
tecture, we outlined the research problems and our contributions. We closed the
introduction with a description of the impact of the thesis contributions.

Chapter 2 - Optimized On-Demand Data Streaming from Sensor Nodes
Chapter 2 focuses on the sensor node layer. We address the problem of oversam-
pling on sensor nodes and provide the missing adaptivity to sampling techniques.
We introduce user-defined sampling functions to express data demands and opti-
mize sensor read times to share sensor values and traffic among users and queries.

Chapter 3 - Scalable Data Acquisition with Guaranteed Time Coherence
Chapter 3 introduces a sensor control layer to orchestrate large numbers of sensor
nodes. Besides scalability challenges, Chapter 3 addresses the problem of time
incoherence. We introduce time coherence as data characteristic of sensor data
tuples and provide synchronization independent coherence guarantees.

Chapter 4 - Efficient Window Aggregation with General Stream Slicing
Chapter 4 addresses window discretization and aggregation which is a major bot-
tleneck of stream analysis systems. We prevent repeated aggregate computation by
sharing partial aggregates among all users and queries. Our aggregation technique
is more general than existing solutions and drastically improves throughput.

Chapter 5 - Interactive Real-Time Visualization for Streaming Data
Chapter 5 connects front-end applications and stream analysis systems. We present
the I2 development environment which addresses the problem of visualization over-
load and enables the interactive exploration of streaming data. I2 eases the devel-
opment and operation of live dashboard and corresponding pre-processing jobs.

Chapter 6 - Additional Contributions
Chapter 6 lists additional related research contributions of the author, which have
been made while working on this thesis, but are not covered in other chapters.

Chapter 7 - Conclusion
Chapter 7 concludes the thesis and provides an outlook to future work.

13

2
Optimized On-Demand Data Streaming

from Sensor Nodes

Figure 2.1: Scope of Chapter 2 - Read Scheduling on Sensor Nodes.

In this chapter, we focus on sensor nodes as foundation of our end-to-end architecture.
We aim to make our sensor node system generally applicable. To this end, we introduce
a read scheduler which works as source of sensor data streams: it reads (pulls) data
from physical sensors and streams (pushes) that data to upstream processing pipelines.
Any user, application, or sensor control systems can request live sensor data through our
scheduler. Thus, we allow for sharing sensor nodes among many data consumers. Our
scheduler multiplexes all requests and shares sensor reads and corresponding network
traffic among all consumers to save costs. We present different examples where users
and applications request data from sensor nodes directly. In Chapter 3, we will use the
same read scheduler as part of our control layer that manages many sensor nodes.

14

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

2.1 Introduction

Billions of devices are equipped with sensors to supply data analysis applications with
real-time data [191]. The resulting vast amount of data streams causes heavy network
utilization and scalability challenges, which incur increased financial costs. Currenly,
sensor data analysis follows a monolithic architecture with a tight coupling of appli-
cations to sensors. However, the IoT works as a sensor cloud in which huge numbers
of sensors are shared among huge numbers of applications. This requires us to break
away from monolithic architectures and to introduce a new architecture that decouples
sensor management from introducing new applications. In this chapter, we present how
applications can express their data demands and how sensor nodes can produce tailored
data streams according to these demands. Our solution addresses the problems of over-
sampling on sensor nodes and missing adaptivity, which we introduced in Section 1.2.1.

Data requirements differ significantly among applications. For example, outlier de-
tection requires high sampling frequencies and has low selectivity in local filters at the
sensor node. The opposite is true for monitoring a long term trend in time series, which
has a low sampling frequency and does not apply local filters. These varying require-
ments (i.e., the diversity of data demands) makes it challenging to prevent oversampling.

Periodic sampling reads and transfers data with a fixed frequency. This is insufficient
due to missing adaptivity : adaptive sampling techniques dynamically adjust sampling
rates depending on the variance within recent samples [59, 67, 184]. With adaptive
sampling, we retrieve detailed data (high sampling rate) from sensors which experience
anomalies. However, most sensors do not experience anomalies at the moment and
reduce their sampling rates. Thus, we can reduce sensor reads, data transmissions, and
processing effort for the majority of sensors to save resources.

Adaptive sampling techniques provide good approximations of time series with sig-
nificantly reduced average sampling rates compared to periodic sampling. However,
adaptive sampling is impractical for other use-cases such as outlier or failure detection.
There is no one-for-all sampling technique, which at the same time serves all queries
and prevents oversampling. The naive approach to set up a smart sampling technique
for each query independently is not satisfying either. It might avoid oversampling for
one query, but it disregards commonalities between multiple queries, which from a global
point of view, again causes oversampling and redundant data transmissions.

15

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Current real-time analysis platforms do not take control of the production of their
input streams [35, 175]. Instead, they rely on techniques such as load shedding [172] and
back pressure handling [38], to avoid system crashes when data rates increase. Both tech-
niques run centrally, after transferring the data from sensor nodes to a stream analysis
system. Thus, they neither prevent oversampling nor redundant data transmissions.

Common sensor networks such as TinyDB [119] and Cougar [50] compile queries
locally at a base station and then disseminate them to sensor nodes. Thereby, they
focus on the optimization of a single query. Our architecture complements existing
sensor networks by enabling the sharing of sensor reads and traffic costs among queries.

In this chapter, we introduce on-demand streaming from sensor nodes. While we
make all data accessible, the amount of read and transferred data solely depends on the
demand of executed queries instead of the amount of available data.

Our solution consists of two components: First, we solve the oversampling problem
using user-defined sampling functions (UDSFs). UDSFs allow for publishing the data de-
mand of queries to data gathering components, which can then provide well orchestrated
data streams. UDSFs are highly flexible, easy to implement, and keep the complexity
of multi-query optimization transparent to the user. Second, we prevent redundant
transmissions with an algorithm for multi-query read scheduling, which is executed at
the sensor nodes. Our algorithm executes the minimum possible number of sensor reads
only. Therefore, it shares sensor reads and traffic among queries and optimizes the times
when sensor reads are performed. Summarizing, our contributions are as follows:

1. We introduce user-defined sampling functions (UDSFs) to overcome the missing
adaptivity of periodic sampling and to avoid oversampling.

2. We contribute a multi-query read scheduling algorithm, which enables frequent
read and traffic sharing among queries to avoid redundant data transmissions.

3. We further optimize read times based on given read time preferences while still
executing only the minimum number of reads in total.

4. We experimentally validate our approach and show its effectiveness in a practical
setting.

In the remainder of this chapter, we present a motivating example in Section 2.2 and
explain backgrounds in Section 2.3. We show our architecture in Section 2.4 and intro-
duce UDSFs in Section 2.5. Section 2.6 presents our scheduling algorithm. We present
our theoretical analysis in Section 2.7 and our experimental evaluation in Section 2.8.

16

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Figure 2.2: Multi-query read scheduling provides tailored data streams
based on the data demand of queries.

2.2 A Motivating Example

We show our solution with an example in Figure 2.2. We use floating-car data1 to
provide alerts to drivers ahead of dangerous locations, which often cause heavy braking
(e.g., tight curves or animal crossings). Similar assistance systems use floating car data
for green light optimal speed control [141] and online traffic estimation [146].

Three queries are required in our example: Query 1 retrieves data to train a driver
profile with a machine learning technique. Query 2 retrieves data to train a route
profile. Query 3 combines route and driver profiles with current telemetry data to detect
exceptional situations, which then leads to alerts.

Each query has a different data demand: Query 1 observes the aggressiveness of
drivers (intensity of breaking and acceleration). Therefore, it adaptively increases sam-
pling rates when accelerating or braking. Query 2 requires a sample at least every
20 meters to profile the road and, therefore, computes the next sensor read time as
t = 20m

current speed . Query 3 requires a sample at least every 0.3s.
We simulate our example with telemetry data from Formula 1 cars. Therefore, we

replay sensor data from the fastest qualifying laps of 32 Formula 1 races in 2015 and
2016 with a 30Hz sampling rate. We utilize tolerances in sensor read times: Query 1
uses adaptive sampling with ±0.2s read time tolerance. Query 2 and 3 enforce minimum
sampling rates, but allow higher rates.

Each query defines its data demand and read time tolerances in a UDSF. UDSFs
empower domain experts to specify the data demand without specifying details of the

1 "The floating car data technology is a relatively new approach to collect traffic data. In contrast
to usual approaches vehicles which float with the traffic stream are used as sensors to give information
about the traffic states." [182]

17

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

0

2

4

6

8

10

12

14

16

18

10.6

16.0

4.6

se
ns

or
re
ad

s
[in

10
00

0]
periodic adaptive on-demand

(a) Number of sensor reads.

0

1

2

3

4

5

3.52

4.65

1.52

da
ta

tr
an

sf
er
s
[in

10
00

0]

(b) Transferred tuples.

Figure 2.3: Sensor reads and transferred tuples for our introductory
use-case on Formula 1 data.

query execution. For example, we use domain knowledge to determine proper tolerance
intervals for read times. We found that ±0.2s read time tolerance for Query 1 provides
the best trade-off between result accuracy and savings achieved through read sharing.

We show the number of sensor reads and data transfers in Figure 2.3. Periodic
sampling falls back to the highest sampling rate which is requested by any UDSF at any
time. This results in more than 100 thousand sensor reads. On-Demand scheduling saves
57% in sensor reads compared to periodic sampling because it can adapt sampling rates at
runtime. Adaptive sampling can reduce sampling rates most of the time. However, when
executing queries independently, adaptivity does not make up for the missed opportunity
to share sensor reads among the queries. Respectively, on-Demand scheduling saves 72%
of the sensor reads compared to executing queries independently. In addition, on-demand
scheduling prevents thrashing when many queries require values from the same sensor
by sharing sensor values among queries.

We combine values from three sensors (speed, position, and rpm) in each tuple. Thus,
the number of transferred tuples is about one third of the number of sensor reads. The
increased tuple width has no significant effect on the transfer costs because a tuple still
fits in one network package. The payload data of the package (one to three values) is
small compared to the package header. The workload for initiating and acknowledging
the transfer of a package exceeds the workload for transferring the actual payload data
by far. This leads to significant savings in transfer costs when we reduce the number

18

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

of transferred tuples. In addition to combining three values in each tuple, we avoid
transfers with adaptive filtering. We discuss adaptive filtering in detail in Section 2.5.5.

The reduction in data transmissions would cut charges for mobile network usage
when monitoring a fleet of cars. Additionally, the reduced inbound traffic at a central
analysis cluster prevents scale-out fees of cloud providers.

2.3 Background

Before we discuss UDSFs and our multi-query read scheduling algorithm, we provide an
overview of sensor data transfer, adaptive sampling, and usage scenarios.

2.3.1 Pull- and Push-Based Data Transfer

A major difference between batch processing (analysis of data at rest) and stream pro-
cessing (real-time analysis) is the way data transfers are initiated. MapReduce [49]
systems and relational databases process previously stored data when they execute a
query. Thus, they can pull data from disk as needed, for example, using the iterator
model. In contrast, stream processing systems have no control over incoming streams,
which can push data into the system at an arbitrary rate.

We combine push- and pull-based data transfer: on the one hand, we pull data from
sensors2 based on the data demand of queries. On the other hand, we asynchronously
push data through the stream processing pipeline, which enables low latency processing.

UDSFs and our read scheduling algorithm are applicable wherever data is pulled
from a source. This, for example, also holds for service APIs such as Twitter Streaming
or Google Cloud Prediction. Avoiding oversampling on these APIs directly results in
financial savings because charges apply per API call [72].

2.3.2 Adaptive Sampling

Adaptive sampling techniques such as AdaM [184], FAST [59], and L-SIP [67] reduce
oversampling compared to periodic sampling. They reduce sampling rates on the fly
whenever values evolve predictably or remain constant. At the same time, they increase
sampling rates as required, to not exceed failure tolerances.

2We refer to physical sensors, such as photo cells or accelerometers, as sensors, and call the devices
which host sensors sensor nodes.

19

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

We adopt the definitions of periodic sampling and adaptive sampling from Trihinas
et al. [184]: "For a metric stream M, periodic sampling is the process of triggering
the collection mechanisms of a monitored source every T time units. T is a fixed
interval, such that the i-th sample is collected at time ti = i · T [...]
Adaptive sampling is the process of dynamically adjusting the sampling period

Ti, based on some function, denoted as ρ(M), containing information of the metric
stream evolution (e.g. a moving average)." In our case, the monitored source is a
sensor and M is a stream of values collected (i.e., read) from that sensor.

Definition: Periodic Sampling vs. Adaptive Sampling

We adopt the formal definition of the adaptive sampling problem from Trihinas
et al. [184]: Let si(ti, vi) be the latest (i-th) sample read from a sensor with the
timestamp ti (read time) and the value vi. Let T accept integer values (time units)
in a range [Tmin, Tmax] ⊆ Z+ without loss of generality. We compare a metric
stream M , consisting of periodic samples read every Tmin time units, with a stream
M ′ retrieved with adaptive sampling. We say that dist is the difference between M
and M ′ according to some distance metric.
"The goal of adaptive sampling is to provide a sampling function f(·), capable of
finding the maximum T ∈ [Tmin, Tmax] to collect si+1, based on an estimation of the
metric stream evolution ρ(M), such thatM ′ differs fromM less than an imprecision
value γ (dist<γ) for the range t ∈ [ti, ti + T]. Thus, the problem is summarized
with the following equation:

T ∗ = argmax
T
{f(s, T, ρ(M), dist, γ) | dist < γ, T ∈ [Tmin, Tmax]}" [184]

Formal Definition of the Adaptive Sampling Problem

20

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Different use cases require different adaptive sampling techniques: for example,
AdaM [184] is robust against abrupt value fluctuations and provides good approxima-
tions of time series. FAST [59], on the other hand, incorporates concepts of differential
privacy for real-time aggregate monitoring. Our read scheduler allows for multiplexing
different adaptive sampling algorithms in parallel on shared sensors to enable reduced
average sampling rates. We implement AdaM and FAST as examples for adaptive sam-
pling techniques. Both combine adaptive sampling with adaptive filtering. However, the
algorithms differ fundamentally from each other: AdaM uses Probabilistic Exponential
Weighted Moving Averages [37] for value estimations while FAST adopts a Proportianal
Integral Derivate controller [128]. It is not required to understand the mathematical
details of AdaM and FAST to follow the remainder of this thesis. However, we provide
formal definitions of adaptive sampling, AdaM, and FAST on the next pages.

AdaM provides an adaptive sampling algorithm which calculates Ti+1 with O(1)

time and space complexity. AdaM computes Ti+1 as follows:

Ti+1 =

Ti + λ · (1 + ci−γ

ci
) ci ≥ 1− γ

Tmin otherwise.

λ is a multiplication factor which may be set by users to adjust the aggressiveness of
the adaptation. AdaM uses a Probabilistic Exponential Weighted Moving Average
(PEWMA) [37] to compute a one-step ahead prediction for sensor values. ci denotes
the confidence of this prediction. To compute ci, AdaM first estimates a (moving)
standard deviation (σ̂i) between predicted sensor values and actual sensor values.
When reading a sensor value, AdaM computes ci = 1 − (|σ̂i − σi|)/σi, which is the
ratio between the failure of predicted standard deviation and the actual observed
standard deviation. "The semantics behind the confidence are: The more confident
the algorithm is, the larger the outputted sampling period Ti+1 can be." [184]

Adaptive Monitoring Framework (AdaM) [184, 185]

21

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

FAST includes an adaptive sampling component, which uses a Proportional-Integral-
Derivative (PID) controller [9, 17, 18, 128] to adapt the sampling interval T . PID
controllers are a common technique for feedback control in industry and research [57,
105, 195]. We now briefly explain a PID controller and show how it is used by FAST.
We omit details about differential privacy in FAST to simplify the explanation and
refer the reader to the original publication for a complete specification [58]. Some
notations in the following description have been changed from the original ones to
be consistent with our definitions of adaptive sampling and AdaM (see above).
A PID controller aims to achieve a desired result (e.g., a desired speed) by

continuously adjusting a configuration (e.g., acceleration). The controller uses an
error (e.g., the difference between desired and current speed) to calculate three
terms: the proportional (P), integral (I), and derivative (D) term.
P is proportional to the current error. The larger the error, the larger the config-

uration change. I integrates over past values of the error. Thus, the longer an error
persists, the larger the configuration change. D operates based on the change in the
error. The smaller the change, the more dampening occurs to prevent overshooting.
FAST uses a Kalmann Filter Prediction procedure [92] to compute a prediction

(xi−1) of the metric evolution of M . After reading a new value, a correction mech-
anism updates xi−1 to xi. The error between xi−1 and xi is calculated as follows:

Ei = |xi−1 − xi| / xi
The error Ei is the input of the PID-Controller used by FAST:

∆T = CpEi +
Ci
k

∑i
j=i−k Ej + Cd

Ei − Ei−1

Ti︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Proportional Integral Derivative

Thereby, k is the number of previous error values which is considered in the integral
term. Cp, Ci, and Cd specify the weight of the proportional, integral, and derivative
term. The result (∆T) and two pre-configured interval adjustment parameters (θ
and ξ) allow for computing Ti+1 as follows:

Ti+1 = Ti + θ(1− e
∆T−ξ
ξ)

Filtering and Adaptive Sampling for
Differentially Private Time Series Monitoring (FAST) [58, 59, 60, 61]

22

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

1. SENSOR IDENTIFIERS︷ ︸︸ ︷
SELECT t, speed, position, rpm

FROM car-fleet WITH ADAM() ON speed︸ ︷︷ ︸ ︸ ︷︷ ︸
2. SENSOR NODES 3. SAMPLING FUNCTION

Figure 2.4: An example query with user-defined sampling and its cor-
responding processing pipeline.

2.3.3 The User’s Perspective

It is important to highlight that the complexity of multi-query read scheduling is trans-
parent to users. Users can still define streaming queries in declarative languages such as
CQL [13] or SPL [80]. From the perspective of a user, a data stream consists of tuples
〈t, v1, v2, ..., vn〉 where t is the timestamp of a tuple and v1 to vn are the values from all
available sensors at time t.

2.3.3.1 Data Acquisition from Sensor Nodes

We show an example query with its corresponding processing pipeline in Figure 2.4. The
query acquires a data stream of tuples in the format 〈t, v1, v2, ..., vn〉 as specified above.
Based on this stream, one can compute a driver profile in accordance to our introductory
example (Figure 2.2 on Page 17). We omit a more complex profiling algorithm for the
sake of simplicity. The query consists of three parts:

1. Sensors are referenced by identifiers similar to column names in SQL.
2. Instead of tables, we refer to sensor nodes as data sources in the FROM clause.
3. We add a WITH clause to specify a UDSF and the sensor it is applied to.

The user specifies the data demand of the query by implementing a UDSF or choosing
a pre-defined one. This empowers domain experts to express their data demand flexibly
and also enables adaptive sampling techniques. We explain UDSFs in Section 2.5.

23

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Figure 2.5: Example: Measuring the energy expenditure of Berlin.

The processing pipeline of the query starts with the read scheduler, which uses
AdaM to sample the speed sensor. It then fetches the position and the revolutions
per minute (rpm) in an ad-hoc fashion in order to construct the output tuples. This is
regularly beneficial because we reduce sampling rates in comparison to periodic sampling
with a constant rate. In this chapter, we focus on UDSFs and the functionality of the
Read Scheduler to acquire values from a single sensor node.

2.3.3.2 Spatial and Temporal Aggregation

An aggregation is a combination of multiple values in a single summary. In our example
query in Figure 2.4, we concatenate values from three sensors to one tuple, which is a
spatial aggregation, i.e., a summary of values from different sources. We differentiate
spatial and temporal aggregations. A temporal aggregation is a summary of values over
time. For example, we can monitor the speed sensor with our query in Figure 2.4 and
use a stream analysis system to compute the average speed for some time interval.

We now present an example for combining data acquisition with spatial and temporal
aggregation. Figure 2.5 shows a map of Berlin. In this example, the power grid of Berlin
is connected to Berlin’s neighboring state Brandenburg with five major power cables. On
each of these cables, a sensor monitors the electrical power in Watt (W). If we compute
the sum of the values of all five sensors at some point in time, we get the combined
electrical power at that time in Watt (spatial aggregation). If we monitor the electrical
power over a course of time, we can derive the energy expenditure for that course of time
in watt-hours (Wh) (temporal aggregation). The following declarative query combines
spatial and temporal aggregation to compute an energy expenditure for each hour (one
hour tumbling window):

24

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Temporal Aggregation Function Temporal Window︷ ︸︸ ︷ ︷ ︸︸ ︷
SELECT AVG(v1 + · · ·+ v5) FROM s1, · · · , s5 WITH PERIODIC(1s) WINDOW 1h︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Spatial Aggregation Sensor Nodes Sampling Function

Based on the query above, the system acquires and aggregates values as follows:

t v1 v2 · · · v5

12:00:01 5kW 5kW · · · 9kW
12:00:02 3kW 5kW · · · 8kW

...
...

...
. . .

...
12:59:59 7kW 5kW · · · 4kW

spatial
=======⇒
aggregation

t
∑5

n=1 vn

12:00:01 26kW
12:00:02 28kW

...
...

12:59:59 24kW

temporal
=======⇒
aggregation

25kWh

One can observe that the system supports combining temporal and and spatial ag-
gregations in a declarative query. It remains transparent to users if aggregations are
performed on sensor nodes, in-network, or at a central analysis system. In Chapters 3
and 4, we discuss how the system actually performs aggregations: In Chapter 3, we
introduce data acquisition pipelines which cover multiple sensors and can perform spa-
tial aggregations. In Chapter 4, we optimize the performance of temporal aggregations,
which are a typical bottleneck in stream analysis systems.

2.4 System Architecture

In this section, we present how on-demand streaming from sensor nodes eliminates un-
neccessary sensor reads and thus, data transmissions. In Figure 2.6a on Page 26, we
illustrate how on-demand streaming integrates with streaming systems.

First, users submit their queries and their data demand (expressed by UDSFs) to a
stream analysis cluster 1 . We then propagate the UDSFs to the sensor nodes 2 . To
simplify the explanation in this chapter, we omit the the intermediate sensor control
layer (Chapter 3) between stream analysis systems and sensor nodes. This layer uses
the functionality of read scheduling on sensor nodes but does not require changes in
the scheduling technique presented in this chapter. In general, any user, application,
streaming system, control system, etc. can submit UDSFs to sensor nodes, which makes
our technique generally applicable to diverse application scenarios.

25

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

12

3

(a) Overall on-demand streaming architecture.

1 2 3 4

(b) Read scheduler internals.

Figure 2.6: On-demand streaming architecture.

For each sensor, we perform read scheduling in four phases (Figure 2.6b): read time
suggestion, read fusion, read execution, and local filtering. First, during read time sug-
gestion 1 , each UDSF (provided with each query) proposes a read time with a tolerance
interval. Second, during read fusion 2 , we fuse proposed read times to a single sensor
read, if the tolerance intervals overlap. Third, during read execution 3 , we perform the
actual read on the sensor. Finally, during local filtering 4 , we determine if we need to
transmit the obtained sensor value. We can, e.g., avoid transmitting values which are
similar to previous ones or follow an expected trend.

Read time suggestion allows for adaptive sampling to avoid oversampling. This is
especially important whenever charges apply per read (e.g., service API calls). Read fu-
sion avoids redundant data transmissions and enables sensor read sharing among queries.
It thereby reduces network charges. Local filtering further reduces data transmissions,
which reduces the inbound traffic at the analysis cluster and prevents scalability issues.

Complementary Techniques. Our scheduler works complementary to the suc-
ceeding push-based processing pipeline (Figure 2.6a 3), which can consist of arbitrary
stream transformations such as aggregations, filters, or stream joins [8, 45, 127]. It

26

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

thereby goes hand-in-hand with techniques such as query fusion on sensor nodes [130,
198, 199], operator push-down, and acquisitional query processing (ACQP) [119]. The
combination with ACQP is of special interest: we first apply read scheduling on a sub-
set of sensors to avoid oversampling. We then further reduce the data with filters and
aggregations. Finally, we fetch values from additional sensors for the remaining tuples
only. We will discuss all mentioned techniques in more detail in Section 2.9.

Alternative Architectures. We study a setting were we execute read scheduling
on sensor nodes. We tested our algorithms using Raspberry Pis and Android smart
phones as sensor nodes and did not experience any performance problems. However, our
read scheduler also works as a middleware layer which aggregates UDSFs (i.e. queries)
at a more powerful machine close by the sensor nodes (i.e. a base station server or a
router). Our read scheduler pulls values from sensors (i.e. it samples the sensor) on the
fly based on the data demand expressed in UDSFs. This enables adaptive sampling but
requires a low latency connection between the read scheduler and the sensor we sample.

2.5 User-Defined Sampling

Different applications may have contradicting sampling requirements. They may vary in
sampling rates, may transfer different fractions of sensor values, and may have different
requirements for read time precision and data freshness (maximum age of values arriving
at the cluster).

User-defined sampling functions (UDSFs) allow for the precise definition of each
query’s data demand and facilitate adaptive sampling techniques. This makes them the
basis for avoiding oversampling. They further model read time tolerances and prefer-
ences, which enables read fusion to solve the redundant transmission problem.

In the following section, we first discuss how we enable read fusion and optimize
sensor read times. This leads to our model for the read times proposed by UDSFs (in
short read requests). We then show how we can cover example applications with UDSFs.
Finally, we introduce local filter functions to further reduce data transmissions.

2.5.1 Enabling Read and Traffic Sharing

Sampling techniques define exact times where values shall be read from sensors. The
probability that we can fuse two requested reads (share sensor reads among queries)
decreases with the read time precision and vice versa. In order to enable frequent

27

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Figure 2.7: Example: Sharing sensor reads among two queries.

read fusion, applications have to specify their precision requirement for read times. We
thus represent requested sensor reads (in short: read requests) as tolerance intervals
instead of exact times. We share sensor reads as well as the corresponding traffic among
queries whenever tolerance intervals overlap. For example, consider Figure 2.7: two
queries periodically request sensor reads from the same sensor and we utilize read time
tolerances to fuse requested reads.

For many use cases, a certain deviation from the desired read times (read time slack)
is possible without harming the result quality. For example, consider a query which
requires the current temperature every hour. This query does not require a nanosecond
read time precision but can offer a tolerance, e.g., one minute. We found that sophis-
ticated adaptive sampling techniques such as AdaM [184] and FAST [59] are robust
against a certain slack in read times as we show in our experiments in Section 2.8.2.3.

2.5.2 Global Read Time Optimization

Our scheduling algorithm not only minimizes the number of sensor reads, it also opti-
mizes the exact sensor read times. We provide semantics to model read time preferences
by introducing penalty functions (p(t)). Each read request can define its individual
penalty function to penalize read times within the tolerance interval which deviate from
the desired (optimal) read time. Our optimizer minimizes the overall penalty when
fusing read request of multiple queries to shared sensor reads.

For example, consider our introductory use case in Figure 2.2 on Page 17: Query 2
(Route Profile) requires a sample at least every 20 driven meters. Reading earlier is
harmless and we can thus define our penalty function as p(t) = 0 (i.e., we do not apply
any penalty for read time deviations). At the same time, we execute Query 1 (Driver
Profile), which uses AdaM. In this case, read time slack might affect the result quality
and thus we set p(t) = t2. In general, we can set any penalty function that describes our

28

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

tmin tD tmax

0

0.5

1

1.5

2

read time

p
en
a
lt
y

p1(t) = t2

p2(t) = |t|
p3(t) = 0

p4(t) =

{
|0.5t|, t ≤ tD

|t3|, t > tD

Figure 2.8: Examples for penalty functions.

Figure 2.9: Read request with desired read time, tolerance interval, and
a convex penalty function.

read time preferences. In case of Query 1, we choose the quadratic function t2 to avoid
large deviations by penalizing them much more than smaller deviations.

In our example, the read time optimizer freely decides for a read time within the
tolerance intervals of Query 2, because no penalty applies for deviating from the desired
read time. At the same time, the optimizer minimizes the deviation from the desired
read time for Query 1 to avoid the penalty of t2.

Our optimizer minimizes the sum of the penalty functions for overlapping tolerance
intervals. Thereby, it determines the next sensor read time. In order to enable the
minimization at low computational costs, we require all penalty functions to be convex
and to have their minimum at the desired read time (tD = 0). We further shift penalty
functions along the y-axis such that p(tD) = 0. We show examples of supported penalty
functions in Figure 2.8. Note that we can relax the definition of convex functions and
allow functions which are non-differentiable at the desired read time tD. We present the
optimization process in detail in Section 2.6.

29

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

2.5.3 Modelling Read Requests

As a result of the considerations from the previous sections, we model read requests as
illustrated in Figure 2.9 on Page 29:

• Each requested read is described by a tolerance interval [tmin, tmax], which covers
the desired read time tD.

• The distance between tmin and tD is the tolerance for reading ahead of tD.
Respectively, the distance from tD to tmax is the tolerance to delay the read.

• Within each interval, read time preferences are modelled with a penalty function.

Our scheduling algorithm first minimizes the total number of executed sensor reads
based on interval overlaps. This minimizes costs implied by sensor reads and data trans-
missions. It then optimizes the exact read times based on the given penalty functions.
UDSFs can adjust read time tolerances and penalty functions for each read request.

2.5.4 User-Defined Sampling Functions

Syntax. Formula 2.1 shows the structure of a user-defined sampling function (UDSF).
Upon a sensor read, the function receives the current timestamp t and the current
sensor value v. In exchange, it returns a tuple 〈tmin, tD, tmax, p(t)〉. The output tuple
corresponds to our model for read requests and consists of the next desired read time
tD, the tolerance interval [tmin,tmax], and the penalty function p(t).

s : 〈t, v〉 → 〈tmin, tD, tmax, p(t)〉
Formula 2.1: User-defined sampling function.

At any time, we only require the next read request from a sampling function. This allows
for adapting sampling rates, read time tolerances, and penalty functions flexibly after
each sensor read. We allow sampling functions to keep a state because many sampling
techniques need to remember previous sensor values or variables. Sampling functions can
access their own state and the state of associated local filter functions (Section 2.5.5).
Examples. The presented sampling function is easy to implement and facilitates vari-
ous use-cases. Let us first consider our introductory example (Figure 2.2 on Page 17).
Example 2.1 on Page 31 shows the sampling function serving Query 1 (Driver Profile).
It also shows how the AdaM algorithm, as a representative for adaptive sampling func-
tions, can be integrated in a UDSF. The call to the AdaM algorithm in Line 2 can

30

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

be replaced with any other adaptive sampling algorithm. The shown implementation
constantly applies a read time tolerance of ±0.2s and a linear penalty function p(t) = |t|.

1: upon sensor read 〈time, value〉 do
2: tD ← AdaM(time, value) // get next read time
3: tmin ← max(time, tD − 0.2s) // get ahead limit
4: tmax ← tD + 0.2s // get delay limit
5: p(t)← abs(t− tD) // set penalty function
6: return 〈tmin, tD, tmax, p(t)〉
7: end

Example 2.1: AdaM with 0.2s read time tolerance.

One major advantage of user-defined sampling is the ability to adapt sampling rates
driven by the values gathered before. Query 2 (Route Profile) from Figure 2.2 is an
example for a case where we need an application specific data-driven sampling function:
we require a value for at least every 20 meters driven. With periodic sampling, we would
need to always assume the maximum speed of the car and set the time between two
sensor reads to be 20m

max(v) . However, cars seldom drive with their maximum speed and
periodic sampling would cause oversampling during all the remaining time.

s20m : 〈t, v〉 → 〈t+ 1, t+ 20m
v , t+ 20m

v , 0〉
Example 2.2: Sample at least every 20 driven meter.

In contrast to periodic sampling, our user-defined function in Example 2.2 can calculate
the next read time based on the current speed upon each sensor read. We further
configured tmin as the current timestamp plus 1, meaning that we subscribe to any sensor
read, which will be executed before we passed 20m. Note that the added tolerance can
only decrease the total number of executed sensor reads. The scheduler always prefers
tD over any other time in [tmin, tmax]. The scheduler will only utilize the tolerance in
case a sensor read must be executed anyways to serve another query.

s0.3s : 〈t, v〉 → 〈t+ 1, t+ 0.3s, t+ 0.3s, 0〉
Example 2.3: Read a value at least every 0.3s.

With Example 2.3, we address Query 3 from Figure 2.2. This query samples period-
ically with the same ahead limit as the previous example. This example emphasizes
the compatibility of our approach with common periodic sampling. Our read scheduler
seamlessly combines periodic sampling functions with more advanced sampling functions
such as the ones in Example 2.1 and 2.2.

31

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Figure 2.10: Model-driven data acquisition.

2.5.5 Local Filter Functions

f : 〈t, v〉 → {true, false}
Formula 2.2: Local filter function.

As an additional optimization, we couple our UDSFs with local filter functions (For-
mula 2.2). Local filtering allows for further reducing data transmissions. For example,
we do not transfer sensor values if they remain constant or follow an expected trend.
Similar to the sampling function, the filter function is called upon a sensor read with the
current time and sensor value as parameters. It returns a boolean value, which indicates
if the current measurement shall be transferred upstream. UDSFs and filter functions
can communicate through a shared state.

Model-driven data acquisition (Figure 2.10) is an example for local filtering [52, 145].
This technique estimates sensor values using a model, which is based on previously gath-
ered values (e.g., regression techniques or pattern learning). As shown in Example 2.4,
the filter function compares sensor values with the model-based estimation. No data
transmission is required if the difference lies within a failure tolerance, i.e., we save
traffic if the central model is sufficiently precise.

1: upon sensor read 〈time (t), value (v)〉 do
2: mv ← model.estimateV alue(t)
3: if abs(mv − v) > tolerance then
4: model.update(t, v) // local model update
5: return true // transfer value
6: else
7: return false // no transfer required
8: end if
9: end

Example 2.4: Local filter for model-driven data acquisition.

We refer the reader to the original works for detailed descriptions and throughout
evaluations of the diverse adaptive filtering techniques available [42, 52, 87, 145, 184, 187].

32

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Figure 2.11: The latest possible time for the next read is the first interval
end. Reading at this time minimizes the number of sensor reads.

2.6 Multi-Query Read Scheduling

Each query can define its own UDSFs. Accordingly, several different UDSFs can be
present at a single sensor that is shared among queries. A naive approach would execute
each UDSF separately and miss the opportunity to share sensor reads and data trans-
missions among them. We contribute an algorithm that exploits read time tolerances to
share sensor values among multiple queries. Our multi-query read scheduling algorithm
minimizes the number of sensor reads with respect to query needs. It further optimizes
the exact read times with respect to the given penalty functions, while still performing
the minimum number of sensor reads only.

2.6.1 Minimizing Sensor Reads

Our primary goal is to minimize the number of performed sensor reads. To that end,
each UDSF suggests a read time in the form of a read request (Section 2.5.3). We then
apply read fusion to combine read request with overlapping tolerance intervals. This
maximizes read and traffic sharing among queries and minimizes sensor reads. Our al-
gorithm is agnostic to the underlying algorithms of UDSFs. It solely operates based on
the provided read requests.

Guaranteed minimum of sensor reads. We present a read scheduling algorithm,
which guarantees to perform the minimum number of sensor reads only. Initially, during
read time suggestion, all present UDSFs provide their next read request. We then mini-
mize the number of sensor reads using read fusion. In Figure 2.11, we show an example
for the read fusion phase, where five UDSFs provide their read requests. Given the read
requests, we can determine the latest possible time for the next sensor read: it is the
first end of any tolerance interval (red dashed line). Reading later would violate the
read time tolerance of Q4 and is thus impossible. Reading earlier can only decrease the

33

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

amount of fused read requests because only interval starts can lie before the first interval
end. This leads to the important observation that reading at the time of the first interval
end minimizes the number of sensor reads.

Once we perform the sensor read at the end of the Q4 interval, we can share the
obtained value among three queries: Q1, Q3, and Q4. Our scheduling algorithm then
acquires the next read requests from the UDSFs of Q1, Q3, and Q4. It keeps the intervals
from Q2 and Q5 because they start in the future. Given all read requests, we repeat the
described process to schedule the next read.

2.6.2 Optimizing Read Times

Our secondary goal is to optimize the deviation from desired read times, while still ex-
ecuting the minimum number of sensor reads only. Hence, we extend the read fusion
phase of our algorithm with read time optimization.

Preliminary Considerations. We divide the time axis in non-overlapping time inter-
vals, which we call fragments. Each start and each end of a tolerance interval is thereby
considered as fragment separator. For example, consider Figure 2.11, where fragments
are separated with dashed lines. The used fragmentation technique is known as stream
slicing [36, 100, 109, 178, 177] and is widely used in streaming window aggregation.

The number of overlapping intervals - and thereby the read sharing potential -
remains constant within fragments. This is the case because each start or end of a
tolerance interval that changes the number of overlapping intervals, also marks the start
of a new fragment. Thus, we perform the minimum number of sensor reads as long as we
perform sensor reads in the last fragment before the first end of any tolerance interval.
For example, consider the red shaded fragment in Figure 2.11.

The Optimal Fragment. As a result of our prior considerations, we aim to optimize
the read time within the latest fragment before the first end of any tolerance inter-
val. This guarantees executing the minimum amount of sensor reads, but reduces the
deviations from the desired read times.

Algorithm 1 on Page 35 formalizes how we determine the optimal fragment in which
we can optimize the exact read time. The optimal read time within the optimal fragment
is the time that implies the smallest penalty (minimal sum of all penalty functions).

34

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Algorithm 1 Get the optimal fragment for the next read.
Parameter:

rInt[]: Array of read requests 〈tmin, tD, tmax, p(t)〉.
Output:

The optimal fragment for the next sensor read.
1: function GetOptimalFragment(rInt)
2: tend ← min(tmax) from rInt
3: tstart ← max(tmin) from rInt where tmin ≤ tend
4: return [tstart, tend]
5: end function

Algorithm 2 Read time optimization.
Parameter:

rInt[]: Array of read requests 〈tmin, tD, tmax, p(t)〉.
Output:

The optimized timestamp for the next sensor read.
1: function OptimizeReadTime(rInt)
2: [tstart, tend]← GetOptimalFragment(rInt)
3: rInt← AssignIntervals(rInt,tstart,tend)
4: return MinimizePenalty(rInt,tstart,tend)
5: end function

Read Time Optimization. We show the process of the read time optimization in
Algorithm 2. We first call Algorithm 1 to get the optimal fragment. We then decide
in Line 3 for which read requests we will use the next sensor value. This, for example,
removes tolerance intervals which start after the selected optimal fragment (e.g., Q4 and
Q5 in Figure 2.11). We finally minimize the penalty within the optimal fragment and
return the read time. The penalty at any time is given by the sum of the penalty functions
of all tolerance intervals being present at this time. Since each penalty function is
convex, their sum pΣ(t) is also a convex function [149], which has a single minimum only.
We can find this minimum (giving the optimal read time) with O(log(l∆)) complexity,
where l is the length of the optimal fragment [tstart, tend] and ∆ is the length of the
confidence interval. We therefore initialize the confidence interval with [tstart, tend]. We
then calculate the derivative p′Σ(x) with x being the center of [tstart, tend]. If p′Σ(x) = 0,
x is the minimum. Otherwise, the sign of p′Σ(x) denotes if x lies left or right of the
minimum. If x lies left, we assign tstart ← x, otherwise tend ← x. While repeating the
process, we half the confidence interval with each iteration until tend − tstart < ∆.

35

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

(a) Tolerance intervals possibly cover several read operations.

(b) New read requests may cause earlier read times.

Figure 2.12: Challenges in the assignment of read read requests to
selected fragments in which we perform sensor reads.

Assigning Read Requests to Fragments. In order to optimize read times, we need
to assign read requests to the optimal fragment in which we perform the next sensor
read (Line 3 in Algorithm 2). The read time optimization within the optimal fragment
is then based on the penalty functions of the assigned read requests only.

So far, we just considered the first upcoming read, but not the succeeding ones. In
the remainder of the chapter, we call the optimal fragment for the next sensor read A,
and the latest possible fragment for the second sensor read B.

Assigning read requests to fragments is not always straight forward. We show the
trivial case in Figure 2.11. Each tolerance interval covers only one selected optimal
fragment. Accordingly, we assign read requests either to the first read (Fragment A) or
the second read (Fragment B). This example changes in Figure 2.12a. The Q3 tolerance
interval now covers both, the first selected fragment (A) and the second selected fragment
(B). In case we assign Q3 to Fragment A, it will not affect the read time optimization
for Fragment B and vice versa.

We present the assignment process, including the non-trivial cases, in Algorithm 3 on
Page 37. The algorithm first determines the latest possible fragment for the second read,
which is marked blue in Figures 2.11 and 2.12a. Therefore, our algorithm defines rInt′

as an array of all read requests, which cannot be assigned to A (Line 2). It then calls
Algorithm 1 as subroutine with rInt′ as parameter to determine fragment B (Line 3).

36

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Algorithm 3 Assign read requests to selected fragments.
Parameters:

rInt[]: Array of read requests 〈tmin, tD, tmax, p(t)〉.
[tstart, tend]: The optimal interval for the next read.

Output:
rInt[]: Read requests assigned to the next read.

1: function AssignIntervals(rInt, tstart, tend)
2: rInt′ ← all r ∈ rInt where r.tmin > tend
3: [t′start, t

′
end]← GetOptimalFragment(rInt’)

4: for each r ∈ rInt
5: if [tstart, tend] 6⊆ r then remove r from rInt
6: else if [t′start, t

′
end] 6⊆ r then keep r in rInt

7: else if tend > r.tD then keep r in rInt
8: else if t′start < r.tD then remove r from rInt
9: else if r.p(t′end) < r.p(tend) then

10: remove r from rInt (Figure 2.13a)
11: else if r.p(tstart) < r.p(t′start) then
12: keep r in rInt (Figure 2.13b)
13: else remove r from rInt (Figure 2.13c)
14: end if
15: end for each
16: return rInt
17: end function

Definition: Let r be a read requests in the form 〈tmin, tD, tmax, p(t)〉 and i be an interval
[tstart, tend]. We then say that r ⊆ i if [r.tmin, r.tmax] ⊆ i.

37

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

(a) max(B) < min(A) ⇒
postpone.

(b) max(A) < min(B) ⇒
assign to A.

(c) otherwise ⇒
postpone.

Figure 2.13: Deciding for a fragment in case a tolerance interval overlaps
with several sensor read times.

In the special case that all read requests can be assigned to A, rInt′ is empty in Al-
gorithm 3. B is thus undefined and we assign all read requests to A. In the regular
case, where we can compute A and B, we distinguish among seven cases to decide if we
assign a tolerance interval to Fragment A. Intervals which are not assigned to A will get
assigned to other fragments upon the optimization of subsequent read times.

Case 1: No overlap with A. We cannot assign tolerance intervals to A, which do not
overlap with A (Line 5). This would violate the read time tolerance.

Case 2: No overlap with B. We assign tolerance intervals to A, which do not overlap
with B (Line 6). This ensures that such tolerance intervals cannot cause additional
sensor reads before B. This retains the guarantee to execute the minimum number
of sensor reads only.

Case 3: tD before end of A. We assign tolerance intervals to A, which have their
desired read time before the end of A (Line 7). This is sure to be optimal because
the penalty can only increase towards B in this case.

Case 4: tD after start of B. We do not assign tolerance intervals to A, which have
their desired read time after the start of B (Line 8), because the penalty decreases
towards B.

The remaining cases are shown in Figure 2.13. Both, A and B, overlap with the tolerance
interval. A must be before the desired read time, and B after the desired read time.

Fragment B is the latest possible time for the second read. However, it is important to
highlight that B is subject to change: after the first read is performed, all UDSFs, whose
read requests were assigned to A, provide their next read requests. The corresponding
new tolerance intervals possibly end before B, which moves B closer to A.

38

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

For example, consider Figure 2.12b on Page 36. The tolerance interval Q4.2 appears
after A and causes B to shift towards A. Due to our limited knowledge about the second
read time - we only know that it wont be later than B - we cannot guarantee that our
assignment is optimal. Nonetheless, we propose a best effort approach based on the
minimum and maximum values of the penalty in A and B:

Case 5: max(B) < min(A). We do not assign tolerance intervals to A for which the
penalty in B is always smaller than the penalty in A (Line 9/Figure 2.13a). In this
case, it is guaranteed that there will be another read after A with reduced penalty.

Case 6: max(A) < min(B). We assign tolerance intervals to A in case the penalty
is always smaller in A than in B (Line 11/Figure 2.13b). This decision is not
guaranteed to be optimal because B could possibly shift closer to A. However, A
is regularly quite close to the desired read time when this condition holds true.

Case 7: otherwise. We do not assign tolerance intervals to A in case there is an
overlap in the penalties of A and B (Line 13/Figure 2.13c). The penalty in B can
still reduce when B moves towards A. In case it does not, we can arrive at the
same penalty in B as we could in A.

We now have all pieces at hand, which we require for our overall scheduling algorithm:
(i) we can select optimal fragments in which we perform sensor reads, (ii) we can smartly
assign read requests to the optimal fragments, and (iii) we can minimize the penalty for
the next sensor read time.

2.6.3 The Overall Scheduling Algorithm

The overall read scheduling algorithm (Algorithm 4 on Page 40) operates based on the
UDSFs present at a sensor. It is called upon each sensor read and returns the time of
the next sensor read. It further applies the local filter functions and initiates the transfer
of the sensor values as needed.

At start-up time, we perform one initial sensor read and pass it as parameter to
all UDSFs to obtain their first read requests. This initializes the rInt array with read
requests from all UDSFs. When we add a new UDSF, the scheduler requests the next
read request from the new UDSF with the previous sensor value as parameter. We omit
this initialization process in Algorithm 4.

Each subsequent sensor read is processed in four steps:

39

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Algorithm 4 The overall scheduling algorithm.
State:

udsf []: Array of user-defined sampling functions.
rInt[]: Array with next read requests from all

UDSFs in the form 〈tmin, tD, tmax, p(t)〉.
Output:

The timestamp of the next sensor read.
1: upon sensor read 〈t, v〉 do
2: [tstart, tend]← GetOptimalFragment(rInt)
3: rIntnow ← AssignIntervals(rInt,tstart,tend)
4: for i from 0 to udsf.size− 1 do
5: if rInt[i] ∈ rIntnow then
6: // Apply local filter of udsf[i]
7: if udsf [i].f(t, v) then
8: subscribe udsf [i] to current read 〈t, v〉
9: end if

10: // next read request for udsf[i]
11: rInt[i]← udsf [i].s(t, v)
12: end if
13: end for
14: transmit current read 〈t, v〉 to subscribers
15: return OptimizeReadTime(rInt)
16: end

1. In Line 2 and 3, we assign read requests to the current sensor read using Algo-
rithms 1 and 3 (see Page 37).

2. For each read request, which is assigned to the current sensor read, we apply the
local filter of the corresponding UDSF (Line 5). In case the value passes the filter,
we subscribe the UDSF to the upcoming data transmission (Line 8). In any case,
we acquire the next read request and store it in the rInt array (Line 11).

3. We initiate the data transmission of the current sensor value to all subscribers
(Line 14). This happens through an asynchronous function call to not delay the
computation of the next read time.

4. Finally, we call OptimizeReadTime(rInt) (Algorithm 2 presented on Page 35)
and return the time for the next sensor read.

40

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Note that the calls to

• GetOptimalFragment(rInt) and

• AssignIntervals(rInt,tstart,tend)

within Algorithm 2 are redundant to the calls in the first step (Line 2 and 3) of Algorithm
4. An efficient implementation would keep the assignment as state to prevent doubled
computation. We omit this optimization to simplify the exposition.

2.7 Analytical Evaluation

In this section, we provide an analytical evaluation of on-demand streaming and show
how the fraction of prevented sensor reads depends on key properties of UDSFs. The
goal of this section is to provide a theoretical understanding of the impact of sensor read
sharing on the number of required sensor reads and data transmissions. The formulas
presented in this section allow for estimating the savings achieved by on-demand stream-
ing before deploying sensor nodes. Moreover, one can use our formulas to estimate the
network traffic produced by a sensor node based on UDSF characteristics.

2.7.1 Key Properties of Sampling Functions

UDSFs have two key properties: (i) the average read frequency (λi) and (ii) the average
tolerance interval length (li). In the following, we analyze the fraction of the prevented
sensor reads with respect to these properties. Several UDSFs can be present at the same
sensor. We derive the key properties λtotal and ltotal for the ensemble of all n UDSFs
from the individual key properties λ1...λn and l1...ln as follows:

Formula 2.3: The combined read frequency.

λtotal =
∑n

i=1 λi (the sum of all λ)

Formula 2.4: The combined tolerance interval length.

ltotal =

∑n
i=1 λili
λtotal

(the λ-weighted average of all l)

41

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

2.7.2 Distribution of Tolerance Intervals

We model the start times of tolerance intervals with a poisson point process with the
event rate λtotal. Poisson processes [46, 94] are widely used in statistics to model inde-
pendent random events such as the starts of phone calls [31]. The starts of tolerance
intervals are comparable to these use cases. They may occur at any time, have peak
times, and periods of low utilization.

We use a stationary Poisson Point Process to model the start of tolerance intervals
of read requests. A stationary Poisson Point Process has a constant parameter, in
our case λtotal, which is called event rate [94]. In our case, the event rate specifies
the average number of starting tolerance intervals (Poisson Points) per unit of time.
"Consider two real numbers a and b, where a ≤ b, and which may represent points

in time. Denote by N(a, b] the random number of points of a homogeneous Poisson
point process existing with values greater than a but less than or equal to b. If the
points form or belong to a homogeneous Poisson process with parameter λ > 0, then
the probability of n points existing in the above interval (a, b] is given by:

P{N(a, b] = n} = [λ(b−a)]n

n! e−λ(b−a)" [94]

The times between two consecutive events (in our case interval starts) are exponen-
tially distributed with a mean inter-event time of 1/λ. The exponential distribution
is described by the formula fλ(x) = λe−λx for x ≥ 0 (Figure 2.14).

0 1 2 3 4

0.5

1

1.5

x

f λ
(x
)

λ = 0.5
λ = 1.0
λ = 2.0

Figure 2.14: Plot of the Exponential Distribution with mean 1/λ.

The plot in Figure 2.14 shows that short times between sensor reads (small x) are
considered frequent, and that large times between sensor reads (large x) are rare.

Definition: Poisson Point Process and Exponential Distribution [31, 46, 94]

42

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

av
er
ag

e
re
ad

fr
eq
ue

nc
y
(λ
)

average read interval length (l)
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

1 1 2 3 4 5 5 6 7 8 9 10 11 11 12 13 14 14 15 16 17
2 2 3 5 7 9 10 12 13 15 16 18 19 20 22 24 24 25 26 27 28
3 3 5 8 10 13 15 17 19 21 23 24 26 27 29 30 31 32 33 35 36
4 3 7 10 13 16 19 21 24 26 28 29 31 33 34 36 37 38 39 40 41
5 4 8 12 16 19 22 25 28 30 32 34 35 37 38 40 41 42 44 45 46
6 5 10 15 19 22 26 28 31 33 35 37 39 41 42 44 45 46 47 48 49
7 5 11 16 21 25 28 31 34 36 38 40 42 44 45 46 48 49 50 51 52
8 6 13 18 23 27 31 34 37 39 41 43 45 46 48 49 50 51 52 53 54
9 7 15 20 25 30 33 36 39 41 43 45 47 49 48 51 52 54 54 55 56

10 7 15 22 27 32 35 38 41 43 45 47 49 50 52 53 54 55 56 57 58
11 8 17 24 29 34 37 40 43 45 47 49 51 52 54 55 56 57 58 59 60
12 9 18 25 31 35 39 42 44 47 49 51 52 54 55 56 57 59 59 60 61
13 10 19 27 32 36 40 43 46 48 50 52 54 55 57 58 59 60 61 62 62
14 11 21 28 34 38 42 45 47 50 52 54 55 56 58 59 60 61 62 63 64
15 11 22 29 35 39 43 46 49 51 53 55 56 58 59 60 61 62 63 64 65
16 12 23 31 36 41 44 48 50 52 54 56 58 59 60 61 62 63 64 65 66
17 12 24 32 37 42 46 48 51 53 55 57 58 60 61 63 63 64 65 66 66
18 13 25 32 38 43 47 50 52 55 56 58 59 61 62 64 64 65 66 67 67
19 14 26 33 40 44 48 51 53 55 57 59 60 62 63 64 65 66 67 67 68
20 14 27 35 41 45 49 52 54 56 58 60 61 62 64 65 66 66 67 68 69
21 15 28 36 41 46 49 52 55 57 59 60 62 63 64 65 66 67 68 69 69
22 16 28 37 43 47 51 53 56 58 60 61 62 64 65 66 67 68 69 69 70
23 16 29 37 44 48 51 54 57 59 61 62 63 64 66 67 68 68 69 70 71
24 17 29 39 44 49 52 55 58 59 61 63 64 65 66 67 68 69 70 70 71
25 17 31 39 45 49 53 56 58 60 62 63 65 66 67 68 69 70 70 71 72
26 18 31 40 46 50 54 56 59 61 62 64 65 66 67 68 69 70 71 72 72
27 20 33 40 46 51 54 57 59 61 63 64 66 67 68 69 70 71 71 72 73
28 19 33 42 48 52 55 58 60 62 64 65 66 67 68 69 70 71 72 72 73
29 20 34 42 48 52 55 58 60 63 64 66 67 68 69 70 71 72 72 73 74
30 21 35 43 49 53 56 59 61 63 65 66 67 68 69 70 71 72 73 73 74

Table 2.1: Fraction of prevented sensor reads [in %] compared to an
execution without sensor read sharing. The savings increase when λ or l
increase. The time unit is irrelevant as long as it is the same for λ and l.

The distribution of the lengths of tolerance intervals is most realistically described
by an exponential distribution with the mean llotal. This is because the exponential
distribution assumes short intervals to occur most frequently. The probability for longer
intervals decreases exponentially with the interval length. Accordingly, we expect small
read time tolerances frequently and long read time tolerances rarely. Thus, most users
will define small tolerance intervals and only a few users will define large tolerances.

From now on, we write l for llotal and λ for λlotal to simplify the presentation.

2.7.3 The Fraction of Prevented Sensor Reads

In Table 2.1, we compare on-demand streaming with a naive approach, which does not
apply sensor read sharing. The fraction of prevented sensor reads depends on the key
properties λ and l of UDSFs. The savings increase rapidly when either sampling rates (λ)
or interval length (l) increase. Note that one can expand Table 2.1 with additional rows
and columns easily. Thus, the key observation is that savings increase towards 100%
when λ or l increase, and decrease when λ or l decrease.

43

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Figure 2.15: Tolerance intervals in a birth and death process.

A Birth and Death Process models the growth and/or regression of a population.
The state of the process corresponds to the size of the population. For example, the
number of living humans or, in our case, to the number of started but not yet ended
intervals. States are connected with transition rates which may depend on the state.
For example, if there are four living humans (state i= 4), each pair of humans has
two children (birth rate 2i/2), and humans live 90 years, then λ= birth rate

time = (2·4)/2
90years .

Figure 2.15 shows the Birth and Death Process for tolerance intervals. Our interval
starts follow a poisson process with the event rate λ. Thus, the transition rate from
any state i to the state i + 1 is λ. The mean length of tolerance intervals is l and
lengths are exponentially distributed. This leads to the event rate of µ=1/l for the
mortality of one interval. Accordingly, the transition rate from any state i to the
state i− 1 (i.e., the mortality for i open intervals) is iµ = i/l.
We describe births (interval starts), mortality (interval ends), and the population

(open intervals) as functions of the time called b(t), m(t), and o(t) respectively [95].

Definition: Birth and Death Process [95]

In order to calculate the savings shown in Table 2.1, we model the begin and end
of tolerance intervals in a birth and death process (see definition above). Based on this
process, we can compute the number of started and ended intervals recursively with the
step width ∆t as follows:

Formula 2.5: Initialization - no interval started or ended.

b(0) = m(0) = o(0) = 0

Formula 2.6: Number of started intervals up to time t.

b(t) = λt

Formula 2.7: Number of ended intervals up to time t+ ∆t.

m(t+ ∆t) = m(t) + o(t)µ∆t

Formula 2.8: State at time t+ ∆t (open intervals).

o(t+ ∆t) = λt−m(t)

44

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

X

Y

time

co
un

t
b(t) / started intervals
m(t) / ended intervals
o(t) / open intervals

Figure 2.16: Expected values for the number of started, ended, and
open intervals for λ = 2 and l = 0.5.

We show a plot of these functions for λ = 2 and l = 0.5 in Figure 2.16. Since the
transition rate λ remains constant, we can observe that b(t) is linear. The transition rate
for ending intervals increases with the number of open intervals causing m(t) to first grow
exponentially and then asymptotically reach the slope of b(t). Because o(t) = b(t)−m(t),
it increases asymptotically towards a constant value.

The values X and Y are especially important in Figure 2.16: X is the expected time
until the first interval ends. Y is the expected number of started intervals up to time X.
According to our read scheduling algorithm (Section 2.6.1), we execute a sensor read as
soon as the first tolerance interval ends (time X). We then assign the obtained value to
all intervals, which started up to this time. Hence, Y is the number of intervals which
can regularly share a sensor read. The fraction of prevented sensor reads is thus 1−1/Y .

The Erlang B Formula calculates the blocking probability for requests (e.g., phone
calls) which are issued to a shared system (e.g., a call center) that can handle at
most N requests in parallel. In our example, the blocking probability is the chance
that a call to the call center cannot be answered because all lines are busy.
Each request has a length (e.g., the duration of the phone call). Requests are issued
following a poisson process with event rate λ. The mean length of a request is l and
lengths are exponentially distributed (see definitions in Section 2.7.2). A=λl is the
resulting system load in the Erlang unit (Erl). The Erlang B formula calculates the
blocking probability as follows:

Pblocking(A,N) =
AN

N !∑N
i=0

Ai

i!

Definition: The Erlang B Formula [31, 169]

45

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Figure 2.17: Tolerance intervals in a birth and death process considering
earlier interval ends in case of shared sensor reads.

(a) Result with Erlang B (Figure 2.15). (b) Result with read sharing (Figure 2.17).

Figure 2.18: Comparison of birth and death processes with example
requests issued to a systems with N = 3 parallel lines.

2.7.4 Differentiation from the Erlang B Formula

The Erlang B Formula [31] (defined above) is widely used in queuing theory to calculate
the blocking probability for phone calls in a system with a maximum of N parallel calls.
Phone calls are modelled as intervals starting in a poisson process and having expo-
nentially distributed lengths. Intuitively, this is similar to our scenario where tolerance
intervals start in a poisson process and have exponentially distributed lengths.

Despite these similarities, we cannot use Erlang B to calculate the fraction of pre-
sented sensor reads, because Erlang B assumes an equilibrium between starting and
ending calls [169]. In contrast to this, we perform a sensor read as soon as the first
interval ends and thereby address all intervals which began up to this time. We thus
implicitly end all intervals and reset the state to 0, which results in the birth and death
process shown in Figure 2.17. Accordingly, our algorithm never reaches an equilibrium
between tolerance interval begins and ends. Instead, it repeats a growing phase after
each sensor read. As a result, the blocking probability given by the Erlang B formula is
much larger than fraction of prevented sensor reads.

Figure 2.18 compares the birth and death process of the Erlang B formula (Fig-
ure 2.15) with the one including earlier interval ends due to shared sensor reads
(Figure 2.17). We can observe that the same requests lead to different outcomes: In
Figure 2.18a, the end of one interval has no effect on other intervals, i.e., the end of one
phone call does no affect other calls. In Figure 2.18b, the end of one interval causes a
sensor read which addresses all read requests and thereby ends all intervals.

46

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

2.8 Experimental Evaluation

In this section, we evaluate on-demand streaming from sensor nodes on real-world sensor
data. We present our experimental setup, show our results, and close with a discussion.

2.8.1 Experimental Setup

Data. We replay recorded sensor data from two datasets: First, the Formula 1 teleme-
try data which we introduced in our introductory use-case in Section 2.2. Second, sensor
data from a football match which was provided with the DEBS’13 Grand Challenge [131].
We monitor the speed of the ball, which is tracked with a 2000Hz sampling rate and
µm/s precision.

Workloads. Our experiments use three query sets:

Introductory use-case: We presented an initial evaluation of our introductory use case
in Section 2.2. We use AdaM as adaptive sampling technique in combination with the
UDSF from Example 2.2 and periodic sampling.

Random UDSFs: We use queries with random UDSFs to study the scalability of our
solution to large numbers of concurrent queries and users. In our experiments, one
UDSF corresponds to one query. Thus, the number of UDSFs and the number of queries
are the same. In general, queries can define multiple UDSFs to request data from several
sensors. Our scheduling algorithm solely operates based on the UDSFs and is agnostic
to all other query properties. As in our analytical evaluation (Section 2.7), each UDSF
reads in a poisson process and applies exponentially distributed read time tolerances.
We defined poisson processes and exponential distributions in Section 2.7.2 on Page 42.

AdaM and FAST: We execute AdaM and FAST individually to examine their robustness
against read time slack (see definitions in Section 2.3.2 on Page 19). This verifies that
read time tolerances do not harm the result quality of adaptive sampling techniques.

2.8.2 Detailed Experiments

We analyzed the number of sensor reads and transferred tuples for our introductory
use-case in Section 2.2. In the following section, we show that our solution also scales to
larger query sets. Therefore, we compare our on-demand data streaming approach with

47

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

5 10 20 50 100 200
0

10

20

30

40

50

60

70

1.5 3.1
6.1

15.3

30.5

61.1

1.2 1.9 2.9 4.5 6.1 8.1

number of queries

se
ns

or
re
ad

s
[in

10
00

0]

independant queries
on-demand scheduling

Figure 2.19: Number of sensor reads and data transmissions for an
increasing the number of queries. (random UDSFs; ∅sampling rate 1Hz

per UDSF; ∅tolerance ±0.04s).

an independent execution of multiple queries. Then, we evaluate the achievements of our
read time optimizer. Finally, we investigate the impact of read time slack on different
sampling strategies.

2.8.2.1 Shared Sensor Reads and Traffic

Scaling the Query Set. On-demand scheduling scales to larger query sets. We increase
the number of queries up to 200 in Figure 2.19. Increasing the number of queries is
equivalent to increasing the sampling frequency of queries: our read scheduler solely
operates based on submitted read requests. Thus, the number of read request makes the
difference rather than the number of queries.

Periodic sampling is virtually impossible in this experiment: UDSFs read in a Poisson
process, which simulates heavy peaks in sampling rates. Periodic sampling would fall
back to the maximum sampling rate, which is in the order of 109Hz. Hence, we compare
an independent query execution with our on-demand streaming approach.

For the independent execution of queries, the number of sensor reads and data trans-
missions increases linearly with the number of queries. This is because each read request
causes a sensor read and a transmission.

On-demand scheduling can fuse read requests whenever their tolerance intervals over-
lap. The probability for such overlaps increases with the number of read requests. Thus,
read and traffic sharing becomes more frequent with larger query sets. We increase the
number of queries by factor 40. However, the number of reads increases by less than
factor 7, saving 87% in reads and transfers.

48

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

0 20 40 60 80 100
0

1

2

3

4

5

6

7
6.1

3.7

2.9
2.4

2.1 1.9

read time tolerance [in ms]

se
ns

or
re
ad

s
[in

10
00

0]

Figure 2.20: Sensor reads/transfers for for an increasing read time tol-
erance. (20 queries, i.e., 20 random UDSFs, ∅sampling rate 1Hz/UDSF).

5 10 20 50 100 200
0

5

10

15

20

25

30

35

40 36
33

30
28 28 28

11

16
19 18

16
14

number of queries

re
ad

ti
m
e
de

vi
at
io
n
[∅

in
m
s]

not optimized optimized

Figure 2.21: Impact of read time optimization on read time deviations
for an increasing number of queries. (random UDSFs; ∅sampling rate

1Hz per UDSF; ∅tolerance ±0.04s).

Increasing Tolerances. Another way to increase the probability for read fusion is
to increase read time tolerances. We analyze this effect in Figure 2.20. We therefore fix
the number of queries to 20. The number of sensor reads decays exponentially when the
tolerance increases. This observation is in accordance with the theoretical coincidence
probability of random events with exponentially distributed lengths described by Erlang
et al. [31].

2.8.2.2 Read Time Optimization

We now evaluate the deviation from desired read times in our experiments. Our read
time optimizer never increases the amount of sensor reads or transfers. However, it
reduces the mean deviation from desired read times by up to 69% in our experiment
with larger query sets (Figure 2.21).

49

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

20 40 60 80 100
0

10

20

30

40

50

60

70

80

16

30

43

56

68

8

19

28

37
44

read time tolerance [in ms]

re
ad

ti
m
e
de

vi
at
io
n
[∅

in
m
s]

not optimized
optimized

Figure 2.22: Read time optimization with increasing read time toler-
ance. (20 queries, i.e., 20 random UDSFs, ∅sampling rate 1Hz per UDSF).

We observe two contradicting effects in Figure 2.21: On the one hand, more read
requests increase read time deviations. The probability of read sharing increases and
we utilize tolerances to fuse reads. This effect dominates up to 20 concurrent queries.
On the other hand, more read requests decrease read time deviations: It becomes more
probable that multiple sensor reads take place within the tolerance interval of a read
request. In such cases, the optimizer selects the sensor read which implies the smallest
read time deviation. This effect dominates for 50 or more concurrent queries.

In Figure 2.22, we study how an increasing read time tolerance affects the optimiza-
tion. The read time deviation increases with the read time tolerance, because we use
additional tolerances primarily to reduce sensor reads and data transmissions. Thus, the
selected fragments, in which we perform the optimization, deviate more from the desired
read times of read request.

Query Prioritization. Each UDSF can define its individual penalty function to
model read time preferences within tolerance intervals. We use this feature to prioritize
selected UDSFs when optimizing read times. For example, prioritized UDSFs may pe-
nalize read time deviations with p(t) = t2, while non-prioritized UDSFs set p(t) = |t|.
We analyze the impact of such a prioritization in Figure 2.23 on Page 51. Prioritization
reduces read time deviations considerably for the prioritized UDSFs. This effect declines
when the fraction of prioritized UDSFs increases. When many UDSFs are prioritized,
sensor reads are often shared among prioritized UDSFs which repeals the prioritization.
The read time deviation for non-prioritized UDSFs increases with the fraction of priori-
tized UDSFs. The same holds for the overall mean deviation. Hence, we recommend to
prioritize small subsets of UDSFs only.

50

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

100% 50% 25% 5% 0%
10

12

14

16

18

20

1
8
.7

m
s

1
7
.3

m
s

1
5
.4

m
s

1
3
.6

m
s

2
1
.0

m
s

1
9
.8

m
s

1
8
.6

m
s

1
8
.2

m
s

1
8
.7

m
s

1
9
.2

m
s

1
8
.7

m
s

1
8
.3

m
s

1
8
.2

m
s

Fraction of prioritized queries

re
ad

ti
m
e
de

vi
at
io
n
[∅

in
m
s]

prioritized
regular
total ∅

Figure 2.23: Query prioritization with penalty functions.
(20 queries; ∅sampling rate 1Hz/query; ∅tolerance ±0.04s).

Prioritizing all queries (100%) leads to a mean read time deviation of 18.7ms. Prior-
itizing no query (0%) reduces the mean read time deviation to 18.2ms. This is because
p(t) = |t| (not prioritized) grows linearly when the read time deviation increases. This
minimizes the overall sum of read time deviations and, thereby, the mean read time de-
viation. In contrast, p(t) = t2 (prioritized) grows quadratically and focuses on avoiding
high deviations rather than minimizing the mean deviation.

We consider the example from Figure 2.23 as being a gentle prioritization. We can
of course apply more strict differentiations between UDSFs by increasing the differences
between penalty functions. For example, by multiplying the functions or by increasing
the power. Our introductory use-case is an extreme yet realistic example for UDSF
prioritization: the AdaM UDSF tolerates read time slack, but with rather high penalty
of p(t) = t2. Other queries forbid any read time delay, but are fine with reading earlier.
The penalty for reading ahead of the desired read time is thus zero. Accordingly, we
optimize read times solely on behalf of AdaM, resulting in a mean deviation in the order
of nanoseconds (Figure 2.24 on Page 52).

2.8.2.3 The Effect of Read Time Slack

Our experiments show that read time tolerances lead to fewer sensor reads and trans-
ferred tuples. Hence, we advocate read time tolerances for adaptive sampling techniques.
We now analyze how read time deviations affect AdaM and FAST, our representatives of

51

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

Default Prioritized Q1
0

50

100

150

200

Q
1:

22
1·
1
0
−
6
m
s

1
4
1
m
s 1
8
4
m
s

1
3
1
m
s

re
ad

ti
m
e
de

vi
at
io
n
[∅

in
m
s]

total ∅
Query 1

Figure 2.24: Read time optimization on behalf of a single query in our
introductory use-case.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8 FAST

(reads=transfers)

AdaM (reads)

AdaM (transfers)

maximum slack [in ms]

re
ad

s
&

tr
an

sf
er
s
[in

10
00

00
]

(a) Reads & Transfers.

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

FAST

AdaM

maximum slack [in ms]

va
lu
e
de

vi
at
io
n
[∅

in
km

/h
]

(b) Value Deviation.

Figure 2.25: AdaM and FAST on football data with read time slack.

adaptive sampling techniques. Therefore, we affect sensor reads by uniformly distributed
random slacks. In this section, we monitor the speed of the ball during a football match.

We shows the number of sensor reads and transfers for different read time slacks in
Figure 2.25a. Both, AdaM and FAST, are robust against slack: the number of sensor
reads and transfers remains almost constant for slacks up to ±5ms. Larger slacks reduce
sensor reads for FAST, because read time delays can be larger than the average read
frequency. The adaptive filter of AdaM massively reduces data transfers as it avoids
sending consecutive similar measures when the football is on the ground or airborne.

The mean deviation between the obtained speed graph and the underlying DEBS’13
raw data increases slightly with the slack (Figure 2.25b). However, we consider both
techniques as robust because they retain a mean deviation of less than 0.6 km/h on the
volatile speed of a football.

52

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

2.8.3 Discussion

On-demand streaming from sensor nodes reduces the number of sensor reads and the
amount of transferred data by 57% in our introductory use-case and by up to 87% with
larger query sets (i.e. more read requests per time). In comparison, periodic sampling
leads to extremely high sampling rates, because it falls back to the maximum sampling
rate required at any time. Adaptive sampling reduces sensor reads for a single query, but
falls short in combining multiple different data demands. On demand sampling unites
adaptive sampling with the multiplexing of data demands, which explains the savings.

In our experiments, the read time optimizer reduces the mean deviation from desired
read times by up to 69%. Our optimizer never increases the number of sensor reads or
the amount of transferred data. We allows for prioritizing queries by penalizing read
time deviations. We show two examples with gentle and strong prioritizations.

We require read time tolerances to enable frequent read and traffic sharing among
queries. Our experiments show that AdaM and FAST, as examples for adaptive sampling
techniques, are robust against read time slack. This verifies that read time tolerances
are applicable to adaptive sampling techniques.

2.9 Related Work

The problem of oversampling has been studied from various angles. However, we ob-
served that there is no one-fits-all solution: either algorithms are limited to specific use-
cases [59, 145], miss adaptivity [119, 174], or do not consider shared sensors [164, 184].
In the following section, we discuss how UDSFs and multi-query read scheduling incor-
porate, extend, and aid existing oversampling reduction techniques. We then present
related work from the field of sensor networks regarding multi-query optimization and
sensor read scheduling.

Reduced Oversampling. TinyDB [119] introduces the concept of acquisitional
query processing (ACQP) to control when and how often to sample. It arranges database
operators together with fetch operators (sensor reads) in a common processing pipeline.
Operators with low selectivity, such as filters or aggregations, can thus reduce (filter
out) data tuples before succeeding fetch operations and thereby prevent sensor reads.
However, TinyDB only allows for periodic sampling algorithms at the source of a pro-
cessing pipeline. This still leads to oversampling because it prevents adaptive sam-
pling [59, 67, 184]. Our UDSFs overcome this limitation. Our sensor read scheduler

53

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

further complements TinyDB with the ability for read and traffic sharing.
Model-driven data acquisition is another way to reduce the number of sensor reads [42,

52, 87, 145, 187]. The key idea is to train a model with historical sensor values, which
then serves as primary source for stream analysis systems to answer queries (Figure 2.10
on Page 32). Sensor nodes transmit sensor values only if the model-based prediction of
sensor values does not provide a sufficient precision, which saves network traffic. One can
implement model-driven data acquisition as UDSF as we have shown in Section 2.5.5.
The proposed algorithms neither mention nor hinder read sharing among queries.

An orthogonal approach to reduce oversampling is the joint optimization of data
acquisition and delivery [164]. This method trades-off data transfer costs (slow trans-
fer, low cost) against sampling costs (high frequency, high cost) while providing data
freshness guarantees. Our work complements this approach because the data freshness
benefits from read and traffic sharing among queries.

Multi Query Optimization. Several works propose to optimize the query exe-
cution across queries and users in sensor networks. Li et al. [113] apply data sharing
among queries through the fusion of aggregate queries, utility-driven compression, and
global transmission scheduling. Two techniques, called Dynamic and aMST [200], pro-
vide spatial resource sharing in addition to time sharing in a mobile sensor network.
However, these publications do not consider sensor read scheduling and can be applied
supplementary to our scheduling algorithm.

Xiang et al. [198, 199] as well as Mueller and Alonso [130] optimize a batch of queries
as a whole to eliminate redundancies and fuse similar operations. They set the sampling
rate of sensors to be the greatest common divisor of the sampling rates from all queries.
In contrast to our work, both approaches rely on periodic sampling to compute the
required greatest common divisor.

Scheduling Algorithms. Tavakoli et al. [174] also utilize read time tolerances for
sensor read scheduling. They model overlaps of tolerance intervals in an online evolving
interval-cover graph which they use to determine read times. In contrast to our solution,
their approach is limited to periodic sampling and does not not optimize exact read times.

Fang et al. [62] and CATS [206] address the issue of sampling continuous intervals
(e.g. video and audio recording). They explore tolerances in the placement of recording
intervals to maximize interval overlaps. We consider the challenge to maximize interval
overlap as orthogonal to the optimization of exact sensor read times. Further scheduling
algorithms from the field of sensor networks study transmission scheduling [25, 56, 129,

54

Chapter 2. Optimized On-Demand Data Streaming from Sensor Nodes

183]. They switch between sleep times and transmission periods in order to save energy,
but do not cover sensor read scheduling or read sharing among queries.

In summary, our UDSFs and multi-query read scheduling form a common frame-
work to incorporate the presented oversampling reduction techniques. UDSFs work as
general abstraction for sampling functions. Multi-query read scheduling transparently
multiplexes UDSFs on shared sensors, leading to a global cost optimization.

2.10 Conclusion

We have introduced user-defined sampling functions (UDSFs) as well as a multi-query
scheduling algorithm for sensor reads. These are powerful means to solve the problem of
oversampling : USDFs enable diverse adaptive sampling techniques and allow for defin-
ing the data demand of each query. Our multi-query scheduling algorithm multiplexes
UDSFs and utilizes read time tolerances to minimize sensor reads with respect to query
needs. Thereby, the complexity of multi-query scheduling is transparent to the user.

Our experimental evaluations show savings of 87% in sensor reads and data transfers
for an example with real-world sensor data. In addition, our read time optimizer reduces
the deviation from desired read times by up to 69% in our experiments. We further
allow for prioritizing queries in a flexible way. Overall, on-demand data streaming from
sensor nodes leads to significantly reduced sampling rates and corresponding savings in
communication costs without sacrificing data quality.

Our solution prevents a tight coupling between sensor nodes and data consumers.
Any consumer can request data streams from sensors by submitting UDSFs while sensor
nodes are agnostic to specifics of the requesting systems. This makes it easy to share
sensor nodes among diverse consumers such as existing sensor network middleware [1],
in-network database systems [117, 119], and visualization applications [181]. In the
following chapter, we integrate our read scheduler in our sensor control layer.

55

3
Scalable Data Acquisition with

Guaranteed Time Coherence

Figure 3.1: Scope of Chapter 3 - The Sensor Control Layer.

In this chapter, we focus on the sensor control layer, which orchestrates large num-
bers of sensor nodes. Thereby, we address scalability issues as well as the problem of
time incoherence. Our system automatically arranges sensor nodes in pipelines to dis-
tribute computation effort and to prevent central bottlenecks at stream analysis systems.
Thereby, our system adapts automatically to failures and changing network conditions
to maintain configurable latency limits and coherence requirements. We explore con-
cepts and algorithms to quantify and optimize the time coherence of data tuples. For
each tuple, we provide a guaranteed time coherence that is independent of clock syn-
chronization among sensor nodes. This prevents time-correlation errors in applications
not detectable by current approaches and quantifies the result precision.

56

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

3.1 Introduction

Stream analysis systems have access to a growing number of data streams from sensor
nodes in the IoT [191]. Analytical applications correlate these data streams to facilitate
fast event detection and respective reactions. Typically, sensor measurements consist
of a timestamp t and a value v. Stream analysis systems [35, 175, 203] and time se-
ries databases [20, 188] join measurements from different sensors to tuples in the form
〈t, v1, . . . , vn〉 (see Section 2.3.3). Applications assume that these tuples represent a con-
cise snapshot of all values (i.e., measurements) taken at time t. In this chapter, we
show that this assumption does not hold in the IoT and that tuples are affected by an
unknown time incoherency. We then present a solution which addresses the problem of
time incoherence as well as scalability challenges introduced in Section 1.2.2.

In the IoT, many different users and organizations operate diverse sensor nodes
such as smart phones, weather stations, smart watches, and connected cars [106]. The
precision of system clocks on these devices depends on various aspects including time
synchronization, clock drift, security vulnerabilities, and intended manipulation:

• Most devices synchronize their clocks through the Network Time Protocol (NTP)
[122, 123, 124], which has known security issues [55, 190]: The first two versions
of NTP did not provide authentication methods [122]. Version three introduced an
authentication based on pre-shared keys that are exchanged offline [123]. For exam-
ple, the NIST Authenticated NTP Service ships keys via postal mail [64]. Version
four provides an authentication method based on public keys [124]. However, this
method is rarely used and vulnerable to brute force attacks as it uses small 32-bit
seeds [55]. In practice, most sensor nodes do not use NTP authentication and are
vulnerable to spoofing attacks [194].

• Many applications give an incentive to deliberately manipulate the system time [190].
For example, a parcel service can delay clocks on handset scanners to hide late de-
liveries and a software user can delay clocks to hide the expiration of a license.

• Each device requires an oscillator to track the progress of time. Many sensor nodes
use cheap quartz crystals for that purpose, which have widespread clock drifts de-
pending on the temperature [144].

We conclude that timestamps require an input validation [151, 190] and propose a
solution which allows for scalable data gathering with guaranteed time coherence.

57

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

Imprecise timestamps can cause application failures such as wrong correlations,
missed event detections, and false predictions. Therefore, it is crucial for applications
to quantify the imprecision of timestamps and to provide time coherence guarantees for
sensor data tuples. For example, think about a traffic control system: a camera provides
photos of license plates and multiple other sensors measure speeds, weights, and safety
distances of vehicles. When joining photos with sensor measures, it is crucial to ensure
time coherence to identify the right mappings between license plates and measures. Our
sensor control layer optimizes time coherence and provides coherence guarantees.

With the rise of the IoT, we aim to join measurements from thousands of sensors
with coherence guarantees. Therefore, we are facing the performance limits of central
stream joins performed in stream analysis systems. The number and volume of data
streams a server can process is bounded by network bandwidth, parallel connection
limits, memory requirements, and CPU power. Systems which utilize edge computing
capabilities can overcome these performance limitations by avoiding central computation
and transmission bottlenecks. Our sensor control layer addresses scalability issues by
utilizing edge computing capabilities, and, at the same time, guarantees time coherence.

We present SENSE, our sensor control system which gathers time coherent data
tuples from distributed sensors. SENSE combines central stream joins with a new ar-
chitecture based on sensing loops. This ensures scalability to thousands of sensor nodes.

SENSE is not meant for replacing time synchronization. Advances in time synchro-
nization [104, 161, 163] reduce clock deviations and directly lead to an improved esti-
mated coherence in SENSE. The estimated coherence is the difference between sensor
read times assuming correct clock synchronization among clocks of sensor nodes.

However, we take into account that sophisticated techniques for time synchroniza-
tion have not yet seen widespread adoption in the IoT and that timestamps may be
manipulated. To this end, we allow for specifying an incoherence limit for tuples which
is maintained by the system even if node clocks are not synchronized at all.

For each tuple, SENSE provides a guaranteed time coherence which is the maximum
difference between sensor read times, independent of clock synchronization. Coherence
estimates and guarantees then work as key data characteristic in applications and quan-
tify the result precision. We further introduce algorithms which optimize the resource
utilization under latency and time coherence constraints. Finally, we add fault-tolerance
mechanisms to make our solution robust against sensor and network failures.

58

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

Overall, this chapter makes the following contributions:

1. We present an architecture for acquiring values from large numbers of sensors with
guaranteed time coherence and low latency (Section 3.4).

2. We introduce time coherence as a fundamental data characteristic of sensor data
tuples (Section 3.5).

3. We optimize the coherence of result tuples and provide coherence guarantees which
are independent of clock synchronization among sensor nodes (Section 3.6).

4. We pre-schedule sensor reads for future requests (Section 3.7) and provide fault-
tolerance mechanisms for sensor and network failures (Section 3.8).

5. We experimentally evaluate our solution and show that it scales to thousands of
sensors, provides low latencies, and operates efficiently (Section 3.9).

In the remainder of this chapter, we present an application example in Section 3.2 and
discuss sources of incoherence in Section 3.3. We then present our contributions and
experiments in Sections 3.4-3.9. Finally, we discuss related work in Section 3.10 and
conclude in Section 3.11.

3.2 Application Example: Precision of Multilateration

In this section, we introduce time coherence failures and show how the coherence mea-
sures of SENSE prevent these failures in an example application.

Application Example. We demonstrate SENSE in a multilateration application.
Multilateration is a common technique to locate the source of a signal by measuring
the times when the signal arrives at three or more sensors. Common applications of
multilateration are finding the epicenter of an earthquake, locating positions of light-
nings in thunderstorms, or locating aircrafts.

The delta among the arrival times of a signal at different sensors exposes the delta
in the distances between the signal source and sensors. From these distances, multi-
lateration applications compute the position of the signal source (e.g., an aircraft or a
lightning). We visualize our example in Figure 3.2 on Page 60. We use three sensors
(blue crosses) to locate the source of thunder (i.e., the positions of lightnings) in a thun-
derstorm. The signal disseminates from its source (black point) with sonic speed which

59

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

0 1 2 3 4 5 6 7
0

1

2

3

4

true signal source

Sensor 1

Sensor 2

Sensor 3
Avoided Failure:
Clock offsets
do not cause
false results.

Feature 1:
Synchronization
independent
precision.

Feature 2:
Precision estimate

distance [in km]

di
st
an

ce
[in

km
]

Figure 3.2: Multilateration example.

is about 343m
s (1236km

h ; 767mph). We know the positions of sensors and compute the
positions of lightnings. We will revisit our example in Section 3.6.7 and provide more
details about our calculations. These details are not required to follow the example, but
demonstrate how applications can use coherence measures we introduce in this chapter.

Possible Failures. Offsets among sensor node clocks add an observation error to the
arrival times of a signal, which results in false locations. For example, the red point
in Figure 3.2 (labeled as Avoided Failure) shows the computed lightning location which
results from Sensor 2 being two seconds behind Sensor 1 and Sensor 3 being two seconds
ahead of Sensor 1. Existing techniques simply assume that sensors report correct arrival
times. Thus, they neither detect, quantify, nor prevent this error.

Feature 1 - Synchronization Independent Precision. In SENSE, users can spec-
ify a precision requirement which is independent of clock synchronization among sensor
nodes. This precision requirement is reflected in an upper limit for coherence guarantees
called Cgmax . For example, the orange area in Figure 3.2 (labeled as Feature 1) depicts
the precision for Cgmax=2 seconds. With Cgmax=2 seconds, SENSE will locate the signal
in the orange area even if sensor node clocks have arbitrary offsets. Thus, SENSE would
avoid the failure in Figure 3.2 and locate the signal source in the orange area instead.

60

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

Feature 2 - Precision Estimate. The coherence estimate (Ce) allows for computing
the area in which we expect the signal source assuming perfect synchronization among
sensor node clocks (green area in Figure 3.2, labeled as Feature 2). In our example,
sensors have a read time precision of ±0.5 seconds, which is reflected in Ce. The result
is a slight deviation in the location of the signal source (green point ⊗). The strength
of our solution is the ability to quantify possible deviations (green area, labeled as Fea-
ture 2) instead of returning calculated locations only.

In summary, our coherence measures enhance applications by avoiding failures, by pro-
viding precision guarantees which are independent of clock synchronization, and by
quantifying precision estimates.

3.3 Sources of Incoherence

There exist many reasons for deviations among sensor node clocks which impact time
coherence. In this section, we highlight important observations with respect to these
sources of incoherence. These observations lead to system requirements which motivate
design decisions in SENSE.

Clock Drift. In Figure 3.3 on Page 62, we visualize clock drifts of three different
clock types: (A) Raspberry Pi system clocks, which use the processor frequency as ref-
erence [26], (B) Real time hardware clocks, which have an integrated quartz crystal and
cost about 14$ per unit [134], and (C) high precision clocks, which cost about 23$ per
unit [140]. We provide supplementary technical information for all clocks and our sim-
ulation in the info box below the figure on Page 62.

We make three observation in Figure 3.3:

1) Cheap clocks are heavily affected by clock drift.
Regular system clocks on Raspberry Pis, which are widely used as sensor nodes, drift up
to ±0.14s/hour (3.36s/day). Remembering our example in Section 3.2, this drift causes
major errors in the result after just a few hours uptime without clock synchronization.
However, failing synchronization is a frequently reported issue on devices such as Rasp-
berry Pis [133, 208], which should not cause failures in upstream analysis systems.

61

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

0 1 2 3
−0.3
−0.2
−0.1

0
0.1
0.2
0.3

time in hours

ti
m
e
fa
ilu

re
in

se
c.

(a) System clock on
Raspberry Pi [26]

0 1 2 3
−0.3
−0.2
−0.1

0
0.1
0.2
0.3

time in hours
ti
m
e
fa
ilu

re
in

se
c.

(b) Ras clock RTC
(14$/pc.) [134]

0 1 2 3
−0.3
−0.2
−0.1

0
0.1
0.2
0.3

time in hours

ti
m
e
fa
ilu

re
in

se
c.

(c) High precision clock
(23$/pc.) [140]

Figure 3.3: Clock drifts of 20 simulated clock instances for three differ-
ent clock types assuming perfectly synchronized clocks on startup.

Clock PPM Price Frequency
Raspberry Pi System Clock [26] 40 free 1 MHz
PCF2127 Real Time Clock [134] 3 14$ 32.768 kHz
449-LFTVXO076344CUTT [140] 0.1 23$ 19.2 MHz

Table 3.1: Specifications of different clocks at 30°C

In Figure 3.3, we present the clock drifts of different clocks. The figure shows the
clock drifts of the selected clocks at 30°C. Table 3.1 summarizes the clock specifica-
tions of the selected clocks. The parts per million (PPM) provide an upper bound
to the amount of additional or missed oscillations. For example, the Raspberry Pi
system clock has a frequency of 1MHz (i.e. 106 oscillations per second) and drifts
with 40PPM. Thus, it drifts by ±40/106 seconds per second which is a drift of
±0.144 seconds per hour.
We obtained the data for Figure 3.3 by simulating the clock on the level of its
oscillator. The expected amount of missed oscillations of a specific clock is assumed
to be uniformly distributed within the ranges the manufacturer provided. This value
– in the following referred to as p – is sampled once per clock instance. The oscillator
is modelled as a Bernoulli process. Thus, each time a timestamp ti+1 is requested
from a clock instance, we sample a Binomial distribution with probability 1 + p and
the amount of trials equal to the time that passed since the last request (ti+1 − ti)
in seconds multiplied by the clock model’s frequency.

Technical Details on Figure 3.3

62

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

In addition, many devices do not have an own oscillator and depend on external
oscillations which could possibly fail, such as the oscillation of the electricity grid. For
example, in March 2018 thousands of devices, including electric meters and inverters of
solar plants, accumulated more than 6 minutes delay, due to a conflict between Kosovo
and Serbia about who is responsible for providing additional energy [173]. This caused
the oscillation to stay below the desired 50Hz for more than a month [32, 121]. Hence,
a conflict between two countries affected clocks everywhere in Europe. Although the
power grid was brought back to its regular frequency [69], one still finds wrong times-
tamps in the logs of many smart meters and solar plants. This example shows that clocks
may malfunction for surprising and unexpected reasons. In this chapter, we present a so-
lution which makes systems robust against clock synchronization failures and clock drifts.

2) Sensor nodes with precise clocks are expensive.
We want to correlate data from thousands of sensors in the IoT [191]. These sensors are
regularly hosted on cheap devices (sensor nodes) such as micro controllers, Arduinos,
or Raspberry Pis. A precise clock alone costs 14$ or more, whereas a whole Raspberry
Pi costs about 35$ (without a precise clock). Thus, large numbers of sensor nodes can
hardly be upgraded with precise clocks due to the high price.

3) Cheap clocks measure short time spans precisely.
Even cheap clocks can measure short time spans precisely. We call the timeframe between
the current time and the read time of a sensor value age of the value. Clock drift is the
only factor which pollutes the measured ages of values. For example, the Raspberry Pi
system clock drifts at most 0.006s/min. We regularly request values from sensors which
are only a few seconds old and, thus, we can use the age of values as a reliable and
precise measure.

Clock Synchronization. Sensor nodes limit the impact of clock drifts with repeated
clock synchronization. NTPv4 is one of the most common synchronizations protocols
and claims to be precise within a few tens of milliseconds [124]. However, when it comes
to large numbers of sensors, there is no precise synchronization among all of them:

1) The precision depends on the network.
NTPv4 specifies its precision for fast local area networks [124]. Other networks may
have larger latencies or more volatile transmission times which leads to more frequent
and less reliable re-synchronization. Especially devices connected via mobile networks
may experience precision issues.

63

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

2) Not all devices have synchronized clocks.
Many low-cost sensor nodes do not synchronize their clocks at all. For example, many
micro controllers just start their clocks when powered on, only providing a simple up-
time counter instead of a real clock. Since we regularly require the age of values instead
of read times, our solution integrates sensors without synchronized clocks seamlessly.

Resulting System Requirements. We conclude that SENSE shall quantify the un-
certainty about times provided by sensor nodes with coherence measures. SENSE shall
provide synchronization independent coherence guarantees, and limit incoherence with
time coherence optimization.

3.4 SENSE Architecture

In this section, we define coherence measures and introduce the SENSE architecture.
We define coherence measures in Section 3.4.1, introduce our general network and node
setup in Section 3.4.2, present the global architecture which covers the connection and
interaction among distributed sensor nodes in Section 3.4.3, and describe the internal
architecture, i.e., the software components of sensor nodes, in Section 3.4.4.

3.4.1 Definition of Coherence Measures

Coherence of a Tuple / Creal: Let a tuple contain the values v1, ..., vN from N

sensors and let t1, ..., tN be the times when v1, ..., vN were measured. The coherence of
a tuple is the timeframe between min(t1, . . . , tN) and max(t1, . . . , tN) in which v1, ..., vN

were measured. Tuple coherence is a key indicator to detect incoherent tuples and to
prevent false analysis results. Ideally, all values of a tuple would be measured at the
same time, which would result in the optimal coherence 0.

Coherence Estimate of a Tuple / Ce: We use the term estimate for the computed
coherence (Ce) to emphasize the uncertainty about its correctness. Ce equals Creal if
there is no offset among sensor node clocks. In practice t1, . . . , tN are obtained from
different sensor node clocks and may be affected by clock drift. Thus, the computed
coherence estimate Ce of a tuple may diverge from the real coherence.

64

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

(a) Network connections and locations of clocks. (b) Sensor node architecture.

Figure 3.4: General network and node setup in the IoT.

Coherence Guarantee of a Tuple / Cg: The coherence guarantee of a tuple is a
timeframe which is guaranteed to be larger or equal than the real coherence of the tuple
(Cg ≥ Creal). We use the term guarantee to emphasize that Creal is guaranteed to be
smaller or equal than Cg even if there are arbitrary offsets among sensor node clocks.
The guarantee Cg ensures that time coherence is bounded.

Read Time Deviation / ∆t: Each sensor data tuple has a timestamp t which is
the desired read time (i.e., request time) for values contained in the tuple. ∆t is the
maximum deviation between the desired read time t and any actual read time ti of a
value vi contained in the tuple. For example, if we request a tuple with t=5 and sensor
provide values read at t1=4 and t2=7, then ∆t=max(abs(5− 4), abs(5− 7))=2.

3.4.2 General Network and Node Setup

In this section, we discuss our assumptions with respect to network connections, com-
munication protocols, geographic proximity, processing capabilities, and reliable clocks.

Our general setup covers key components of different IoT architectures [66, 101]
(Figure 3.4a). Typically, sensor nodes communicate through the internet and/or local
networks via standard TCP/IP protocols [65]. They may use additional protocols and
message brokers to manage their communication such as MQTT [166] or ZeroMQ [79].
We require acknowledgements of receipt, but do not make any additional assumptions
with respect to communication protocols or connection types (e.g., WiFi, LTE, or cable).

We differentiate trusted () and untrusted () clocks. For trusted clocks, we control
time synchronization and can validate that the time is correct (i.e., properly set with
known precision). For untrusted clocks, we cannot enforce correctness.

65

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

Figure 3.5: Exploiting local proximity of loop nodes and sensor nodes.

We operate a small number of nodes with trusted clocks which we call Loop Nodes.
Loop nodes are servers which control the data acquisition from sensor nodes (to be
discussed in Section 3.4.3). Since the number of loop nodes is small, we can afford to
equip them with high precision clocks and make sure that trusted clocks are in sync.

The majority of devices are sensor nodes with untrusted clocks. Common sensor
nodes are smart phones (e.g., Android or iOS systems) and small computers (e.g., Ar-
duinos and Raspberry Pis), which are operated by diverse users and organizations. Since
we do not control the clocks on these devices, we cannot enforce their correctness.

Figure 3.4b shows a sketch of the software architecture of sensor nodes. They consist
of an operating system and an application layer. The operating systems allows for
accessing sensors through driver modules [71] and maintains the system clock. The
application layer (user space) hosts applications which access sensors and system time
through the operating system. On sensor nodes, SENSE runs on the application layer –
either as an application on its own, or as a library integrated in a host application such
as a smart phone app. Ideally, sensor nodes can schedule sensor reads, have sufficient
memory to buffer recent sensor values, and can retrieve these values upon request. Most
sensor nodes fulfill these requirements. However, we discuss in Section 3.4.4 how we
integrate sensor nodes which do not have sufficient memory and processing capabilities.

SENSE exploits geographic proximity if it leads to fast network connections among
sensor nodes and loop nodes. Figure 3.5 shows two examples of a desirable proximity. On
the left, a loop node is collocated with the base station of a mobile network and manages
connected sensor nodes. On the right, a loop node and sensor nodes are collocated in
the same local area network. Both setups lead to low latency and low jitter1, which
improves coherence guarantees. Despite these benefits, SENSE does not require local
proximity and adapts to the observed latency, time coherence, and jitter.

1Network jitter is the variance of transmission times in a network.

66

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

(a) Central Join.

(b) Sensing Pipeline.

(c) Sensing Loop.

Figure 3.6: Topologies for sensor data acquisition.

3.4.3 Global Architecture

Two common topologies for sensor data acquisition are Central Joins (Figure 3.6a)
and Sensing Pipelines (Figure 3.6b). First, we discuss advantages, disadvantages, and
limitations of these topologies. Then, we introduce Sensing Loops (Figure 3.6c) to
overcome the limitations observed before.

In a central join topology, each sensor streams pairs of timestamps (t) and values (v)
to a central server which joins time-value-pairs from all sensors. Examples are smart
phone apps which report values to a server and stream joins in systems such as Apache
Flink [35] and Spark [203]. The main advantage of this solution is its low latency.
The latency is low, because sensors transmit their values directly to the central server.
However, there are two major disadvantages in a central join topology: 1. The join
cannot provide any guarantee for the time coherence of result tuples because it relies on
the correctness of the timestamps transmitted from sensor nodes. 2. The solution does
not scale to large numbers of sensors because of a limited number of concurrent network
connections and an increasing join complexity. Especially in case of sensor failures, one
cannot know if values are lost or late. Waiting for late tuples which never arrive increases
the latency considerably.

In a sensing pipeline, one node initiates a request and passes it to the succeeding
node in the pipeline. Each node in the pipeline adds a value from its sensor and forwards
the tuple to the next sensor until the tuple contains all values. Example applications are
Sensor Networks [6, 50, 119, 192]. Users submit queries to the network which collects
data from sensors - possibly performs in-network computation [117, 152] - and finally
returns result tuples to the user. The advantage of sensing pipelines is that they overcome
scalability limitations of central servers which receive result tuples. Since the result tuple
is produced in-network, there is only one connection to the receiver instead of a large

67

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

Figure 3.7: Example of an architecture combination.

number of concurrent connection from individual sensors. Moreover, there is no need to
perform a join centrally, which reduces complexity.

Although sensing pipelines overcome scalability limitations on the receiver side, we
still face scalability issues with large numbers of sensors. Since each transmission hop
between sensor nodes introduces additional latency, the time between measuring a value
and receiving the value at a central server increases considerably. Similar to central joins,
it is impossible to ensure time coherence, because we still rely on separate sensor node
clocks. We overcome the limitations of Central Joins and Sensing Pipelines by extending
Sensing Pipelines to Sensing Loops and by combining Sensing Loops with Central Joins :

Sensing loops (Figure 3.6c) extend Sensing Pipelines with an additional Loop
Node (LN). The loop node initiates requests by sending a request timestamp to the
first sensor node in the pipeline. Once the request passes the pipeline, the last sensor
node returns the result tuple to the loop node.

Enabling Coherence Guarantees. Sensing Loops enable coherence guarantees be-
cause sensor data tuples pass by the same clock (the loop node clock) twice. Thus, the
loop node remembers the time a request was sent (loop start time ls) and observes the
time when it receives the result tuple (loop end time le). If all sensors read ad-hoc upon
request (i.e., retrieve the current sensor value when they receive an input tuple), we can
guarantee that the coherence of the tuple is smaller than the loop duration (Cg = le−ls).
This guarantee does not take any sensor node clock into consideration, which makes it
independent of clock synchronization among sensor nodes. We extend this idea in the
remainder of this chapter with read scheduling approaches going beyond ad-hoc reads.
Thereby, we utilize our read scheduler which we presented in Chapter 2.

Scaling to Large Numbers of Sensors. The scalability issue of long sensing pipelines
results from long latencies in too long pipelines. The scalability issue of central joins

68

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

Figure 3.8: Overview of sensor node internals.

results from too many parallel network connections and an increasing computation ef-
fort for large numbers of sensors. We combine both solutions in Figure 3.7 to overcome
scalability limitations. We automatically split and merge sensing loops depending on
latency and coherence requirements, as well as observed network conditions. The loop
node then centrally joins the results of all sensing loops.

For example, a sensing loop can collect values from 100 sensor nodes with less than
three seconds latency. The loop node can join results returned by 100 loops with less
than a second latency. In combination, we can provide a time coherent snapshot from
10000 sensors with less than four seconds latency and a coherence guarantee below three
seconds. In the remainder of this chapter, we show we can further optimize coherence.

3.4.4 Internal Architecture

In the following paragraphs, we describe different components of the sensor node appli-
cation. We show an overview of all these components in Figure 3.8.

Query Processor. Our query processor is a stream processor, which adopts a tuple-
at-a-time processing model similar to common streaming systems such as Apache Flink
and Apache Storm. Each tuple passes through a processing pipeline, which includes
gathering sensor values (pipeline join), as well as data manipulations (e.g., selections,
projections, or spatial aggregations) [119].

We introduced spatial aggregations in Section 2.3.3.2 on Page 24. If a sensor node
is part of a processing pipeline which computes a spatial aggregate, it can perform an
incremental aggregation step to add its sensor value to the spatial aggregate. We show

69

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

〈t,SUM(v1,··· ,vi−1)〉−−−−−−−−−−−−→ Pipeline
Join

〈t,SUM(v1,··· ,vi−1),vi〉−−−−−−−−−−−−−−→ Incremental
Aggregation

〈t,SUM(v1,··· ,vi)〉−−−−−−−−−−−→
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Input from Node i−1 Processing on Node i Output to Node i+1

Figure 3.9: Incremental spatial aggregation in sensor node pipelines.

an example in Figure 3.9: The i-th sensor node in a processing pipelines receives an
aggregate of values from nodes one to i−1. Node i then fetches a value for time t with a
pipeline join (to be discussed). This value is added to the aggregate with an incremental
aggregation step before the node transmits the result tuple to its succeeding node i+ 1.

In this chapter, we focus on the time coherence of result tuples with respect to sensor
read times and, thus, we focus on data gathering operations instead of aggregations.
However, our solution supports spatial aggregation as shown above.

Pipeline Join. Our pipeline join is a sophisticated replacement of a simple ad-hoc
sensor read. Instead of reading sensor values ad-hoc when processing a tuple, we join
input tuples with a recent sensor measurement. For each tuple, each sensor node selects
the best value from its history buffer with respect to coherence measures.

Read Scheduler. The read scheduler is an active component which performs sensor
reads and adds the resulting values and read timestamps to the buffer of the sensor node.
The read scheduler also performs requested ad-hoc reads. We use a read scheduler which
was introduced in Chapter 2 [176]. This scheduler supports reading periodically, schedul-
ing sensor reads at specific times, reading ad-hoc, and adaptive sampling techniques such
as AdaM [184], FAST [59], and L-SIP [67] (defined in Section 2.3.2). Adaptive sampling
techniques can reduce the number of required sensor reads, which saves energy. We
discuss the scheduling approaches which are relevant for this chapter in Section 3.7.

History Buffer. The history buffer of a sensor node stores read times and sensor
measurements. The read scheduler adds entries to the buffer. The history buffer handles
the expiration of buffer entries. Entries expire regularly after a certain time or after they
were joined with a tuple. In case of failures, there may be buffer overflows which are
also handled by the history buffer. We discuss our expiration and overflow mechanisms
in detail in Section 3.8.2.

70

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

Sensor Node Limitations. We are aware that sensor nodes exist that cannot support
all components described above. We ensure that our solutions can seamlessly integrate
such nodes. If a sensor node cannot run a sophisticated read scheduler, we read values
from sensors periodically, which is commonly supported by sensor nodes (Section 3.7). If
a sensor node has a buffer that is too small, we address buffer overflows with an overflow
mechanism (Section 3.8.2). If a sensor node cannot process custom operations going
beyond sensor reads, we will not assign additional operators to the node [119]. We will
also not assign operators to a node which has insufficient computational power. We did
not experience any performance issues due to pipeline joins. The pipeline join requires a
lookup in the history buffer to find the value with the closest timestamp. This memory
lookup has a time complexity of O(log(N)) where N is the size of the buffer. In our
experiments on Raspberry Pis, we observed that the join requires much less computation
effort than performing sensor reads and networking tasks.

3.5 Coherence Guarantees and Coherence Estimates

In this section, we discuss how SENSE calculates coherence guarantees (Cg) and coher-
ence estimates (Ce) for tuples. We illustrate our discussion with diagrams which are
inspired by UML sequence diagrams. In these diagrams, time processes from top to
bottom, and columns separate locations (i.e., sensor nodes) at which actions take place.

3.5.1 Coherence Guarantees

In contrast to sensing pipelines and central joins, sensing loops can provide a coherence
guarantee which is independent of clock synchronization among sensor node clocks. The
loop node observes the coherence guarantee for each sensor data tuple which passes the
loop. We compute the coherence guarantee at the loop node with Formula 3.1. We
name the start time of a tuple passing through the loop ls and the end time le. When
performing a pipeline join, each sensor si provides the age αi of its value vi used for the
join. Thus, αi is the age of vi at the join time at si. Be reminded that the age αi is
highly precise for recent measurements even with the cheapest clocks (Section 3.3).

Cg = (le −min(α1, . . . , αN))− (ls −max(α1, . . . , αN)) (3.1)

71

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

Figure 3.10: Illustration of the coherence guarantee Cg.

Figure 3.11: Illustration of the coherence estimate Ce.

Figure 3.10 illustrates the observation of the coherence guarantee. We know that all
pipeline joins are performed between ls and le. Thus, the latest possible read time of a
value in the tuple is le −min(α1, α2, α3), which is le − α1 in our example. The earliest
possible read time of a value in the tuple is ls −max(α1, α2, α3), which is le − α3 in our
example. The coherence guarantee is the timeframe between the earliest and the latest
possible read time calculated in Formula 3.1.

3.5.2 Coherence Estimate

We calculate Ce at the loop node with Formula 3.2. Figure 3.11 illustrates the cal-
culation. Each sensor node si provides the read time ti of its value vi used for the
sensor data tuple. We take the latest read time of any value (according to sensor node
clocks) which is max(t1, . . . , tn) and subtract the earliest read time of any value which
is min(t1, . . . , tn).

Ce = max(t1, . . . , tn)−min(t1, . . . , tn) (3.2)

72

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

Figure 3.12: Ce without clock synchronization.

Formula 3.2 calculates Ce under the assumption that sensor node clocks are synchronized
correctly. Thus, it provides an estimate which disregards clock deviations. Alternatively,
we can calculate Ce independent of clock synchronization if we know or estimate data
transmission latencies instead. Ce may be more precise based on transmission latencies
than based on clock synchronization. For example, if transmission times are constant
(hardware buses), well predictable (dedicated connection), or negligible (fibre optics).

Figure 3.12 illustrates how we compute Ce based on transmission and processing
latencies among sensor nodes. Let δ(sa, sb) be the transmission and processing latency
between two sensors sa and sb, and let δ(l, sa) be the transmission and processing latency
between the loop node and a sensor sa. Let tnow be the current time according to the
unsynchronized sensor clock. Then the desired read time t′ according to the unsynchro-
nized sensor clock is given by Formula 3.3. We perform the pipeline join based on the
calculated t′ - ignoring the desired read time t contained in the tuple. Thus, we make
the join independent of time synchronization.

t′ = tnow + (t− ls)− (δ(l, s1) + δ(s1, s2) + · · ·+ δ(si−1, si))

t′ = tnow + (t− ls)− (δ(l, s1) +
i−1∑

x=1

δ(sx, sx+1)) (3.3)

As a result of the join, we receive vi and t′i. t′i is the read time of vi according to the
unsynchronized clock at si. We compute ti from t′i based on the shift between t and t′

with the formula ti = t′i + (t− t′). Finally, we can compute Ce from ti, . . . , tN as before
with Formula 3.2.

73

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

δ=2; αmin=αmax=3
Cg=∆; Ce=2

(a) Best possible Cg.

δ=2 ; t= tmin= tmax
Cg=∆ + 2 ; Ce=0

(b) Best possible Ce.

Figure 3.13: The tradeoff between Ce and Cg.

3.5.3 Coherence Tradeoff (Ce-Cg-Tradeoff)

We compute a coherence guarantee (Cg) and a coherence estimate (Ce) for each tuple.
There exists a tradeoff between the best possible Cg and the best possible Ce of a tuple.
We show this tradeoff in Figure 3.13. In our example, we specify the mean hop time
δ=2 and acquire values from N=2 nodes. In Figure 3.13a, we show the optimal read
times with respect to Cg. Cg is optimal if αmin=αmax. However, if αmin=αmax (i.e., if
all ages are identical), then t1, . . . , tN deviate from the request time t which increases
Ce. In Figure 3.13b, we set t=tmin=tmax which is the optimum with respect to Ce. In
exchange, αmax − αmin is 2 which increases Cg respectively.

Typically, users want to specify a precision requirement which translates to an upper
limit for Cg which we call Cgmax . At the same time, users want to receive a result which
is as precise as possible. Usually, a smaller Ce improves the result quality assuming that
sensor nodes try to provide correct timestamps for their values. In the next section, we
describe how we tradeoff between Cg and Ce automatically such that we minimize Ce
ensuring Cg ≤ Cgmax .

3.6 Optimizing Time Coherence

In this section, we present how we optimize the coherence estimate while enforcing an up-
per bound for the coherence guarantee. First we present an overview of the solution, then
we present the algorithms and formulas used at loop nodes and sensor nodes. Finally,
we present an example calculation which demonstrates our algorithms and formulas.

74

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

3.6.1 Solution Overview

We automatically adjust two parameters (α and µ) to trade off between the best coher-
ence guarantee and the best coherence estimate. The loop node computes the coherence
guarantee (Cg), the coherence estimate (Ce), and the roundtrip time (∆) for each tuple
which passes through the sensing loop. Using these values (Cg, Ce, and ∆), the loop
node continuously tunes α and µ and disseminates updates to all sensor nodes in the
loop. We attach α and µ to regular sensor data tuples to prevent additional messages.

When a sensor node receives a tuple (i.e., a sensor data request), it adds a value from
its buffer based on the current values of α and µ (pipeline join). Let t be the desired
timestamp of the tuple and tnow be the current time according to the sensor node clock.
To achieve an optimal Cg, we would select a value read at tnow-α. To achieve an optimal
Ce, we would select a value read at t. Thus, we select a value which was read between
tnow-α and t. The current value of µ specifies which value between tnow-α and t we
select. In the next sections, we discuss how sensor nodes select values from buffers based
on α and µ and how loop nodes tune α and µ.

3.6.2 Sensor Node Algorithm
We now discuss how sensor nodes, which are part of a sensing loop, join input tuples
(i.e., sensor data requests) with sensor values from their buffers. A sensor node, which
is the i-th node in the loop, receives tuples in the folloring format:

〈t, α, µ, αmin, αmax, tmin, tmax, v1, . . . , vi−1〉

The node joins each tuple with a value 〈ti, vi〉 from its local sensor stored in the history
buffer. The resulting output tuple has the following format:

〈t, α, µ, αmin, αmax, tmin, tmax, v1, . . . , vi〉.

αmin and αmax are the minimum and maximum age of any value (v1, . . . , vN) at the
join time at the respective sensor node. tmin and tmax are the minimum and maximum
timestamps ti of any value (v1, . . . , vN) according to sensor node clocks.

We define the following optimization function which selects the best available value
vi from the sensor node buffer:

opt(t,tnow,µ,α)= argmin
ti∈Buffer

[abs(ti−t)︸ ︷︷ ︸
cost of Ce

+(tnow−ti−α)2

︸ ︷︷ ︸
cost of Cg

·µ] (3.4)

75

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

This optimization function expresses the tradeoff between Ce (first part) and Cg (second
part). The first part increases linearly for worse Ce. The second part has a higher
order to emphasize its weight strongly when approaching an upper bound for Cg. The
parameter µ ∈ R+ weights the second part to adapt the tradeoff against the first part.

3.6.3 Loop Node Algorithm

We now discuss how we tune µ and α on loop nodes. In addition to our notations defined
before, our formulas and algorithms in this section use the following variables. A full
list with all notations can be found on Page 162.

δ : Mean hop time between sensor nodes.
N : Number of sensor nodes in a sensing loop.
Dmax: Desired upperbound for Cg (max. incoherence).
tl : The last time µ and α have been updated.
p : Variable which indicates if Dmax was met (Cg < Dmax).
s : Step width exponent (scales step width for µ updates).
w : Step width for µ updates.

Before we discuss how we select α and µ, we define Dmax. Dmax is a system internal
variable which specifies the optimization goal for Cg. In SENSE, users set an upper
bound Cgmax for Cg, which the system tries to maintain for all tuples. Each tuple has
its individual coherence guarantee Cg, which may vary among tuples due to changing
network conditions, processing delays on sensor nodes, or failures. All these effects are
reflected in the roundtrip time ∆.

We monitor the standard deviation σ of ∆ and set Dmax such that a configurable
fraction of tuples has Cg ≤ Cgmax . Per default, we set Dmax = Cgmax−3σ. Assuming
that values of ∆ are normally distributed, Cg ≤ Cgmax holds for 99.85% of our result
tuples according to the 68–95–99.7 rule [142]. Monitoring σ has the negligible overhead
of storing three floating point values.

We show the overall algorithm that tunes α and µ, calculates Ce and Cg, and emits
result tuples in Algorithm 5 on Page 77. This algorithm processes each sensor data tuple
which returns to the loop node after passing the sensing loop.

First, we compute the round trip time ∆ for the tuple we process in Line 1. In
Lines 2 and 3, we compute Cg and Ce as discussed before. We then emit the result
tuple, including Cg and Ce in Line 4. The remainder of the algorithm updates α and µ.
We update α and µ as soon as we observe the effect of previous updates. In Line 5, we

76

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

Algorithm 5 Optimization of α and µ at the loopnode.
State: ls,N ,tl,s,µ,p
Parameters: Tuple: 〈t, αmin, αmax, tmin, tmax, v1, . . . , vN 〉
1: ∆← ls−time() / compute roundtrip time
2: Cg ← ∆ + αmax − αmin / compute coherence guarantee
3: Ce ← tmax − tmin / compute coherence estimate
4: emit(t, Cg, Ce, v1, . . . , vN) / emit result tuple
5: if ls ≥ tl then / did earlier updates take affect?
6: α← ∆/2 / compute α without shift
7: s← s+ (p == sign(Dmax − Cg) ? 1 : −1) / calculate step width exponent
8: w ← 2s / set step width for µ
9: µ← µ / (2 sign (Dmax − Cg)wµ+ 1) / calculate new µ

10: if p == sign(Dmax − Cg) then
11: p← sign(Dmax − Cg) / remember direction
12: else
13: p← 0 / half step size if direction changed
14: end if
15: end if

check if the last α and µ update took affect for the tuple we process. For example, if we
request a sensor data tuple every 0.2s and the roundtrip time is 1s, this condition will
be true for every fifth tuple.

Selecting α. The optimum for the coherence guarantee is the roundtrip time ∆ of a
tuple. This optimum (Cg = ∆) is achieved if all sensor nodes provide values with equal
ages αi according to their local clocks at the join time t(i)now. In general, an arbitrary
age αi leads to an optimal Cg as long as the age is the same on all sensor nodes.
However, different α values imply smaller or larger read time deviations ∆t. An optimal α
implies the minimum mean squared deviation between t and t1, . . . , tN (optimal ∆t). Our
algorithm calculates the optimal α in Line 6 using Formula 3.5. We derive Formula 3.5
mathematically in Section 3.6.8 and provide an example in the following paragraph.

α =
δ(N + 1)

2
+ (ls − t) =

∆

2
+ (ls − t) (3.5)

77

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

Figure 3.14: Selecting the optimal α=3 for δ=1 and N=5.

Figure 3.15: The step width w in the tradeoff scope.

In Figure 3.14, we show an example with N=5 nodes and a mean hop time of δ=1,
which leads to α=3. We observe that half of the nodes select values read before t and
the other half selects values read after t. This minimizes the mean squared error (i.e.,
difference) between t and t1, . . . , tN . Note that we set the request time t equal to the
loop start time ls in our example. Differences between t and ls would be added to α
(rear part of Formula 3.5) which leads to the same mean squared error. We also calculate
alpha without the shift between t and ls in Line 6 of Algorithm 5. We add shifts (ls− t)
to α whenever we send out a tuple from the loop node.

Selecting µ. As discussed in Section 3.6.2, sensor nodes select a value read between
tnow-α (optimal Cg) and t (optimal Ce) depending on µ. Figure 3.15 illustrates this
tradeoff scope. Before we select µ, we calculate the update step width w with respect
to the tradeoff scope. Ideally, our result tuples have the best possible Ce while not
exceeding the desired upper bound for Cg which we computed as Dmax (see above).

Update Step Width: First, we compute the exponent s of the step with in Line 7
of Algorithm 5. We then compute the step width w=2s in Line 8. In order to set the
exponent s, we introduce an additional state variable p which can have three stages
depending on the previous run of the algorithm:

1 if Cg > Dmax, −1 if Cg < Dmax, or 0 if Cg = Dmax.

78

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

10

20

30

w
=
2;

p=
1.

w
=
4;

p=
1.

w
=
8;

p=
1.

/w
=
16
;p

=
1

/w
=
8;

p=
0

/w
=
4;

p=
-1

w
=
8;

p=
-1
.

w
=
4;

p=
0.

w
=
2;

p=
1. /w

=
4;

p=
0

/w
=
2;

p=
0

/w
=
1;

p=
-1

/w
=
0;

p=
0

update steps

ti
m
e
un

it
s

Dmax Cg

Figure 3.16: Convergence of Cg to Dmax with corresponding w and p.

We set p = 0 if Cg > Dmax changes to Cg < Dmax or vice versa. We use p to control
when we decrement or increment the exponent s of the step width w (double or half w).

Figure 3.16 shows an example where Cg converges to Dmax. For each step, we show
w and p next to the curve separated with semicolon. As long as Cg approaches Dmax, we
increment s (i.e., double w) in each step (up to Step 4). This ensures that we reach Dmax

fast. As soon as we jump over the Dmax border, we change the direction, decrement s

(i.e., half w), and set p = 0 (Step 5). Setting p = 0 ensures that we decrement s again
for the next step (Step 6). We always decrement s twice after changing the direction.
This ensures that we converge towards Dmax. In our example, we reach Cg = Dmax

after 13 steps.

Update µ: We derive a formula for updating µ such that changing w changes the
analytic optimum for ti by w on sensor nodes (blue bar in Figure 3.15).

µ ← µ

2 sign(Dmax − Cg)wµ+ 1
(3.6)

We update µ according to the desired step width w with Formula 3.6 (Line 9 in Algo-
rithm 5). We derive this formula analytically in Section 3.6.8. We transfer the parameter
µ to sensor nodes instead of sending w directly because we gain important flexibility.
By computing the optimal read time on the sensor node based on µ, we can consider
additional information in the optimization such as the timestamps available in the buffer

79

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

and selected values of previous nodes. This information is not available before the loop
starts. We explain these additional optimizations in Section 3.6.6. Moreover, we can
weight deviations in w flexibly on sensor nodes. For example, we penalize deviations in
the direction of Ce with a higher order function than deviations in the direction of Cg.

Initialization of α and µ. We first acquire one tuple from sensors nodes with ad-hoc
reads and, thereby, obtain ∆, which we use to initialize α (Formula 3.5). To initialize µ,
we estimate t(i)now at any node i based on δ (see calculation of α). We then set the first
value of µ such that the coherence guarantee is just met in case δ does not change. We
derive the respective initialization formula in Section 3.6.8.

3.6.4 Example Calculation

We provide an example calculation in Figure 3.17 on Page 81 which demonstrates how
we tune α and µ. In this example, we optimize α and µ in a loop with two sensor nodes.

The loop node receives a result tuple (id 0) and computes the coherence guarantee
of the tuple (red line). We observe that Cg > Dmax. The loop node now computes p, α,
s, w, and µ with the formulas presented in the previous sections. At t = 135, the loop
node sends a request (id 1) to Node 1, which selects a value from its buffer according
to Formula 3.4 presented in Section 3.6.2. Then, Node 1 forwards the tuple to Node 2
with updated αmin and tmin. Analogue to Node 1, Node 2 selects a value from its buffer
and adjusts αmax and tmax. Node 2 returns the result tuple to the loop node where we
compute Cg and Ce. We observe that Ce increased and Cg reduces compared to the
previous tuple. We now achieved Cg ≤ Dmax as intended.

3.6.5 Splitting and Merging Sensing Loops

If we either exceed Dmax or do not satisfy our latency requirements, the loopnode splits
the set of sensor nodes into multiple sensing loops. The maximum number of sensing
loops is specified according to the loop node performance.

We split sensing loops such that the roundtrip times of loops equal each other.
This isolates stragglers and therefore increases the global performance of the system.
The pipelines with the smallest roundtrip time are considered for a merge whenever the
combined roundtrip time is expected to fulfill the latency and the coherence requirement.

80

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

L
o
o
p
n
o
d
e

N
o
d
e
1

N
o
d
e
2

L
o
op

n
.

Tuple: 〈id,αmin,αmax,tmin,tmax,v1,v2〉
=〈 0 , 15 , 45 , 100 , 105 , 0 , 1 〉

Tuple: 〈id,αmin,αmax,tmin,tmax, α ,µ〉
=〈 1 , 30 , 30 , 135 , 135 ,30,1〉

Tuple: 〈id,αmin,αmax,tmin,tmax, α ,µ,v1〉
=〈 1 , 25 , 30 , 130 , 135 ,30,1, 2 〉

Tuple: 〈id,αmin,αmax,tmin,tmax, α ,µ,v1,v2〉
=〈 1 , 25 , 35 , 130 , 140 ,30,1, 2 , 8 〉

Cg←αmax − αmin + ∆ = 90 7

Ce←tmax − tmin = 5
p←sign(Dmax − Cg) = −1
α←∆

2 = 30
s←s+ 1=2; w←2s=4

µ← µ
−2wµ+1 = 1/9

−23/9+9/9 = 1

Initial State:
∆=60;
Dmax=80;
p=−1; µ= 1

9 ;
N=2; s=1

tnow =155
t1←opt(t, tnow, µ, α) = 130

α1←tnow − t1 = 155− 130 = 25

Buffer
t v opt(t,tnow,µ,α)

120 1 15+ 52µ= 40

130 2 5+ 52µ= 30

140 3 5+152µ= 230

150 4 15+252µ= 640
... ...

tnow =175
t2←opt(t, tnow, µ, α) = 140

α2←tnow − t1 = 175− 140 = 35

Buffer
t v opt(t,tnow,µ,α)

120 6 15+252µ= 640

130 7 5+152µ= 230

140 8 5+ 52µ= 30

150 9 15+ 52µ= 40
... ...

Cg←αmax − αmin + ∆ = 70 X
Ce←tmax − tmin = 10

Figure 3.17: Example calculation: One optimization iteration for α and
µ in a sensing loop with two nodes.

81

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

3.6.6 Additional Optimizations

We apply an additional optimization on sensor nodes which utilizes our knowledge about
read times on previous nodes in the loop. More precisely, at any sensor node, we know
the current values of αmin, αmax, tmin, and tmax. Since Ce and Cg do not change, if
we change neither αmin, αmax, tmin, nor tmax, we can select measurements from the
history buffer, which do not change these values, without a negative impact on Ce or
Cg. This allows for improving ∆t. In Formula 3.4 on Page 75, we showed the combined
cost function for deviations from Ce and Cg. The underlying individual cost functions
are Formula 3.7 for Ce and Formula 3.8 for Cg:

costCe(t, ti) = abs(ti − t) (3.7)

costCg(tnow, ti, α) = (tnow − ti − α)2 (3.8)

We extend these cost functions to express that selecting a value with
tnow − ti = αi ∈ [αmin, αmax]

implies no costs with respect to Cg and that selecting a value with
ti ∈ [tmin, tmax]

implies no costs with respect to Ce.
This optimization allows for utilizing failures of previous nodes to select a value

which is as close as possible to t if this does neither increase Ce nor Cg. Moreover, the
extended cost functions prevent increasing Ce or Cg if there exists a value in the buffer
which does not increase Ce or Cg.

3.6.7 Multilateration: Revisiting our Application Example

In Section 3.2, we provided an application example which quantifies the precision of a
multilateration using our coherence measures Ce and Cg. We now have all formulas and
techniques at hand which allow for describing the calculation which lead to the example
provided in Section 3.2 and Figure 3.2 (Page 60). It is not required to understand these
calculations in order to follow the rest of this thesis. We provide these calculations as
an example for applications developers who want to utilize coherence measures.

We first define the positions of sensors as
s1(100, 200), s2(7000, 1000), and s3(4200, 4000).

The real location of the signal source in our example is S(3456, 1234) = (x, y).

82

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

Figure 3.18: Sketch of the distances between the
signal source and the sensors.

We measure the arrival times of the signal at our three sensors. t1, t2, and t3 are
the times when the signal arrives at s1, s2, and s3. The signal arrives first at the closest
sensor which is s3. Then, the signal arrives t1 − t3 later at s1 and t2 − t3 later at s2.
We can convert these time frames to distances by multiplying them with the signal
dissemination speed. In our example this is sonic speed which is 343m/s. We name
the resulting distances d1 and d2. In addition we name the unknown distance between
s3 and the signal source a. Figure 3.18 provides a sketch of the distances between the
signal source and the sensors. With the Pythagorean Theorem, we derive the Equation
System 3.9:

a2 = (4200 – x) 2
+ (4000 – y) 2

(a+ d1)2 = (100 – x)2
+ (200 – y)2

(a+ d2)2 = (7000 – x) 2
+ (1000 – y) 2

(3.9)

With perfectly synchronized sensor node clocks, we measure d1 ≈ 647.37 and d2 ≈
687.40. We can now solve the equation system for a, x, and y to receive the position of
the signal source x = 3456, y = 1234, and a = 2864.31. Any localization failure can be
computed by adjusting d1 and d2 with respect to wrongly measured signal arrival times.

The coherence guarantee Cg quantifies the uncertainty about the precision of signal
arrival times. Given ls, le, αmin, and αmax, we can compute a time period in which the
signal arrived at a sensor. The earliest possible arrival time of the signal is ls − αmax.
The latest possible arrival time is le − αmin. The time frame between the earliest and
the latest possible time is Cg. To get the guaranteed location precision (orange area
in Figure 3.2 on Page 60), we calculate the earliest and latest possible arrival times for
all three sensors. We then calculate six localizations of the signal source which result

83

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

from combinations of earliest and latest possible arrival times. These are all combinations
excluding the two combinations which include all earliest and all latest arrival times. The
resulting positions are the corners of the guaranteed detection area. One can observe
that changing any detection time from its minimum to its maximum results in a linear
movement of the computed location from one corner to another corner of the guarantee
area. Thus, the real location of the signal source must be inside this area.

We compute the area of the precision estimate analogue to the area of the precision
guarantee with tmin being the earliest arrival time and tmax being the latest arrival time.

3.6.8 Mathematical Details

In this section, we provide mathematical details on our formulas for α and µ. We
mathematically derive the update rules for α and µ as well as the initialization rule for
µ. It is not required to understand the mathematical details presented in this section in
order to follow the remainder of this thesis. However, we include these details to enable
future research and to allow for improving and extending our formulas.

3.6.8.1 Derivation of the α-Formula

In this section, we mathematically derive Formula 3.5, which computes the optimal α
on the loop node. Our goal is to find the value for α which implies the minimum mean
squared error between the request time t of a tuple and the read times (t1, . . . , tN) of
values (v1, . . . , vN) contained in the tuple.

Formula 3.10 computes the mean squared error which depends on α and the join
times t(1)

now, . . . , t
(N)
now on sensor nodes.

ERR(α, t(1)
now, . . . , t

(N)
now) =

1

N

N∑

i=1

(
t− (t(i)now − α)

)2
(3.10)

We select argmin
α

(ERR(α, t
(1)
now, . . . , t

(N)
now)) as α to minimize the error. Because the

actual join times at sensor nodes are unknown at the loop node, we replace them with
estimated join times (E(t

(1)
now), . . . ,E(t

(N)
now)) in Formula 3.11. The expected value of t(i)now

is ls + δi because node i receives the tuple i hops after the loop start time ls. The mean
hop time is δ = ∆/(N + 1) and we know ∆ from previous tuples.

ERR
(
α,E

(
t(1)
now

)
,. . .,E

(
t(N)
now

))
=

1

N

N∑

i=1

(t−(ls+δi−α))2 (3.11)

84

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

We now define Formula 3.12 and insert it into Formula 3.11 which results in Formula 3.13.

α = x+ (ls − t) (3.12)

ERR
(
α,E

(
t(1)
now

)
,. . .,E

(
t(N)
now

))
=

1

N

N∑

i=1

(x− δi)2 (3.13)

We observe in Formula 3.14 that the second derivative of Formula 3.13 with respect to
x is positive. Thus, the minimum of the function ERR

(
α, t

(1)
now, . . . , t

(N)
now

)
can be found

at the simple zero of the first derivative with respect to x.

∂2

∂2x
ERR

(
α, t(1)

now, . . . , t
(N)
now

)
= 2 > 0 (3.14)

∂

∂x
ERR

(
α,E

(
t(1)
now

)
, . . . ,E

(
t(N)
now

))

= 2Nx− 2δ
N∑

i=1

i = 2Nx− δN(N + 1) (3.15)

We now set Formula 3.15 equal to 0 and solve the equation for x which leads to For-
mula 3.16. Inserting Formula 3.12 for x leads to Formula 3.17 for the optimal α.

x =
δ(N + 1)

2
=

∆

2
(3.16)

α =
δ(N + 1)

2
+ (ls − t) =

∆

2
+ (ls − t) (3.17)

3.6.8.2 Derivation of the µ-Formula

In this section, we derive an update rule for µ, intending to change the coherence guaran-
tee of the next tuple by u. The direction of the change is determined by sign(Dmax−Cg).
u directly translates to the step width w introduced in Section 3.6.2 (2w=u). We as-
sume that ∆ remains unchanged. We aim to derive a function update that satisfies the
Condition 3.18.

µnew = update (µ, u) s.th. (3.18)

Cg (µnew) = Cg (µ) + u

In the remainder of this section, we first derive the optimal timestamp ti;opt to be selected
at an arbitrary node i as a function of µ. We observe that the desired change u in Cg

85

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

depends solely on the change in the distance between the largest and smallest age selected
at a node. We thus express ti;opt as the optimal age αi;opt and compute the change u
relative to an update in µ. Finally, we discuss the relationship between u and w which
leads to Formula 3.6 for the update of µ.

Let i ∈ {1, . . . , N} be an arbitrary but fixed node identifier. We aim to find the minimum
of Cost Function 3.19.

cost
µ,α,t

(i)
now,t

(ti) = abs(ti − t) +
(
t(i)now − ti − α

)2
µ (3.19)

Function 3.19 is convex because it is the sum of two convex functions [149]. It has exactly
one global minimum for a fixed µ. However, Function 3.19 is non-differentiable at ti=t.
Therefore we must consider ti=t as a candidate for the global minimum in addition to
two candidates ti;1 and ti;2 for the domains A1:=(−∞, t) and A2:=(t,∞). The global
minimum is located at the candidate which implies the smallest cost.

We compute ti;1 and ti;2 in Formula 3.22 which we determine based on the derivations
of our cost function given in Formula 3.20 and 3.21.

∂

∂ti
cost (·) = sign (ti − t) + 2µ

(
ti − (t(i)now − α)

)

= ±1 + 2µ
(
ti − (t(i)now − α)

)
(3.20)

∂2

∂2ti
cost (·) = 2µ > 0 (3.21)

∂

∂ti
cost|A1,2 = 0⇔ ti;1,2 =

∓1

2µ
+ t(i)now − α (3.22)

Plugging the values ti;1,2 in the cost function reveals that the function’s optimum lies
between the optimum for the coherence guarantee t(i)now-α and the request timestamp
t. To condense the notation, we define the difference between t and t

(i)
now-α as r in

Equation 3.23.

ri := t−
(
t(i)now − α

)
(3.23)

86

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

The evaluated cost function at each of the two candidates ti;1,2 is given by Equation
3.24.

cost (ti;1,2) = abs
(∓1 + 2µri

2µ

)
+

1

4µ
(3.24)

Considering which of the values ti;1 or ti;2 has lower cost we receive Equivalence 3.25.

cost (ti;1)><cost (ti;1)⇔ argmin
ti;c∈{ti;1,ti;2}

(cost(ti;c))><t⇔0><ri (3.25)

Using Equivalence 3.25 the selected candidate ti;c out of ti;1,2 is given by Formula 3.26.

ti;c =
sign(ri)

2µ
+ t(i)now − α (3.26)

It remains to determine for which values of µ the minimum of the cost function is located
at ti;c and for which values of µ it is located at t. Therefore, we compare the evaluated
cost function at ti;c and t in Equivalence 3.27.

cost(t) = r2
i · µ

cost(ti;c) =
−1 + 2µ abs(ri)

2µ
+

1

4µ

cost (ti;c) ≤ cost(t)⇔ µ ≥ 1

2 abs(ri)
(3.27)

We can now write the optimal value of ti as a function of µ in Definition 3.28. Defini-
tion 3.29 specifies the corresponding optimal age at node i.

ti;opt (µ) :=

sign(ri)
2µ + t

(i)
now − α µ ≥ 1

2 abs(ri)

t otherwise.
(3.28)

αi;opt (µ) :=

− sign(ri)
2µ + α µ ≥ 1

2 abs(ri)

tnow − t otherwise.
(3.29)

The difference between all selected αi values is equal to

1

2µ
+ α−

(−1

2µ
+ α

)
=

1

µ
.

87

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

This leads to Formula 3.30 for the coherence guarantee Cg.

Cg = min

(
∆ +

1

µ
, 2∆

)
(3.30)

If µ > 1
r1
, we achieve the desired change of u in Cg by updating µ according to For-

mula 3.31. Otherwise, the old value of µ is already optimal.

1

µnew
=

1

µ
+ u⇔ µnew =

µ

1 + µu
(3.31)

By now we derived the µ update rule depending on u. We now discuss the relation
between u and w and derive the µ update rule depending on w in Equation 3.32. In
case Dmax was met, we target to improve the coherence estimate Ce for the next tuple
at the cost of increasing Cg closer to Dmax. Otherwise, Cg needs to be reduced. Thus,
the direction of the µ update is given by sign(Dmax −Cg). The optimal age αi;opt needs
to be reduced or increased depending on the position i in the pipeline. Whether we
need to increase or decrease the age αi;opt is determined by sign(ri) in the first line of
Equation 3.32. In the general update rule, which is independent of i, sign(ri) cancels
out (Line 2 in Equation 3.32).

αi;opt (µnew) = αi;opt (µ) + sign(ri) sign(Dmax − Cg)w

⇔ 1

µnew
=

1

µ
− 2 sign(Dmax − Cg)w

⇔ µnew =
µ

2 sign(Dmax − Cg)wµ+ 1
(3.32)

Comparing Equation 3.31 with Equation 3.32 yields that u=2w. Line 3 of Equation 3.32
is the final general µ update rule.

3.6.8.3 Derivation of the µ-Initialization rule

Even though the method of selecting the update step width w is very efficient and ensures
fast convergence, it is reasonable to initialize µ taking into consideration the targeted
Cg-Ce-tradeoff. In the Section 3.6.8.2, we derived Cg = ∆ + 1

µ in Equation 3.30 for
µ > 1

r1
. After estimating the round trip time ∆, we can use Dmax for initializing µ to

optimize the coherence estimate while maintaining the upper bound of the guarantee.

88

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

We aim to set Cg = Dmax −∆ which is achieved by initializing µ with Equation 3.33.

µ =
1

Dmax − 2∆
(3.33)

3.7 Scheduling Sensor Reads

SENSE uses three alternative techniques for scheduling sensor reads on sensor nodes to
fill history buffers.

Ad-hoc. Reading ad-hoc is the simplest solution for scheduling sensor reads. When-
ever a tuple arrives at the sensor node, we read a value from the sensor and add that
value to the tuple.

Ad-hoc reading has three advantages:

1. no scheduler needs to run,

2. we require no buffer to store sensor values, and

3. we achieve an optimal coherence guarantee Cg because the age α is 0 for all values.

In exchange, we face three disadvantages:

1. the coherence estimates Ce are larger and we cannot optimize them.

2. We can only request current data but no stored values for earlier timestamps which
increases the read time deviation ∆t.

Periodic. Scheduling sensor reads periodically (e.g., every 20ms) is the most common
approach for sensor data acquisition. We gather values from sensors at a fixed frequency
and store them in the history buffer.

Periodic scheduling has three advantages:

1. it is supported by almost all sensors,

2. it allows for optimizing coherence estimates and guarantees when selecting values
from the sensor node buffer, and

3. we can access historic data from the buffer.

89

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

At the same time, there are three disadvantages:

1. the coherence guarantee reduces compared to reading ad-hoc because the age α
differs among values from different nodes,

2. we require history buffers and need to handle buffer overflows, and

3. we potentially read sensor values which we never use for any tuple.

Schedule Next Read. SENSE pre-schedules the next sensor read if possible. Given
the time of the next request, a sensor node can read a value exactly at the optimal
time and store only that value in its history buffer. Many algorithms which request
sensor reads can provide their next request time up front which enables pre-scheduling.
Examples are adaptive sampling techniques such as Adam [184], FAST [59], and L-
SIP [67] as well as on-demand scheduling techniques [176].
Scheduling the next read has four advantages:

1. we read required values only,

2. we only need small buffers at sensor nodes and buffer overflows are unlikely,

3. we can achieve the best results for coherence estimates because we can schedule
sensor reads precisely, and

4. we can still access past data points from sensor node buffers.

There are two disadvantages:

1. the coherence guarantee reduces compared to reading ad-hoc because the age α
differs among values,

2. we need to transmit the time of the next request to sensor nodes to enable pre-
scheduling.

3.8 Failure Handling

We now discuss fault-tolerance mechanisms for link outages, node outages, and buffer
overflows. We first introduce fallback nodes and then explain buffer overflow handling.

90

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

3.8.1 Introducing Fallback Nodes

We introduce fallback nodes to address link outages, node outages, and buffer overflows.
A fallback node replaces sensor nodes in case of failures and may be hosted redundantly
on several servers, sensor nodes, or loop nodes.

If a sensor node cannot reach its succeeding node in the loop (i.e., missing TCP
acknowledgement), it sends output tuples to the fallback node instead. The fallback
node then tries to reach the next available node in the loop and forwards the tuple to
that available node skipping nodes which are unavailable at the moment. We remember
unreachable nodes at the loop node and check periodically if they are back online. These
checks are performed asynchronously and do not delay processing tuples. At first, the
fallback node tries to compensate for missing values with a cached value from the un-
reachable node. If this fails, it tries to compensate for missing values with measures from
an alternative sensor nearby. If no alternative sensor or cached value is available the
fallback node adds a null value. In all cases, the loop node receives a final result tuple
which it can forward directly. This is an advantage compared to central join topologies,
which cannot know if missing values are lost, late, or if the respective sensors are down.

3.8.2 Managing Buffer Overflows

Buffer Overflows on sensor nodes are another issue which we address with fallback nodes.
For example, a history buffer can overflow if a node does not receive requests for an
unusual long time and, thus, cannot prune sensor values. In general, buffer overflows are
most probable at the last node in the loop, because the last node has the longest delay
before it receives a request from the loop node.

If a sensor node cannot store additional values in its buffer but expects requests
which require additional values, it sends the oldest values to the fall back node and
overwrites them with new values. If a sensor node cannot reach any fallback node but
needs to overwrite buffered values, succeeding tuples which require overwritten data will
fall back to the oldest value in the history buffer. When a sensor node receives a tuple
which requires values sent to the fallback node, it forwards the tuple to the fallback
node which will add the respective values to the tuple and then forward the tuple to
succeeding nodes in the loop.

In Algorithm 6 on Page 92, we show how we manage buffered values on sensor nodes.
Our buffer is a ring buffer, pos is the next write position, and Wjoin and Wsend are two
watermarks which keep track of processed tuples and values sent to the fallback node.

91

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

Algorithm 6 Buffer management on sensor nodes.
State: pos,Wjoin,Wsend,buffer
1: function JoinTuple(inputTuple)
2: if inputTuple.t < Wjoin then
3: Forward input tuple to fallback node.
4: else
5: Select best vi from buffer with Formula 3.4.
6: Send result tuple to the next node.
7: end if
8: Wsend ← min(tnow − α, t)
9: end function

10: function ReadValue()
11: if buffer[pos].t > Wsend then
12: Send buffer[pos] to fallback node.
13: Wjoin ← (buffer[pos].t + buffer[pos-1].t)/2
14: end if
15: buffer[pos]← sensor.read()
16: pos← pos + 1
17: end function

When we receive a tuple, we usually join it with a value from the sensor node buffer in
the JoinTuple function. The watermark Wjoin is a timestamp which indicates which
values have been sent to the fallback node. If the request time t of a tuple is smaller than
Wjoin, the required sensor value has been sent to the fallback node (Line 3). Otherwise,
the required value is available in the sensor node buffer (Line 5). We finally set Wsend to
remember that we processed all requests up to the request time t of the processed tuple
(Line 8). We calculate Wsend such that we can overwrite values in the buffer which have
timestamps smaller than Wsend without sending them to the fallback node.

In the function ReadValue, we add a new sensor value to the buffer, which over-
writes an old value in the buffer. In Line 11, we check if we need to send the value we
overwrite to the fallback node. This is the case, if we expect requests which potentially
require the value we overwrite. If we send a value to the fallback node, we set Wjoin

accordingly in Line 13. Wjoin specifies which requests are sent to the fallback node and
which requests are processed locally. If the optimal read time for a request is closer to
the value we sent to the fallback node, we also send the request to the fallback node.
Otherwise, we process the request locally.

92

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

3.9 Evaluation

We first present our experimental setup. Then, we evaluate the automatic time coher-
ence optimization of SENSE, followed by an analysis of throughput, latency, and CPU
utilization. Finally, we evaluate SENSE for a large-scale parameter space to show its
general applicability.

3.9.1 Experiment Setup

Our sensor nodes are network connected devices which implement the algorithms pre-
sented in this chapter. We use the NS-3 network simulator [148] to simulate network
delays, jitter, and transmission failures for up to 1000 sensor nodes to evaluate our tech-
nique. We transmit 64bit timestamps with nanosecond precision and 64bit values as
payload. Note that the type of acquired sensor data does not affect the outcome of our
experiments because our algorithms do not process the acquired sensor values.

In Section 3.9.3, we evaluate throughput, latency, and CPU-load. We run these
experiments on one core of an Intel Core i7-7600U CPU with 2.80GHz and 4MB cache
on a computer with 15GBmain memory. We monitor the CPU usage with getrusage [120]
and show sustained throughput [93]. Other experiments evaluate the adaptivity of our
approach with respect to changing network conditions and the optimization of the Ce-
Cg-tradeoff. The results of these experiments depend on the simulated conditions, but
they are independent of the underlying hardware on which we run the simulation.

3.9.2 Optimizing Time Coherence

In this experiment, we evaluate the time coherence optimization introduced in Sec-
tion 3.6. Recall that the user-defined incoherence limit Cgmax is transformed to a system
internal threshold Dmax, which adapts to network conditions. We analyze two scenarios:
In Scenario A , we decrease Dmax (better guarantee, worse estimate). In Scenario B ,
we increase Dmax (worse guarantee, better estimate). In our experiment, we analyze the
following aspects: 1. The adaptivity with respect to changing coherence requirements.
2. The optimization of the Ce-Cg-tradeoff with respect to Dmax. 3. The functionality of
loop splits and merges. 4. Different approaches for scheduling sensor reads.

93

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

0 10 20 30 40 50
0

1

2

3 HA HB

experiment runtime [minutes]

ti
m
e
[s
ec
on

ds
]

Cg Ce ∆t ∆ Dmax

(a) Result with scheduled sensor reads.

0

5

10

15

20

25

30

35

0.15

30

se
ns
or

re
ad

s
[in

M
ill
io
n]

scheduled
periodic

(b) Number of sensor reads.

Figure 3.19: Evolution of coherence guarantees and estimates for
changing incoherence limits (Dmax).

Setup. We show the results for data transmissions via LTE [139, 148]. We also tested
Wifi and LAN connections that exhibited less volatile transmission times leading to
better results than LTE. We simulate a sensing loop with 200 sensor nodes.

Scenario A: Decreasing Dmax. In Figure 3.19a at time A , we change the system
internal threshold Dmax such that Dmax is below the roundtrip time ∆, which forces
SENSE to adapt by splitting the sensing loop.

The gray dots in Figure 3.19a show the roundtrip times ∆ of tuples in the sensing
loop. As explained in Section 3.5, the minimum value for Cg is ∆. Since we reduce
Dmax slightly below ∆ in our experiment, SENSE correctly detects that we cannot
achieve Cg ≤ Dmax with a single loop covering all 200 sensor nodes and splits the loop
accordingly. As a consequence, the coherence guarantee Cg converges below the new
value of Dmax, which shows that SENSE correctly identified that it needs to adjust the
sensing loop. At the same time, SENSE immediately reduces the coherence estimate Ce
as much as possible under the constraint Cg ≤ Dmax.

Scenario B: Increasing Dmax. In Figure 3.19a at time B , we change the system
internal threshold Dmax back to its initial value, which enables SENSE to adapt by
merging sensing loops. SENSE correctly detects that we can now fulfill the constraint
Cg ≤ Dmax with a single loop covering all 200 sensor nodes and merges the two sensing

94

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

0 10 20 30 40 50
0

1

2

3

experiment runtime [minutes]

ti
m
e
[s
ec
on

ds
]

Cg Ce ∆t ∆ Dmax

Figure 3.20: Evolution of coherence guarantees and estimates for chang-
ing incoherence limits (Dmax). Results with periodic scheduling.

loops accordingly. As a consequence, the coherence guarantee Cg converges below the
new value of Dmax.

Impact of Read Scheduling. We executed the experiment with two read scheduling
techniques, Schedule Next Read and Periodic Scheduling. The resulting plots are iden-
tical, except that Schedule Next Read achieves smaller deviations from the desired read
times (∆t), because we can schedule sensor reads at optimal times with respect to future
request times. For reference, we include the plot for periodic sampling in Figure 3.20.
As we show in Figure 3.19b, Schedule Next Read reduces the number of required sen-
sor reads by more than 99% compared to periodic scheduling because we can schedule
exactly one sensor read per sensor and requested tuple.

Discussion. We observe that SENSE optimizes the coherence estimate of tuples while
keeping the coherence guarantee within a user-defined upper limit. Thereby, SENSE
adapts quickly to changes (i.e., network conditions and coherence requirements) and
splits and merges sensing loops as required. Pre-scheduling sensor reads reduces the
number of required reads drastically compared to reading values periodically.

95

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

101 102 103

103

104

105

106

of nodes

tu
pe

ls
pe

r
se
co
nd

Loop/Pipeline Central Join

(a) Throughput.

101 102 103
0.01

0.1

1

10

of nodes

se
co
nd

s

(b) Latency.

101 102 103
0.1

1

10

102

103

of nodes

µs
pe

r
tu
pl
e

(c) CPU time.

Figure 3.21: Performance Evaluation on the Loop Node.

3.9.3 Throughput, Latency, and CPU Load

In order to evaluate the performance of a sensing loop, we measure throughput, latency,
and CPU utilization of loop nodes, which are the bottleneck for these measures. Individ-
ual sensor nodes in the same sensing loop always face the same load independent of the
number of nodes in the loop. The latency includes the network latency for transmitting
values from sensors to a central node (central join) and for transmitting values in a loop.

Throughput. We observe in Figure 3.21a that a central join solution does not scale
to thousands of sensors like we expect in upcoming IoT applications. The throughput
decreases for larger numbers of sensors because matching values form many sensors
to coherent tuples centrally requires many timestamp lookups and comparisons. Our
pipeline-based solution overcomes this problem because it drastically reduces the number
of inputs which need to be joined at a central node.

Latency. Figure 3.21b shows the latency between the desired read time of a tuple and
the time the systems returns the tuple to the user. The latency in sensing loops scales
linearly with the number of sensor nodes (i.e. with the number of hops). A central join
topology has a much smaller latency than a sensing loop because it requires only one hop
from sensors to the central node. In general, transmission times dominate the latency of
both approaches rather than computation times. Please note that our experiment shows
the latency with sustained throughputs. Thus, central joins achieve smaller latencies
with a much smaller throughput than sensing loops.

96

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

200 400 600
0

20

40

10
of nodes

C
g
[s
ec
.]

PS Scope SNR Scope Ad-hoc

(a) Coherence Guarantee.

200 400 600
0

10

20

10
of nodes

C
e
[s
ec
.]

(b) Coherence Estimate.

200 400 600
0

10

20

10
of nodes

∆
t
[s
ec
.]

(c) Readtime Deviation.

Figure 3.22: Evaluation of coherence measures.

CPU Utilization. Sensing loops reduce the CPU utilization at a central node signif-
icantly compared to central join topologies. Since the sensing loop provides a complete
sensor data tuple, the remaining computation at the loop node is limited to calculating
Ce, Cg, α, and µ (remember Algorithm 5 from Page 77). In contrast, a central join of
individual sensor values must match each incoming value with values of other sensors
and check if it can output a complete tuple.

Discussion. Central join topologies are limited by their CPU performance which lim-
its the sustained throughput. Sensing loops are limited by their latency which results
from accumulated hop times between sensor nodes. The strength of our solution is the
adaptive combination of both approaches: multiple sensing loops combined by a central
join. We can see in Figure 3.21 that a sensing loop can acquire values from 100 sensors
with less than two seconds latency. A central join can combine inputs from 100 sensing
loops with a throughput of 5000 tuples per second. Hence, we can acquire values from
10000 sensors with a latency below 3 seconds and guaranteed time coherence below 2
seconds.

3.9.4 Coherences and Read Time Deviations

In this experiment, we analyze the impact of the number of nodes in one sensing loop on
coherence guarantees, coherence estimates, read time deviations, and the related trade-
offs. In Figure 3.22, we show the optimization scopes for coherence guarantees (Fig-
ure 3.22a), coherence estimates (Figure 3.22b), and read time deviations (Figure 3.22c).

97

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

We simulate average hop times of 38ms between sensors nodes and select the loop start
time ls as request time t for tuples. We show the optimization scopes for periodic
scheduling (PS), schedule next read (SNR), and ad-hoc reading.

Coherence Guarantee. The smallest possible coherence guarantee is the roundtrip
time ∆ which increases linearly with the loop length. We achieve this optimum if all
nodes provide a value with the same age α. With SNR, we can achieve the optimal coher-
ence guarantee because we can schedule sensor reads precisely with respect to following
requests. Ad-hoc reading always results in α=0 on all nodes which also leads to an op-
timal coherence guarantee. Periodic Scheduling (PS) leads to slightly worse guarantees,
because it adds a deviation between the optimal read time and the read time which is
available in the history buffer. The worst case coherence guarantee results from solely
optimizing for coherence estimates, which means that we select values read exactly at
the request time t (according to sensor node clocks). In this case, the difference between
αmin and αmax equals ∆ and the coherence guarantee increases to 2∆ accordingly.

Coherence Estimate. The optimal coherence estimate results from selecting values
which were read exactly at the request time t as described above. We can achieve this
optimum with SNR because we can schedule sensor reads precisely at future request
times. Periodic reading adds a deviation between the optimal read time and the read
time available in the sensor node buffer which explains the slight shift of the optimization
scope. The largest coherence estimate results from optimizing solely for the coherence
guarantee. In this case, αmin=αmax and Ce≈∆ assuming correctly synchronized sensor
node clocks. Ad-hoc reading results in the worst-case coherence estimate because it
reads when it receives tuples without considering the request time.

Read Time Deviation. The read time deviation ∆t is the maximum difference be-
tween the request time t and any read time of a value contained in the result tuple. We
regularly tune the parameter α to minimize ∆t (remember Figure 3.13 from Page 74).
Figure 3.22c shows the impact of this optimization. Both, periodic scheduling and sched-
ule next read, achieve ∆t ≈ Ce/2, which is the optimum. In contrast, reading ad-hoc
doubles ∆t because of the missing α-optimization.

Discussion. Our experiment illustrates the best-cases and worst-cases for Ce, Cg,
and ∆t as well as the scope of the Ce-Cg-tradeoff. Schedule next read (SNR) achieved

98

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

0 200 400 600 800 1000

5
10
15
20
25
30
35
40

0

5

10

15

Number of sensor nodes

(a) Coherence Estimate (Ce)

0 200 400 600 800 1000

5
10
15
20
25
30
35
40

0

10

20

30

Number of sensor nodes

(b) Coherence Guarantee (Cg)

0 200 400 600 800 1000

5
10
15
20
25
30
35
40

0

5

10

15

Number of sensor nodes

(c) Read Time Deviation (∆t)

Figure 3.23: Coherence measures depending on loop lengths and Dmax.

slightly better results because of precise scheduling of sensor reads with respect to future
requests. A naive solution which reads ad-hoc achieves an optimal Cg, at the cost of a
worst-case Ce and a doubled read time deviation. In contrast, our solution adapts the
tradeoff between Ce and Cg flexibly with respect to user-defined coherence requirements.

3.9.5 Large Scale Parameter Exploration

In this experiment, we evaluate whether our results carry over to a large parameter
space. We provide a quantitative analysis of the impact of the number of sensor nodes
in a sensing loop and the coherence requirements (Dmax) on the coherence measures (Cg,
Ce, and ∆t). For each measure, we show a dedicated heatmap in Figure 3.23. Overall,
the heatmaps show the results of 57600 experiments with a simulated duration of 66
minutes per experiment and a mean hop time of 20ms. We show Dmax on the y-axis,
the amount of sensors on the x-axis, and coherence measures as heatmap colors.

Coherence Estimate. In Figure 3.23a, we show the coherence estimates depending
on Dmax and the number of sensors. We observe diagonal lines which correspond to
loop splits. Above these lines, the system optimizes strongly for Cg to keep Cg ≤ Dmax.
In exchange, Ce increases which explains the increasing values for Ce when approaching
the split. Directly below the lines which indicate loop splits, the system can optimize
strongly for Ce without violating Cg ≤ Dmax which results in the best (i.e., smallest)
values for Ce.

Coherence Guarantee. In Figure 3.23b, we show the coherence guarantees for the
same experiments. One can observe that pipeline splits are barely visible in this plot.
This shows that our system always utilizes Dmax to relax Cg and to optimize for Ce. At
the same time, we observe that our system does not violate Dmax. For smaller numbers

99

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

of sensors, the system does not need to fully utilize Dmax for achieving an optimal Ce,
which explains the blue area in the upper left corner of Figures 3.23a and 3.23b.

Read Time Deviation. Figure 3.23c shows the read time deviation ∆t for our exper-
iments. Similar to the results presented in the previous section, we achieve ∆t≈Ce/2,
which is the optimal result for ∆t. This proves that the loop node chooses the optimal
value for α.

Discussion. The presented heatmaps verify that SENSE achieves the desired results
not only for selected combinations of parameters, but for a wide range of setups. Our
solution optimizes Ce without violating Cg ≤ Dmax. Pipeline splits take place as re-
quired to ensure this behavior (Figure 3.23a). The system utilizes the upper limit for
coherence guarantees (Dmax) to relax Cg and to optimize Ce as much as possible (Fig-
ure 3.23b). The read time deviation is about Ce/2, which proves an optimal selection of
α (Figure 3.23c).

3.10 Related Work

Time coherence was studied in different contexts before. Srinivasan et al. discuss the
temporal coherence of virtual data warehouses which work as cache for data sources [165].
Deolasee et al. propose an adaptive push-pull method to maintain the coherence of such
cached data copies efficiently [51]. Agrawal et al. discuss techniques to smartly select up
to date (temporal coherent) cached data copies for serving client requests [4]. All these
works consider the coherence between data sources and several copies of these sources.
In contrast, our work focuses on acquiring time coherent tuples which contain values
from many distributed sensor nodes.

TiNA addresses temporal coherence-aware in-network aggregation [23, 152]. Sensors
transmit new readings only if values changed more than a given tolerance. This allows
for trading off energy consumption in sensor networks against the quality of data [153].
Similarly, adaptive sampling techniques [67, 59, 184] monitor the change of sensor values
and transmit new measurements only if they are sufficiently different from previous ones.
None of these techniques provides time coherence guarantees for result tuples which we
introduce in this chapter. Instead, they focus on reducing the required update frequency
of sensor values and aggregates.

100

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

The term coherence was also used in the context of fusing data from several sensors
(i.e., sources) to one logically coherent data base [97, 115, 116]. This multi-sensor fusion
is independent of time coherence and builds on the logical consistence of values from
different sources instead.

Precise clock synchronization can be an alternative to our solutions if one controls a
complete sensor network [6, 50, 103, 192]. However, we experienced in our Raspberry Pi
testbed, that even if we control all sensor nodes, it is hard to always ensure precise syn-
chronization among all nodes. For example, many public network providers block access
to NTP servers to prevent DDOS attacs originating form their network [44]. With the
large number of sensor nodes in the IoT, which are operated by diverse users and orga-
nizations, it is impossible to ensure complete synchronization among all clocks. Instead,
sensor nodes connect to many different reference clocks and use diverse synchronization
techniques with variable precision. The techniques presented in this chapter address
these issues by detecting and quantifying clock offsets. We actively tune the coherence
of sensor data tuples, isolate struggling nodes (e.g., nodes with large clock offset), and
provide guaranteed time coherence for result tuples.

Diverse works propose clock synchronization techniques or synchronization optimiza-
tions [102, 104, 107, 126, 138, 161, 163]. In this chapter, we use synchronized clocks for
coherence estimates wherever possible. However, in the IoT, we need to provide addi-
tional coherence guarantees which are independent of clock synchronization and address
failure cases where one or many sensor node clocks are not perfectly synchronized.

Madden et al. introduce acquisitional query processing and show the benefits of inter-
leaving data gathering operations with data manipulation operations in TinyDB [119].
They further extend TinyDB with efficient in-network aggregation [117]. Shrivastava et
al. extend the scope of TinyDB with complex aggregations and range queries [158]. Our
example pipeline in Figure 3.8, shows how our solution complements TinyDB and acqui-
sitional query processing. We replace ad-hoc sensor reads with a sophisticated pipeline
join which ensures time coherent result tuples. Riahi et al. consider the efficient data
acquisition from many sensors and optimize data gathering based on application re-
quests [147]. However, they do not discuss the time coherence of result tuples.

101

Chapter 3. Scalable Data Acquisition with Guaranteed Time Coherence

3.11 Conclusion

Upcoming IoT applications gather values from thousands of distributed sensors. Cur-
rently, these applications rely on clock synchronization among sensor nodes and clock
offsets cause undetected result errors. We propose SENSE, the first system for sensor
data acquisition that quantifies the time coherence of result tuples, provides synchroniza-
tion independent coherence guarantees, and supports user-defined incoherence limits.

The core of SENSE are sensing loops, which gather sensor values sequentially from
a set of sensors. To ensure scalability and to enforce incoherence limits, SENSE dy-
namically splits and merges sensing loops with respect to time coherence and latency
requirements. Our results show that SENSE scales to thousands of sensor nodes and re-
liably optimizes the coherence estimate of tuples while keeping the coherence guarantee
below a user-defined upper limit. Thereby, SENSE quickly adapts to changed network
conditions and coherence requirements.

SENSE serves as sensor control layer of our end-to-end architecture and accesses
sensor values through the read scheduler which we introduced in Chapter 2. Thereby,
SENSE operates as intermediate layer between sensor nodes and stream analysis systems
which prevents bottlenecks in stream analysis systems caused by central stream joins.
Instead of individual time-value-pairs, SENSE outputs complete input tuples which rep-
resent coherent snapshots of sensor values. In the next chapter, we show how stream
analysis systems aggregate sensor data tuples produced by SENSE.

102

4
Efficient Window Aggregation with

General Stream Slicing

Figure 4.1: Scope of Chapter 4 - Flexible Stream Discretization and
Efficient Window Aggregation in Stream Analysis Systems.

In this chapter, we optimize window aggregation, a common bottleneck in stream anal-
ysis systems. The rise of the IoT leads to an increasing number of applications that
require aggregates over an increasing amount of data. To ensure scalability, it is crucial
to share partial aggregates among all applications. To this end, we present the first
general stream slicing technique for window aggregation. Our technique shares partial
aggregates among all applications, prevents redundant computations, and automati-
cally adapts to workload characteristics, to improve performance without sacrificing its
general applicability. As a prerequisite, we identify workload characteristics that affect
the performance and applicability of aggregation techniques. Our experiments show that
general stream slicing outperforms alternative concepts by up to an order of magnitude.

103

Chapter 4. Efficient Window Aggregation with General Stream Slicing

4.1 Introduction

The need for real-time analysis shifts an increasing number of data analysis tasks from
batch to stream processing. To be able to process queries over unbounded data streams,
users typically formulate queries that compute aggregates over bounded subsets of a
stream, called windows. Examples of such queries on windows are average vehicle speeds
per minute, monthly revenue aggregations, or statistics of user behavior for online ses-
sions. The transformation from streams to windows is called stream discretization.

Large computation overlaps caused by sliding windows and multiple concurrent
queries lead to redundant computations and inefficiency. Consequently, there is an ur-
gent need for general and efficient window aggregation in industry [197, 168, 29]. In
this chapter, we contribute a general solution, which not only improves performance but
also widens the applicability with respect to window types, time domains, aggregate
functions, and out-of-order processing. Our solution is generally applicable to all data
flow systems that adopt a tuple-at-a-time processing model (e.g., Apache Storm [175],
Apache Flink [7, 35], and other Apache Beam-based systems [5, 11]).

To calculate aggregates of overlapping windows, the database community has been
working on aggregation techniques such as B-Int [14], Pairs [100], Panes [109], RA [171]
and Cutty [36]. These techniques compute partial aggregates for overlapping parts of
windows and reuse these partial aggregates to compute final aggregates for overlapping
windows. We believe that these techniques are not widely adopted in open-source stream-
ing systems for two main reasons: first, the literature on streaming window aggregation
is fragmented and, second, every technique has its own assumptions and limitations. As
a consequence, it is not clear for researchers and practitioners under which conditions
which streaming window aggregation techniques should be used.

General purpose streaming systems require a window operator that is applicable to
many types of aggregation workloads. At the same time, the operator should be as
efficient as specialized techniques, which support selected workloads only.

As our first contribution, we classify existing aggregation techniques with respect
to their underlying concepts and their applicability (Section 4.3). We then identify
and define the workload characteristics which may or may not be supported by exist-
ing specialized window aggregation techniques (Section 4.4). Those characteristics are:
i) window types (e.g., sliding, session, tumbling), ii) windowing measures (e.g., time or
tuple-count), iii) aggregate functions (e.g., associative, holistic), and iv) stream order.

104

Chapter 4. Efficient Window Aggregation with General Stream Slicing

We identify stream slicing as a concept on top of which window aggregation can
be implemented efficiently. Consequently, our second main contribution is a general
stream slicing technique (Section 4.5). Existing slicing-based techniques do not support
complex window types such as session windows [100, 109], do not consider out-of-order
processing [36], or limit the type of aggregation functions [36, 100, 109]. With general
stream slicing, we provide a single, generally applicable, and highly efficient solution
for streaming window aggregation. Our solution inherits the performance of specialized
techniques, which use stream slicing, and generalizes stream slicing to support diverse
workloads. Because we integrate all workloads into one general solution, we enable
aggregate sharing among all queries with different window types (sliding, sessions, user-
defined, etc.) and window measures (e.g., tuple-count or time). Our solution to general
stream slicing is available as open source library1.

General stream slicing breaks down slicing into three operations on slices, namely
merge, split, and update. Specific workload characteristics influence the cost of each
operation and how often operations are performed. By taking into account the workload
characteristics, our slicing technique i) stores the tuples themselves only when it is
required, which saves memory and ii) minimizes the number of slices that are created,
stored, and recomputed. One can extend our techniques with additional aggregations
and window types without changing the three core slicing operations. Thus, these core
operations may be tuned by system experts while users can still implement custom
windows and aggregations.
The contributions of this chapter are as follows:

1. We identify the workload characteristics which impact the applicability and per-
formance limitations of existing aggregation techniques (Section 4.4).

2. We contribute general stream slicing, a generally applicable and highly efficient
solution for streaming window aggregation in dataflow systems (Section 4.5).

3. We evaluate the performance implications of different use-case characteristics and
show that general stream slicing is generally applicable while offering better per-
formance than existing approaches (Section 4.7).

The remainder of this chapter is structured as follows: We first provide background
information in Section 4.2 and present concepts of aggregation techniques in Section 4.3.
We then present our contributions in Section 4.4, 4.5, and 4.7 and discuss related work
in Section 4.8 before we conclude in Section 4.9.

1Open-Source-Repository: https://github.com/TU-Berlin-DIMA/scotty-window-processor

105

https://github.com/TU-Berlin-DIMA/scotty-window-processor

Chapter 4. Efficient Window Aggregation with General Stream Slicing

Figure 4.2: Common Window Types.

4.2 Preliminaries

Streaming window aggregation involves special terminology with respect to window
types, timing, stream order, and data expiration. This section revisits terms and defini-
tions, which are required for the remainder of this chapter.

Window Types. A window type refers to the logic based on which systems derive
finite windows from a continuous stream (stream discretization). There exist diverse
window types ranging from common sliding windows to more complex data-driven win-
dows [74]. We address the diversity of window types with a classification in Section 4.4.4.
For now, we limit the discussion to tumbling (or fixed), sliding, and session windows (Fig-
ure 4.2) which we use in subsequent examples. A tumbling window splits the time into
segments of equal length l. The end of one window marks the beginning of the next
window. Sliding windows, in addition to the length l, also define a slide step of length
ls. This length determines how often a new window starts. Consecutive windows overlap
when ls < l. In this case, tuples may belong to multiple windows. A session window
typically covers a period of activity followed by a period of inactivity [5]. Thus, a session
window times out (ends) if no tuple arrives for some time gap lg. Typical examples of
sessions are taxi trips, browser sessions, and ATM interactions.

Notion of Time. One can define windows on different measures such as times and
tuple-counts. The event-time of a tuple is the time when an event was captured and
the processing-time is the time when an operator processes a tuple [5, 35]. Technically,
an event-time is a timestamp stored in the tuple and processing-time refers to a system

106

Chapter 4. Efficient Window Aggregation with General Stream Slicing

clock. If not indicated otherwise, we refer to event-time windows in our examples because
applications typically define windows on event-time.

Stream Order. Input tuples of a stream are in-order if they arrive chronologically
with respect to their event-times, otherwise, they are out-of-order [5, 112]. In practice,
streams regularly contain out-of-order tuples because of transmission latencies, network
failures, or temporary sensor outages. We differentiate in-order tuples from out-of-order
tuples and in-order streams from out-of-order streams. Let a stream S consist of tuples
s1, s2, s3, ... where the subscripts denote the order in which an operator processes the
tuples. Let the event-time of any tuple sx be te(sx).

• A tuple sx is in-order if @y : te(sy) > te(sx) ∧ y < x.

• A stream is in-order iff all its tuples are in-order tuples.

Punctuations, Watermarks, and Allowed Lateness. Punctuations are annota-
tions embedded in a data stream [186]. Systems use punctuations for different purposes:
low-watermarks (in short watermarks) indicate that no tuple will arrive with a times-
tamp smaller than the watermark’s timestamp [5]. Many systems use watermarks to
control how long they wait for out-of-order tuples before they output a window aggre-
gate [11]. Window punctuations mark window starts and endings in the stream [68, 81].
The allowed lateness, specifies how long systems store window aggregates. If an out-of-
order tuple arrives after the watermark, but in the allowed lateness, we output updated
aggregates.

Partial Aggregates and Aggregate Sharing. The key idea of partial aggregation
is to compute aggregates for subsets of the stream as intermediate results. These inter-
mediate results are shared among overlapping windows to prevent repeated computation
[14, 100, 201]. In addition, one can compute partial aggregates incrementally when tu-
ples arrive [171]. This reduces the memory footprint if a technique stores few partial
aggregates instead of all stream tuples in the allowed lateness. It also reduces the latency
because aggregates are pre-computed when windows end2.

2We say that a window ends when the systems has to output the aggregate for a window. When
processing in-order streams, a window ends as soon as the time progresses beyond the end-timestamp of
the window. When processing out-of-order streams, a window ends as soon as the watermark progresses
beyond the end-timestamp of the window.

107

Chapter 4. Efficient Window Aggregation with General Stream Slicing

4.3 Window Aggregation Concepts

In this section, we survey concepts for streaming window aggregation and give an intu-
ition for each solution’s memory usage, throughput, and latency. We provide a detailed
comparison of all concepts in our experiments. Techniques which support out-of-order
streams store values for an allowed lateness (see above). In the following discussion, we
refer to allowed lateness only. Techniques which do not process out-of-order tuples, store
values for the duration of the longest window.

Table 4.1 on Page 109 provides an overview of all techniques we discuss in the fol-
lowing subsections. We denote the number of values (i.e., tuples) as | |, the number of
slices as | |, and the number of windows in the allowed lateness as |win|. We further
denote the size of a tuple in bytes as size(), the size of a slice including an aggregate
as size(), the size of an aggregate as size(), and the size of a bucket as size().
The size of slices and buckets covers metadata such as their start and end timestamps
and hashes. The metadata is of equal size for all buckets and slices.

4.3.1 Tuple Buffer

A tuple buffer (Table 4.1, Row 1) is a straightforward solution, which does not share
partial aggregates.

The throughput of a tuple buffer is fair as long as there are few or no concurrent
windows (i.e., no window overlaps), and there are few or no out-of-order tuples. Window
overlaps decrease the throughput because of repeated aggregate computations. Out-of-
order tuples decrease the throughput because of memory copy operations, which are
required for inserting values in the middle of a sorted ring buffer.

The latency of a tuple buffer is high because aggregates are computed lazily. Thus,
all aggregate computations contribute to the latency when the window ends.

A tuple buffer stores all tuples for the allowed lateness, which is | |·size(). Thus,
the more tuples we process per time, the higher the memory consumption and the higher
the memory copy overhead for out-of-order tuples.

4.3.2 Aggregate Trees

Aggregate trees such as FlatFAT [171] and B-INT [14] store partial aggregates in a tree
structure and share them among overlapping windows (Table 4.1, Row 2).

108

Chapter 4. Efficient Window Aggregation with General Stream Slicing

Memory Usage Example
1.

Tuple
Buffer

| |·size()

2.
Aggregate

Tree

| |·size()

+(| |−1)·size()

3.
Aggregate
Buckets

|win|·size()

+|win|·size()

4.
Tuple
Buckets

|win|·[avg(per win.)

·size() +size()]

5.
Lazy
Slicing

| |·size()

6.
Eager
Slicing

| |·size()

+(| |−1)·size()

7.
Lazy
Slicing

on tuples

| |·size()

+| |·size()

8.
Eager
Slicing

on tuples

| | · size()

+| |·size()

+(| |−1)·size()

Legend: Tuple Aggregate Slice incl. Aggregate Bucket
An explanation of symbols and notations can be found on top of Page 108

and in the List of Notation starting on Page 162.

Table 4.1: Memory Usage and Visualization of Aggregation Techniques.

109

Chapter 4. Efficient Window Aggregation with General Stream Slicing

FlatFAT stores a binary tree of partial aggregates on top of stream tuples (leaves)
which roughly doubles the memory consumption.

In-order tuples require log(| |) updates of partial aggregates in the tree. Thus, the
throughput is decreases logarithmically when the number of tuples in the allowed lateness
increases. Out-of-order tuples decrease the throughput drastically: they require the same
memory copy operation as in tuple buffers. In addition, they cause a rebalancing of the
aggregate tree and the respective aggregate updates.

The latency of aggregate trees is much lower than for tuple buffers because they can
compute final aggregates for windows from pre-computed partial aggregates. Thus, only
a few final aggregation steps remain when windows end [156].

4.3.3 Buckets

Li et al. introduce Window-ID (WID) [110, 111, 112], a bucket-per-window approach
which is adopted by many systems with support for out-of-order processing [5, 11, 35].
Each window is represented by an independent bucket. A system assigns tuples to
buckets (i.e., windows) based on event-times, independently from the order in which
tuples arrive [112]. Buckets do not utilize aggregate sharing. Instead, they compute
aggregates for each bucket independently.

Systems can compute aggregates for buckets incrementally [171]. This leads to very
low latencies because the final window aggregate is pre-computed when windows end.

We consider two versions of buckets. Tuple buckets keep individual tuples in buckets
(Table 4.1, Row 4). This leads to data replication for overlapping buckets. Aggregate
buckets store partial aggregates in buckets plus some overhead (e.g., start and end times),
but no tuples (Table 4.1, Row 3). We prefer to store aggregates instead of individual
tuples to reduce the memory footprint. However, some use-cases (e.g., holistic aggregates
over count-based windows) require us to keep individual tuples in memory.

Buckets process in-order tuples as fast as out-of-order tuples for most use-cases: they
assign the tuple to buckets and incrementally compute the aggregate of these buckets.
The throughput bottleneck for buckets are overlapping windows. For example, one
sliding window with l=20s and ls=2s results in 10 overlapping windows (i.e., buckets)
at any time. This causes 10 aggregation operations for each input tuple.

110

Chapter 4. Efficient Window Aggregation with General Stream Slicing

Figure 4.3: Example Aggregation with Stream Slicing.

4.3.4 Stream Slicing

Slicing techniques divide (i.e., slice) a data stream into non-overlapping chunks of data
(i.e., slices) [100, 109]. The system computes a partial aggregate for each slice. When
windows end, the system computes window aggregates from slices.

We show stream slicing with an example in Figure 4.3. Slicing techniques compute
partial aggregates incrementally when tuples arrive (bottom of Figure 4.3). We show
multiple intermediate aggregates per slice to illustrate the workflow.

Partial aggregates (i.e., slices) are shared among overlapping windows which avoids
redundant computations. In Figure 4.3, dashed arrows mark multiple uses of slices. In
contrast to aggregate trees and buckets, slicing techniques require just one aggregation
operation per tuple because each tuple belongs to exactly one slice. This results in a
high throughput for in-order as well as out-of-order tuples.

Similar to aggregate trees, the latency of stream slicing techniques is low because
only a few final aggregation steps are required when a window ends. We consider a lazy
and an eager version of stream slicing. The lazy version of stream slicing stores slices
including partial aggregates (Table 4.1, Row 5). The eager version stores a tree of partial
aggregates on top of slices to further reduce latencies (Table 4.1, Row 6). Both variants
compute aggregates of slices incrementally when tuples arrive. The term lazy refers to
the lazy computation of aggregates for combinations of slices.

There are usually many tuples per slice (| |�| |) which leads to huge memory
savings compared to aggregate trees and tuple buffers. Some use-cases such as holistic
aggregates over count-based windows require us to keep individual tuples in addition
to aggregates (Table 4.1, Row 7 and 8). In these cases, stream slicing requires more
memory than tuple buffers, but saves memory compared to buckets and aggregate trees.

111

Chapter 4. Efficient Window Aggregation with General Stream Slicing

We focus on stream slicing because it offers a good combination of high through-
puts, low latencies, and memory savings. Moreover, our experiments show that slicing
techniques scale to many concurrent windows, high ingestion rates, and high fractions
of out-of-order tuples. We create slices such that they can be shared among all queries.

4.4 Workload Characterization

In this section, we identify workload characteristics which either limit the applicability
of aggregation techniques or impact their performance. These characteristics are the
basis for subsequent sections in which we generalize stream slicing.

4.4.1 Characteristic 1: Stream Order

Out-of-order streams increase the complexity of window aggregation, because out-of-
order tuples can require changes in the past. For example, tuple buffers and aggregate
trees process in-order tuples efficiently using a ring buffer (FIFO principle) [171]. Out-
of-order tuples break the FIFO principle and require memory copy operations in buffers.

We differentiate whether or not out-of-order processing is required for a use-case.
For techniques which support out-of-order processing, we study how the fraction of out-
of-order tuples and the delay of such tuples affect the performance.

4.4.2 Characteristic 2: Aggregation Function

We classify aggregation functions with respect to their algebraic properties. Our notation
splits the aggregation in incremental steps and is consistent with related works [171, 36].
We write input values as lower case letters, the operation which adds a value to an
aggregate as ⊕, and the operation which removes a value from an aggregate as 	.
E.g., if we compute a sum, ⊕ corresponds to the arithmetic + and 	 corresponds to
the arithmetic −. We first adopt three algebraic properties used by Tangwongsan et
al. [171]. These properties focus on the incremental computation of aggregates:

(1) Associativity: (x⊕ y)⊕ z = x⊕ (y ⊕ z) ∀ x, y, z

(2) Invertibility: (x⊕ y)	 y = x ∀ x, y

(3) Commutativity: x⊕ y = y ⊕ x ∀ x, y

112

Chapter 4. Efficient Window Aggregation with General Stream Slicing

Stream slicing requires associative aggregate functions because it computes partial ag-
gregates per slice which are shared among windows. This requirement is inherent for
all techniques which share partial aggregates [14, 36, 100, 109, 171]. Our general slicing
approach does not require invertibility or commutativity, but exploits these properties
if possible to increase performance.

We further adopt the classification of aggregations in distributive, algebraic, and
holistic [73]. Aggregations such as sum, min, and max are distributive. Their partial
aggregates equal the final aggregates of partials and have a constant size. An aggregation
is algebraic if its partial aggregates can be summarized in an intermediate result of fixed
size. The final aggregate is computed from this intermediate result. The remainder of
aggregations, which have an unbounded size of partial aggregates, is holistic.

4.4.3 Characteristic 3: Windowing Measure

Windows can be specified using different measures (also called time domains [30] or
WATTR [110]). For example, a tumbling window can have a length of 5 minutes (time-
measure), or a length of 10 tuples (count-measure). To simplify the presentation, we
refer to timestamps in the rest of this chapter. However, bear in mind that a timestamp
can actually be a time, a tuple count, or any other monotonically increasing measure [36]:

• Time-Based Measures: Common time-based measures are event-time and
processing-time as introduced in Section 4.2.

• Arbitrary Advancing Measures are a generalization of event-times. Typically,
it is irrelevant for a stream processor if "timestamps" actually represent a time or
another advancing measure. Examples of other advancing measures are transaction
counters in a database, kilometers driven by a car, and invoice numbers.

• Count-Based Measures (also called tuple-based [110] or tuple-driven [30]) refer
to a tuple counter. For example, a window can start at the 100th and end at the
200th tuple of a stream. Count-based measures cause challenges when combined
with out-of-order processing: If tuples are ordered with respect to their event-
times and a tuple arrives out-of-order, it changes the count of all other tuples
which have a greater event-time. This changes the aggregates of all count-based
windows which start or end after the out-of-order tuple.

113

Chapter 4. Efficient Window Aggregation with General Stream Slicing

If we process multiple queries which use different window-measures, timestamps are rep-
resented as vectors which contain multiple measures as dimensions. This representations
allows for slicing the stream with respect to multiple dimensions (i.e., measures) while
slices are still shared among all queries [33, 36].

4.4.4 Characteristic 4: Window Type

We classify window types with respect to the context (or state) which is required to know
where windows start and end. We adopt the classification in context free (CF), forward-
context aware (FCA), and forward-context free (FCF) introduced by Li et al. [110]. Here
we present those classes along with the most common window types belonging to them.

• Context Free (CF). A window type is context free if one can tell all start and
end timestamps of windows without processing any tuples. Common sliding and
tumbling windows are context free because we can compute all start and end times-
tamps a priori based on the parameters l and ls.

• Forward Context Free (FCF). Windows are forward context free, if one can
tell all start and end timestamps of windows up to any timestamp t, once all
tuples up to this timestamp t have been processed. An example are punctuation-
based windows where punctuations mark start and end timestamps [68]. Once we
processed all tuples up to t (including out-of-order tuples), we also processed all
punctuations before t and, thus, we know all start and end positions up to t.

• Forward Context Aware (FCA). The remaining window types are forward
context aware. Such window types require us to process tuples after a timestamp t
in order to know all window start and end timestamps before t. An example of such
windows are Multi-Measure Windows which define their start and end timestamps
on different measures. For example, output the last 10 tuples (count-measure) every
5 seconds (time-measure) is forward context aware: we need to process tuples up
to a window end in order to compute the window begin.

4.5 General Stream Slicing

We now present our general stream slicing technique which supports high-performance
aggregation for multiple queries with diverse workload characteristics. General stream

114

Chapter 4. Efficient Window Aggregation with General Stream Slicing

Figure 4.4: Architecture of General Stream Slicing.

slicing replaces alternative operators for window aggregation without changing their in-
put or output semantics. Our technique minimizes the number of partial aggregates (sav-
ing memory), reduces the final aggregation steps when windows end (reducing latency),
and avoids redundant computation for overlapping windows (increasing throughput).
The main idea behind our technique is to exploit workload characteristics (Section 4.4)
and to automatically adapt aggregation strategies. Such adaptivity is a highly desired
feature of an aggregation framework: current non-adaptive techniques fail to support
multiple window types, process in-order streams only, cannot share aggregates among
windows defined on different measures, lack support for holistic aggregations, or incur
dramatically reduced performance in exchange for being generally applicable.

Approach Overview. Figure 4.4 depicts an overview of our general slicing and ag-
gregation technique. Users specify their queries in a high-level language, such as a flavor
of stream SQL or a functional API. The query translator observes the characteristics
of a query (i.e., window type, aggregate function, and window measure) as well as the
characteristics of input streams (in-order vs. out-of-order streams) and forwards them
to our aggregator. Once those characteristics are given to our aggregator, our general
slicing technique adapts automatically to the given workload characteristics.

More specifically, general slicing detects if individual tuples need to be kept in mem-
ory (to ensure generality) or if they can be dropped after computing partial aggregates
(to improve performance). We further discuss this in Section 4.5.1. Moreover, the stream
slicing component automatically decides when it needs to apply our three fundamental
slicing operations: merge, split, and update (discussed in Section 4.5.2). Queries can
be added or removed from the aggregator and due to that, the workload characteristics

115

Chapter 4. Efficient Window Aggregation with General Stream Slicing

Figure 4.5: Decision Tree - Which workload characteristics require
storing individual tuples in memory?

can change. To this end, our aggregator adapts on the fly. General slicing has exten-
sion points that can be used to implement user-defined window types and aggregations
(discussed in Section 4.5.4).

4.5.1 Storing Tuples vs. Partial Aggregates

Existing aggregation techniques achieve generality by storing all input tuples and by
computing high-level partial aggregates [14, 171]. Specialized techniques, on the other
hand, only store (partial) aggregates. A general slicing technique needs to decide when
to store what, according to workload characteristics of each of the queries that it serves.
In this section, we discuss how we match the performance of specialized techniques, by
choosing on-the-fly whether to keep tuples or to store partial aggregates only.

For example, consider an aggregation function which is non-commutative (∃x, y :

x⊕y 6= y⊕x) defined over an unordered stream. When an out-of-order tuple arrives, we
need to recompute aggregates from the source tuples, in order to retain the correct order
of the aggregation. Thus, one would have to store the actual tuples for possible later use.
Storing all tuples for the whole duration of the allowed lateness requires more memory,
but allows for computing arbitrary windows from stored tuples. The decision tree in
Figure 4.5 summarizes when storing source tuples is required depending on different
workload characteristics.

116

Chapter 4. Efficient Window Aggregation with General Stream Slicing

In-order Streams. For in-order streams, we drop tuples for all context free (CF)
and forward context free (FCF) windows but must keep tuples if we process forward
context aware (FCA) windows. For such windows, forward context leads to additional
window start or end timestamps. Thus, we must be able to compute partial aggregates
for arbitrary timestamp ranges from the originally stored tuples.

Out-of-order Streams. For out-of-order streams, we need to keep tuples if at least
one of the following conditions is true:

1. The aggregation function is non-commutative.
An out-of-order tuple changes the order of the incremental aggregation, which
forces us to recompute the aggregate using source tuples. For in-order processing,
the commutativity of aggregation functions is irrelevant, because tuples are always
aggregated in-order. Thus, there is no need to store source tuples in addition to
partial aggregates.

2. The window is neither context free nor a session window.
In combination with out-of-order tuples, all context aware windows require tuples
to be stored. This is because out-of-order tuples change backward context, which
can lead to additional window start or end timestamps. Such additional start
and end timestamps require to split slices and to recompute the respective partial
aggregates from the original tuples. Session windows are an exception, because
they are context aware, but never require recomputing aggregates, as we will show
in Section 4.6.

3. The query uses a count-based window measure.
An out-of-order tuple (see definition in Section 4.2) changes the count of all suc-
ceeding tuples. Thus, the last tuple of each window shifts to its succeeding window.

4.5.2 Slice Management

Stream slicing is the fundamental concept that allows us to build partial aggregates
and share them among concurrently running queries and overlapping windows. In this
section, we introduce three fundamental operations which we can perform on slices.

Slice Metadata. A slice stores its start timestamp (tstart), its end timestamp (tend),
and the timestamp of the first (tfirst) and last tuple it contains (tlast). Note that the

117

Chapter 4. Efficient Window Aggregation with General Stream Slicing

timestamps of the first and last tuples do not need to conincide with the start and
end timestamps of a slice. For instance, consider a slice A that starts at tstart(A) = 1

and ends at tend(A) = 10, but the first (earliest) tuple contained is timestamped as
tfirst(A) = 2 and its last/latest one as tlast(A) = 9. Note that the timestamp can refer
not only to actual time, but to any measure presented in Section 4.4.3.

We identify three fundamental operations which we perform on stream slices. These
operations are i) merging of two slices into one, ii) splitting one slice into two, and
iii) updating the state of a slice (i.e., aggregate and metadata updates). In the following
paragraphs, we discuss merge, split, and update as well as the impact of our work-
load characteristics on each operation. We use upper case letters to name slices and
corresponding lower case letters for slice aggregates.

Merge. Merging two slices A and B happens in three steps:

1. Update the end of A such that tend(A)← tend(B).

2. Update the aggregate of A such that a← a⊕ b.

3. Delete slice B, which is now merged into A.

Steps one and three have a constant computational cost. The complexity of the second
step (a ← a ⊕ b) depends on the type of aggregate function. For instance, the cost is
constant for algebraic and distributive functions such as sum, min, and avg because they
require just a few basic arithmetic operations. Holistic functions such as quantiles can
be more complex to compute. Except from the type of aggregation function, no other
workload characteristics impact the complexity of the merge operation. However, stream
order and window types influence when and how often we merge slices. We discuss this
influence in Section 4.5.3.

Split. Splitting a slice A at timestamp t requires three steps:

1. Add slice B: tstart(B)← t+1 and tend(B)← tend(A).

2. Update the end of A such that tend(A)← t.

3. Recompute the aggregates of A and B.

118

Chapter 4. Efficient Window Aggregation with General Stream Slicing

Figure 4.6:
Decision Tree:

Are splits required?

Figure 4.7:
Decision Tree:

How to remove tuples?

Note that splitting slices is an expensive operation because it requires recomputing slice
aggregates from scratch. Moreover, if splitting is required, we need to keep individual
tuples in memory to enable the recomputation.

We show in Figure 4.6 when split operations are required. For in-order streams, only
forward context aware (FCA) windows require split operations. For such windows, we
split slices according to a window’s start and end timestamp as soon as we process the
required forward context. In out-of-order data streams, all context aware windows can
require split operations because out-of-order tuples contain backward context. We never
split slices for context free windows such as tumbling and sliding ones.

Update. Updating a slice can involve adding in-order tuples, adding out-of-order tu-
ples, removing tuples, or changing metadata (tstart, tend, tfirst, and tlast).

Metadata changes are simple assignments of new values to the existing variables.
Adding a tuple to a slice requires one incremental aggregation step (⊕), with the ex-
ception of processing out-of-order tuples with a non-commutative aggregation function.
For this, we recompute the aggregate of the slice from scratch to retain the order of
aggregation steps.

For some workloads we need to remove tuples from slices. We show in Figure 4.7
when and how we remove tuples from slices. Generally, a remove operation is required
only if a window is defined on a count-based measure and if we process out-of-order
tuples. An out-of-order tuple changes the count of all succeeding tuples. This requires

119

Chapter 4. Efficient Window Aggregation with General Stream Slicing

Figure 4.8: The Stream Slicing and Aggregation Process.

us to shift the last tuple of each slice one slice further, starting at the slice of the out-
of-order tuple. If the aggregation function is invertible, we exploit this property by
performing an incremental update. Otherwise, we have to recompute the slice aggregate
from scratch. If the out-of-order tuple has a small delay, such that it still belongs to the
latest slice, we can simply add the tuple without performing a remove operation.

4.5.3 Processing Input Tuples

The stream slicing and aggregation logic (bottom of Figure 4.4) consists of four compo-
nents, which we show in Figure 4.8. The Aggregate Store is our shared data structure,
which is accessed by the Stream Slicer to create new slices, by the Slice Manager to
update slices, and by the Window Manager to compute window aggregates.

The input stream can contain in-order tuples, out-of-order tuples, and watermarks.
Note that in-order tuples can either arrive from an in-order stream (i.e., one that is
guaranteed to never contain an out-of-order tuple) or from an out-of-order stream (i.e.,
one that does not guarantee in-order arrival). If the the stream is in-order (i.e., all tuples
are in-order tuples), there is no need to ingest watermarks. Instead, we output windows
directly, since there is no need to wait for potentially delayed tuples.

Step 1 - The Stream Slicer. The Stream Slicer initializes new slices on-the-fly when
in-order tuples arrive [100]. In an in-order stream, it is sufficient to start slices when
windows start [36]. In an out-of-order stream, we also need to start slices when windows
end, to allow for updating the last slice of windows later on with out-of-order tuples. We
always cache the timestamp of the next upcoming window edge and compare in-order
tuples with this timestamp. As soon as the timestamp of a tuple exceeds the cached
timestamp, we start a new slice and cache the timestamp of the next edge. This is

120

Chapter 4. Efficient Window Aggregation with General Stream Slicing

highly efficient because the majority of tuples do not end a slice and require just one
comparison of timestamps.

The Stream Slicer does not process out-of-order tuples and watermarks but forwards
them directly to the Slice Manager. This is possible because the slices for out-of-order
tuples have already been initialized by previous in-order tuples.

Step 2 - The Slice Manager. The Slice Manager is responsible for triggering all
split, merge, and update operations on slices.

First, the Slice Manager checks whether a merge or split operation is required. We
always merge and split slices such that all slice edges match window edges and vice versa.
This guarantees that we maintain the minimum possible number of slices [33, 36, 178].

In an out-of-order stream, context aware windows can cause merges or splits. In
an in-order stream, only forward context aware windows can cause these operations.
Context free windows never require merge or split operations, as the window edges are
known in advance and slices never need to change.

In-order tuples can be part of the forward context which indicates window start or
end timestamps earlier in the stream. When processing forward context aware windows,
we check if the new tuple changes the context such that it introduces or removes window
start or end timestamps. In such case, we perform the required merge and split opera-
tion to match the new slice and window edges. Out-of-order tuples can change forward
and backward context, such that a merge operation or split operation are required.

If the new context causes new window edges and, thus, merge or split operations,
we notify the Window Manager, which outputs window aggregates up to the current
watermark.

Finally, the Slice Manager adds the new tuple to its slice and updates the slice
aggregate accordingly. In-order tuples always belong to the current slice and are added
with an incremental aggregate update [171]. For out-of-order tuples, we look up the
slice which covers the timestamp of the out-of-order tuple and add the tuple to this
slice. For commutative aggregation functions, we add the new tuple with an incremental
aggregate update. For non-commutative aggregation functions, we need to recompute
the aggregate from individual tuples to retain the correct order.

Step 3 - The Window Manager. The Window Manager computes the final aggre-
gates for windows from slice aggregates.

121

Chapter 4. Efficient Window Aggregation with General Stream Slicing

When processing an in-order stream, the Window Manager checks if the tuple it
processes is the last tuple of a window. Therefore, each tuple can be seen as a watermark
which has the timestamp of the tuple. If a window ended, the window manager computes
and outputs the window aggregate (final aggregation step).

For out-of-order streams, we wait for the watermark (see Section 4.2) before we
output results of windows which ended before a watermark.

The Slice Manager notifies the Windows Manager when it performs split, merge,
or update operation on slices. Upon such notification, the Window Manager performs
two operations:

1. If an out-of-order tuple arrives within the allowed lateness but after the watermark,
the tuple possibly changes aggregates of windows which were output before. Thus,
the Window Manager outputs updates for these window aggregates.

2. If a tuple changes the context of context aware windows such that new windows
end before the current watermark, the window manager computes and outputs the
respective aggregates.

Parallelization. We parallelize stream processing with key partitioning, which is the
common approach used in stream processing systems [83] such as Flink [35], Spark [16],
and Storm [175]. Key partitioning enables intra-node as well as inter-node parallelism
and, thus, results in good scalability. Since our generic window aggregation is a drop
in replacement for the window aggregation operator, the input and output semantics of
the operator remains unchanged. Thus, neither the query interface nor optimizations
unrelated to window aggregations are affected.

4.5.4 User-Defined Windows and Aggregations

Our architecture decouples the general logic of stream slicing from the concrete imple-
mentation of window types and aggregation functions. This makes it easy to add window
types and aggregation functions, as no changes are required in the slicing logic. In this
section, we describe how we implement aggregation functions and window types.

4.5.4.1 Implementing Aggregation Functions

We adopt the same approach of incremental aggregation introduced by Tangwongsan et
al. [171]. Each aggregation type consists of three functions: lift, combine, and lower. In

122

Chapter 4. Efficient Window Aggregation with General Stream Slicing

addition, aggregations may implement an invert function. We now discuss the concept
behind these functions, and refer the reader to the original paper for an overview of
different aggregations and their implementation.

Lift. The lift function transforms a tuple to a partial aggregate. For example, consider
an average computation. If a tuple 〈t, v〉 contains its timestamp t and a value v, the lift
function will transform it to 〈sum←v, count←1〉, which is the partial aggregate of that
one tuple.

Combine. The combine function (⊕) computes the combined aggregate from partial
aggregates. Each incremental aggregation step results in one call of the combine function.

Lower. The lower function transforms a partial aggregate to a final aggregate. In our
example, the lower function computes the average from sum and count:

〈sum, count〉 7→ sum/count

Invert. The optional invert function removes one partial aggregate from another with
an incremental operation.

In this work, we consider holistic aggregation functions which have an unbounded size
of partial aggregates. A widely used holistic function is the computation of quantiles. For
instance, windowed quantiles are the basis for billing models of content delivery networks
and transit-ISPs [53, 84]. For quantile computations, we sort tuples in slices to speed
up succeeding merge operations and apply run length encoding to save memory [150].

4.5.4.2 Implementing Different Window Types

We use a common interface for the in-order slicing logic of all windows. We extend this
interface with additional methods for context-aware windows. One can add additional
window types by implementing the respective interface.

Context Free Windows. The slicing logic for context free windows depends on in-
order tuples only. When a tuple is processed, the slicing core initializes all slices up to
the timestamp of that tuple. Our interface for context free windows has two methods:
The first method has the following signature:

long getNextEdge(long timestamp)

123

Chapter 4. Efficient Window Aggregation with General Stream Slicing

The method receives a timestamp as parameter and returns the next window edge (begin
or end timestamp) after this timestamp. We use this method to retrieve the next window
edge for on-the-fly stream slicing (Step 1 in subsection 4.5.3). For example, a tumbling
window with length l would return timestamp+ l − (timestamp mod l).

The second method triggers the final window aggregation according to a watermark
and has the following signature:

void triggerWin(Callback c, long prevWM, long currWM)

The Window Manager calls this method when it processes a watermark. c is a callback
object, prevWM is the timestamp of the previous watermark and currWM is the timestamp
of the current watermark. The method reports all windows which ended between prevWM

and currWM by calling

c.triggerWin(longstartTime, long endTime).

This callback to the Window Manager triggers the computation and output of the final
window aggregate.

Context Aware Windows. Context aware windows use the same interface as context
free windows to trigger the initialization of slices when processing in-order tuples. In
addition, context aware windows require to keep a state (i.e., context) in order to derive
window start and end timestamps when processing out-of-order tuples. We initialize
context aware windows with a pointer to the Aggregate Store. This prevents redundan-
cies among the state of the shared aggregator and the window state. When the Slice
Manager processes a tuple, it notifies context aware windows by calling

window.notifyContext(callbackObj, tuple).

This method can then add and remove window start and end timestamps through
the callback object and the Slice Manager splits and merges slices as required to match
window start and end timestamps. We detect whether or not a window is context aware
based on the interface which is implemented by the window specification. We provide
examples for different context free and context aware window implementations in our
open source repository3.

3Open-Source-Repository: https://github.com/TU-Berlin-DIMA/scotty-window-processor

124

https://github.com/TU-Berlin-DIMA/scotty-window-processor

Chapter 4. Efficient Window Aggregation with General Stream Slicing

Figure 4.9: Session Window Aggregate Sharing.

4.6 Stream Slicing for Session Windows

Recently, session windows evolved to a common window type supported by program-
ming models such as Apache Beam [11] and the Dataflow Model [5]. Many systems
implement these models and process session windows in addition to sliding and tum-
bling windows [10, 36, 203]. In this section, we take a close look on session windows and
show that session window aggregation benefits from stream slicing.

4.6.1 Aggregate Sharing for Session Windows

We show an example for session window stream slicing in Figure 4.9. The example
has four session windows with the minimum gaps lg = 3, 5, 6, and 7. We make five
observations based on our example:

1. Multiple session window queries with different gaps can share slices and, thus,
partial aggregates.

2. Session windows would also share slices with other types of windows.

3. Sessions of a single query have no overlap. Thus, a single session window query
cannot benefit from aggregate sharing.

4. Slices can cover the gaps between sessions because gaps do not cover any tuples
by definition. Respectively, a partial aggregate which covers a session and a gap is
equal to an aggregate which covers the session only.

5. The slicing logic solely depends on one session window - the one with the smallest
gap. All session windows with larger gaps are compositions of the slices made for
the session window with the smallest minimum gap. In our example min(lg) = 3.

125

Chapter 4. Efficient Window Aggregation with General Stream Slicing

Figure 4.10: Out-of-order Processing with Session Windows.

We utilize the observations above and create slices with respect to the session win-
dow with the smallest gap only. This allows for creating stream slices with a constant
workload, which is independent from the number concurrent sessions.

4.6.2 Session Windows on Out-Of-Order Streams

Stream slicing for session windows is more complex than for sliding or tumbling windows,
because session windows are context aware. Thus, we do not know start and end positions
of sessions up front. Instead, start and end positions of sessions depend on the gaps
between the tuples we process.

Out-of-order tuples either belong to an existing session (update), fuse sessions (merge),
or form new sessions (split). We show all cases in Figure 4.10. Interestingly, we can
rewrite all required split operations to update operations. Thus, we completely prevent
expensive slice splits and do not need to store tuples in additions to aggregates when
processing session windows. If an out-of-order tuple belongs to an existing session (Case
1.1) or extends a session at the session end (Case 1.2), we insert the tuple into the re-
spective slice (one update). Thereby, the start and end times of slices remain unchanged.
If an out-of-order tuple extends a session at the session start (Case 1.3), we change ses-
sion edges respectively and add the tuple (two updates). An out-of-order tuple can also
fuse two sessions. This is the case whenever the gap between sessions shrinks below the

126

Chapter 4. Efficient Window Aggregation with General Stream Slicing

minimum session gap (Case 2). Fusing sessions also combines the slices of the sessions
(one merge). Finally, an out-of-order tuple can form a new session on its own if its gap
on both sides is larger than the minimum session gap (Case 3). In this case, we split a
slice between sessions (i.e., within the gap). Because gaps contain no data by definition,
we can create a new slice which contains the out-of-order tuple and and update the end
of the existing slice without changing its aggregate (one update).

4.7 Evaluation

In this section, we evaluate the performance of general stream slicing and compare stream
slicing with alternative techniques introduced in Section 4.3.

4.7.1 Experimental Setup

Setup. We implement all techniques on Apache Flink v1.3. We run our experiments
on a VM with 6 GB main memory and 8 processing cores with 2.6 GHz.

Metrics. In our experiments, we report throughput, latency, and memory consump-
tion. We measure throughput as in the Yahoo Streaming Benchmark implementation for
Apache Flink [41, 189]. We determine latencies with the JMH benchmarking suite [135].
JMH provides precise latency measurements on JVM-based systems. We use the Ob-
jectSizeCalculator of Nashorn to determine memory footprints [136].

Baselines. We compare an eager and a lazy version of general stream slicing with
non-slicing techniques from Section 4.3: As representative for aggregate trees, we imple-
ment FlatFAT [171]. For the buckets technique, we use the implementation of Apache
Flink [35]. For tuple buffers, we use an implementation based on a ring buffer array. We
also include Pairs [100] and Cutty [36] as specialized slicing techniques where possible.

Data. We replay real-world sensor data from a football match [131] and from manu-
facturing machines [88]. The original data sets track the position of the football with
2000 and the machine states with 100 updates per second. We generate additional tuples
based on the original data to simulate higher ingestion rates [76]. We add 5 gaps per
minute to separate sessions. This is representative for the ball possession moving from

127

Chapter 4. Efficient Window Aggregation with General Stream Slicing

one player to another4. If not indicated differently, we show results for the football data.
The results for other data sets are almost identical because the performance depends on
workload characteristics rather than data characteristics.

Queries. We base our queries (i.e., window length, slide steps, etc.) on the workload
of a live-visualization dashboard which is built for the football data we use [181]. If not
indicated differently, we use the sum aggregation in Sections 4.7.2 and Section 4.7.3. In
Section 4.7.4, we use the M4 aggregation technique [91] to compress the data stream
for visualization. M4 computes four algebraic aggregates per window (i.e., minimum,
maximum, first and last value of each window). We show in Section 4.7.3.2 how the
performance differs among diverse aggregation functions. Because we do not change the
input and output semantics of the window and aggregation operation, there is no impact
on upstream or downstream operations. We ensure that windowing and aggregation are
the bottleneck and, thus, we measure the performance of aggregation techniques.

We do not alternate between tumbling and sliding windows because they lead to
identical performance: For example, 20 concurrent tumbling window queries cause 20
concurrent windows (1 window for each query at any time). This is equivalent to a single
sliding window with a window length of 20 seconds and and a slide step of one second
(again 20 concurrent windows). In the following, we refer to concurrent windows instead
of concurrent tumbling window queries. Sliding window queries yield identical results if
they imply the same number of concurrent windows.

Structure. We split our evaluation in three parts. First, we compare stream slic-
ing and alternative approaches with respect to their throughput, latency, and memory
footprint (Section 4.7.2). Second, we study the impact of each workload characteristic
introduced in Section 4.4 (Section 4.7.3). Third, we integrate general slicing in Apache
Flink and show the performance gain for a concrete application (Section 4.7.4). Sec-
tions 4.7.2 and 4.7.3 focus on the performance per operator instance. Section 4.7.4
studies the parallelization.

4The DEBS 2013 Grand Challenge defines ball possession as follows: "A player (and thereby his
respective team) can obtain the ball whenever the ball is in his proximity and he hits it. A ball is in
proximity of the player when it is less than one meter away from him. The distance of one meter applies
to the distance between the sensor within the ball and any of the two sensors in the player’s shin guards.
A ball is hit whenever its acceleration or velocity peaks. A ball will stay in the possession of a given
player until another player hits it, the ball leaves the field, or the game is stopped. Specifically, a ball
may leave the player’s proximity and will still remain in his possession." [131]

128

Chapter 4. Efficient Window Aggregation with General Stream Slicing

1 10 40 80 500 1000
103

104

105

106

number of concurrent windowsth
ro
ug

hp
ut

[t
up

le
s/
s]

Lazy Slicing Eager Slicing Cutty-Lazy Cutty-Eager
Pairs Buckets Tuple Buffer Agg. Tree

Figure 4.11: In-order Processing with Context Free Windows.

4.7.2 Stream Slicing Compared to Alternatives

We now compare stream slicing with alternative techniques discussed in Section 4.3.
We first study the throughput for in-order processing on context-free windows in Sec-
tion 4.7.2.1. Our goal is to understand the performance of stream slicing compared
to alternative techniques, including specialized slicing techniques. In Section 4.7.2.2,
we evaluate how the throughput changes in the presence of out-of-order tuples and
context-aware windows. In Section 4.7.2.3, we evaluate the memory footprint and in
Section 4.7.2.4 the latency of different techniques.

4.7.2.1 Throughput

Workload. We execute multiple concurrent tumbling window queries with equally
distributed lengths from 1 to 20 seconds. These window lengths are representative of
window aggregations which facilitate plotting line charts at different zoom levels (Ap-
plication of Section 4.7.3). We chose Pairs [100] and Cutty [36] as example slicing
techniques because Pairs is one of the first and most cited techniques and Cutty offers
a high generality with respect to window types.

Results. We show our results in Figure 4.11. All three slicing techniques process
millions of tuples per second and scale to large numbers of concurrent windows.

Buckets achieves orders of magnitude less throughput than Slicing techniques and
does not scale to large numbers of concurrent windows. The reason is that we must
assign each tuple to all concurrent buckets (i.e., windows). Thus, tuples belong to

129

Chapter 4. Efficient Window Aggregation with General Stream Slicing

101 102 103

103

104

105

106

concurrent windows

th
ro
ug

hp
ut

[t
up

le
s/
s]

Lazy Slicing Eager Slicing Buckets Agg. Tree Tuple Buffer

(a) Football data set [131].

101 102 103

103

104

105

106

concurrent windows

th
ro
ug

hp
ut

[t
up

le
s/
s]

(b) Machine data set [88].

Figure 4.12: Increasing the number of concurrent windows including
20% out-of-order tuples and session windows.

up to 1000 buckets causing 1000 redundant aggregation steps per tuple. In contrast,
slicing techniques always assign tuples to exactly one slice. Similar to buckets, the tuple
buffer causes redundant aggregation steps for each window as we compute each window
independently. Aggregate Trees show a throughput which is orders of magnitude smaller
than the one of slicing techniques. This is because each tuple requires several updates
in the tree.

Summary. We observe that slicing techniques outperform alternative concepts with
respect to throughput and scale to large numbers of concurrent windows.

4.7.2.2 Throughput under Constraints

We now analyze the throughput under constraints, i.e., including out-of-order tuples and
context-aware windows.

Workload. The workload remains the same as before but we add a time-based session
window (lg = 1sec.) as representative for a context-aware window. We add 20% out-of-
order tuples with random delays between 0 and 2 seconds.

130

Chapter 4. Efficient Window Aggregation with General Stream Slicing

Results. We show the results in Figure 4.12 on Page 130. Slicing techniques achieve
an order of magnitude higher throughput than alternative techniques, which do not
use stream slicing. Moreover, slicing scales to large numbers of concurrent windows with
almost constant throughput. This is because the per-tuple complexity remains constant:
we assign each tuple to exactly one slice. Lazy Slicing has the highest throughput (1.7
Million tuples/s) because it uses stream slicing and does not compute an aggregate
tree. Eager Slicing achieves slightly lower throughput than Lazy Slicing. This is due to
out-of-order tuples which cause updates in the aggregate tree. Buckets show the same
performance decrease as in the previous experiment. The performance decrease for the
Tuple Buffer is intensified due to out-of-order inserts in the ring buffer array. Aggregate
Trees process less than 1500 tuples/s with 20% out-of-order tuples. This is because out-
of-order tuples require expensive leaf inserts in the aggregate tree (rebalance and update
of inner nodes). Eager slicing seldom faces this issue because it stores slices instead of
tuples in the aggregate tree. The majority of out-of-order tuples falls in an existing slice,
which prevents rebalancing. We exemplary show our results on two different datasets for
this experiment. Because the performance depends on workload characteristics rather
than data characteristics, the results are almost identical. We omit similar results for
different data sets in the following experiments and focus on the impact of workload
characteristics.

Summary. For workloads including out-of-order tuples and context-aware windows,
we observe that general stream slicing outperforms alternative concepts with respect to
throughput and scales to large numbers of concurrent windows.

4.7.2.3 Memory Consumption

We now study the memory consumption of different techniques with four plots: In
Figures 4.13a and 4.13c on Page 132, we vary the number of slices in the allowed lateness
and fix the number of tuples in the allowed lateness to 50 thousand. In Figures 4.13b
and 4.13d on Page 132, we vary the number of tuples and fix the number of slices to 500.
We experimentally compare time-based and count-based windows. Our measurements
include all memory required for storing partial aggregates and metadata, such as the
start and end times of slices.

131

Chapter 4. Efficient Window Aggregation with General Stream Slicing

100 500 1000103

104

105

106

107

slices in allowed lateness

M
em

or
y
R
eq
ui
re
m
en
t
[b
yt
e]

Lazy Slicing Eager Slicing Buckets
Agg. Tree Tuple Buffer

1
2

3

4

5

1 2 3
4 5

(a) Raising slices/time with
Time-Based Windows.

100 1000 10000103

104

105

106

107

tuples in allowed lateness

M
em

or
y
R
eq
ui
re
m
en
t
[b
yt
e]

1 2 3

4 5

(b) Raising tuples/time with
Time-Based Windows.

100 500 1000103

104

105

106

107

slices in allowed lateness

M
em

or
y
R
eq
ui
re
m
en
t
[b
yt
e]

1
2

3
4

5

(c) Raising slices/time with
Count-Based Windows.

100 1000 10000103

104

105

106

107

tuples in allowed lateness

M
em

or
y
R
eq
ui
re
m
en
t
[b
yt
e]

1 2 3

4 5

(d) Raising tuples/time with
Count-Based Windows.

Figure 4.13: Memory Experiments with Out-of-order Streams.

132

Chapter 4. Efficient Window Aggregation with General Stream Slicing

Results for Time-Based Windows. Figures 4.13a and 4.13b show the memory
consumption for time-based windows, which do not require us to store individual tuples.
For Stream Slicing and Buckets, the memory footprint increases linearly with the number
of slices in the allowed lateness. The memory footprint is independent from the number
of tuples. The opposite holds for Tuple Buffers and Aggregate Trees. Slicing techniques
store just one partial aggregate per slice, while buckets store one partial aggregate per
window. Tuple Buffers and Aggregate Trees store each tuple individually.

Results for Count-Based Windows. Figures 4.13c and 4.13d show the memory
consumption for count-based windows, which require individual tuples to be stored.
The experiment setup is the same as in Figures 4.13a and 4.13b.

The memory consumption of all techniques increases with the number of tuples in
the allowed lateness, because we need to store all tuples for processing count-based
windows on out-of-order streams (Figure 4.13d). Starting from 1000 tuples in the allowed
lateness, the memory consumed by tuples dominates the overall memory requirement.
Accordingly, all curves become linear and parallel. Buckets show a stair shape because
of the underlying hash map implementation [193]. Slicing techniques start at roughly
105 byte which is the space required to store 500 slices. The memory footprint of buckets
also increases with the number of slices because more slices correspond to more window
buckets (Figure 4.13c). Each bucket stores all tuples it contains which leads to duplicated
tuples for overlapping buckets.

Summary. When we can drop individual tuples and store partial aggregates only
(Figure 4.13a and 4.13b), the memory consumptions of slicing and buckets depends only
on the number of slices in the allowed lateness. In this case, stream slicing and buckets
scale to high ingestion rates with almost constant memory utilization. If we need to
keep individual tuples (Figure 4.13c and 4.13d), storing tuples dominates the memory
consumption.

4.7.2.4 Latency

The output latency for window aggregates depends on the aggregation technique, the
number of entries (tuples or slices) which are stored, and the aggregation function. In
Figure 4.14 on Page 134, we show the latency for different situations.

133

Chapter 4. Efficient Window Aggregation with General Stream Slicing

102 103 104 105
0

102

104

106

of tuples in the window

la
te
nc

y
[in

ns
]

Tuple Buffer
Agg. Tree
Buckets

(a) Latency for sum with
tuple-dependent techniques.

102 103 104 105
0

102

104

106

of slices in the window

la
te
nc
y
[in

ns
]

Lazy Slicing
Eager Slicing
Buckets

(b) Latency for sum with
slice-dependent techniques.

102 103 104 105
0

102

104

106

of tuples in the window

la
te
nc
y
[in

ns
]

Tuple Buffer
Agg. Tree
Buckets

(c) Latency for median with
tuple-dependent techniques.

102 103 104 105
0

102

104

106

of slices in the window

la
te
nc
y
[in

ns
]

Lazy Slicing
Eager Slicing
Buckets

(d) Latency for median with
slice-dependent techniques.

Figure 4.14: Output Latency of Aggregate Stores.

134

Chapter 4. Efficient Window Aggregation with General Stream Slicing

Distributive and Algebraic Aggregation. For the sum aggregation (Figure 4.14a),
Lazy Slicing and Tuple Buffer exhibit up to 1ms latency for 105 entries (no matter if
105 tuples or 105 slices). Eager Slicing and Aggregate Trees show latencies below 5µs.
Buckets achieve latencies below 30ns. Lazy aggregation has higher latencies because it
computes final aggregates upon request. Eager Aggregation uses precomputed partial
aggregates from an aggregate tree which reduces the latency. Buckets pre-compute the
final aggregate of each window and store aggregates in a hash map which leads to the
lowest latency.

Holistic Aggregation. The latencies for the holistic median aggregation (Figure 4.14c)
are in the same order of magnitude and follow the same trends. Buckets exhibit the same
latencies as before because they precompute the aggregate for each bucket. Thus, a more
complex holistic aggregation decreases the throughput but does not increase the latency.
The latency of slicing techniques increases for the median aggregation, because we com-
bine partial aggregates to final aggregates when windows end. This combine step is more
expensive for holistic aggregates than for algebraic ones.

Summary. We observe a trade-off between throughput and latency. Lazy aggregation
has the highest throughput and the highest latency. Eager aggregation has a lower
throughput but achieves microsecond latencies. Buckets provide latencies in the order
of nanoseconds but have an order of magnitude less throughput.

4.7.3 Studying Workload Characteristics

We measure the impact of the workload characteristics from Section 4.4 on the perfor-
mance of general slicing. For comparison, we also show the best alternative techniques.

4.7.3.1 Impact of Stream Order

In this experiment, we investigate the impact of the amount of out-of-order tuples and
the impact of the delay of out-of-order tuples on throughput (Figure 4.15 on Page 136).
We use the same setup as for the throughput experiments in Section 4.7.2.2 with 20 con-
current windows.

135

Chapter 4. Efficient Window Aggregation with General Stream Slicing

10 30 50 70 90

103

104

105

106

out-of-order tuples [in %]

th
ro
ug

hp
ut

[t
up

le
s/
s]

Lazy Slicing Eager Slicing Buckets Agg. Tree Tuple Buffer

(a) Increasing the fraction of
out-of-order tuples.

0-2 2-4 4-6 6-8 8-10
103

104

105

106

out-of-order tuple delay [sec]
th
ro
ug

hp
ut

[t
up

le
s/
s]

(b) Increasing the delay of
out-of-order tuples.

Figure 4.15: Impact of Stream Order on the Throughput.

Out-of-order Performance. In Figure 4.15a, we increase the fraction of out-of-order
tuples. Slicing and Buckets process out-of-order tuples as fast as in-order tuples. The
throughput of the other techniques decreases when processing more out-of-order tuples.

Slicing techniques process out-of-order tuples efficiently because they perform only
one slice update per out-of-order tuple. Eager slicing also updates its aggregate tree.
This update has a low overhead because there are just a few hundred slices in the
allowed lateness and, accordingly, there are just a few tree levels which require updates.
Aggregate Trees on tuples have a much larger number of tree levels because they store
tuples instead of slices as leaf nodes.

Buckets have a constant throughput as in the previous experiments. Tuple Buffers
and Aggregate Trees exhibit a throughput decay when processing out-of-order tuples.
Tuple Buffers require expensive out-of-order inserts in the sorted buffer array. Aggregate
Trees require inserting past leaf nodes in the aggregate tree. This causes a rebalancing
of the tree and the respective re-computation of aggregates. Eager Slicing seldom faces
this issue (see Section 4.7.2.2).

Delay Robustness. In Figure 4.15b, we increase the delay of out-of-order tuples. We
use equally distributed random delays within the ranges specified on the horizontal axis.

136

Chapter 4. Efficient Window Aggregation with General Stream Slicing

C
ou

nt

Su
m

M
ax

M
in

A
ri
th

m
et
ic
M
ea

n

G
eo

m
et
ri
cM

ea
n

M
ax

C
ou

nt

M
in
C
ou

nt

Sa
m
pl
eS

td
D
ev

P
op

ul
at
io
nS

td
D
ev

A
rg
M
in

A
rg
M
ax

su
m

w
/o

in
ve
rt

M
ed

ia
n

90
-p
er
ce
nt
ile

0
2
4
6
8

10
12
14
16
18

th
ro
ug

hp
ut

[1
00
k
tu
pl
es
/s
]

time-based count-based

Figure 4.16: Impact of Aggregation Types on Throughput.

All techniques except Tuple Buffers are robust against increasing delays. Slicing
techniques always update one slice when they process a tuple. Small delays can sightly
increase the throughput compared to longer delays if out-of-order tuples still belong to
the most recent slice. In this case, we require no lookup operations to find the correct
slice. The throughput of Buckets is independent of the delay because Flink stores buckets
in a hashmap. The throughput of the tuple buffer decreases with increasing delay of out-
or-order tuples, because the lookup and update costs in the sorted buffer array increase.

Summary. Stream slicing and Buckets scale with constant throughput to large frac-
tions of out-of-order tuples and are robust against high delays of these tuples.

4.7.3.2 Impact of Aggregation Functions

We now study the throughput of different aggregation functions using the same setup
as before (20 concurrent windows, 20% out-of-order tuples, delays between 0 and 2 sec-
onds) in Figure 4.16. We differentiate time-based and count-based windows to show the
impact of invertibility. We implement the same aggregation functions as Tangwongsang
et al. [171]. The original publication provides a discussion of these functions and an
overview of their algebraic properties. We additionally study the median and the 90-
percentile as examples for holistic aggregation. Moreover, we study a naive version of the
sum aggregation which does not use the invertibility property. This allows for making a
deduction with respect to not invertible aggregations in general.

137

Chapter 4. Efficient Window Aggregation with General Stream Slicing

100 101 102

103

104

105

concurrent windows

tr
ou

gh
pu

t
[t
up

le
s/
s]

Lazy Slicing Eager Slicing Buckets Tuple Buffer

(a) Football data set [131].

100 101 102

103

104

105

concurrent windows

tr
ou

gh
pu

t
[t
up

le
s/
s]

(b) Machine data set [88].

Figure 4.17: Throughput for Median Aggregation.

Time-Based Windows. For time-based windows, the throughput is similar for all
algebraic and distributive aggregations with small differences due to different computa-
tional complexities of the aggregations. Holistic aggregations (median and 90-percentile)
show a much lower throughput because they require to keep all tuples in memory and
have a higher complexity.

Count-Based Windows. We observe lower throughputs than for time-based win-
dows, which is because of out-of-order tuples. For count-based windows, an out-of-order
tuple changes the sequence id (count) of all later tuples. Thus, we need to shift the
last tuple of each slice to the next slice. This operation has low overhead for invertible
aggregations because we can subtract and add tuples from aggregates. The operation is
costly for not invertible aggregations because it requires the recomputation of the slice
aggregate. Time-based windows do not require an invert operation because out-of-order
tuples only change the sequence id (count) of later tuples but not the timestamps.

Impact of invertibility. There is a big difference between the performance for differ-
ent not invertible aggregations on count-based windows. Although Min, Max, MinCount,
MaxCount, ArgMin, and ArgMax are not invertible, they have a small throughput decay
compared to time-based windows (Figure 4.16). This is because most invert operations

138

Chapter 4. Efficient Window Aggregation with General Stream Slicing

102 103 104 105 106
103

104

105

106

107

108

tuples in slice

pr
oc
es
si
ng

ti
m
e
[n
s]

median
sum

Figure 4.18: Processing Time for Recomputing Aggregates.

do not affect the aggregate and, thus, do not require a recomputation. For example, it
is unlikely that the tuple we shift to the next slice is the maximum of the slice. If the
maximum remains unchanged, max, MaxCount, and ArgMax do not require a recomputa-
tion. In contrast, the sum w/o invert function shows the performance decay for a not
invertible function which always requires a recomputation when removing tuples.

Impact of Holistic Aggregations. In Figure 4.16, we observe that holistic aggre-
gations have a much lower throughput than algebraic and distributive aggregations. In
Figure 4.17 on Page 138, we show that stream slicing still outperforms alternative ap-
proaches for these aggregations. The reason is that stream slicing prevents redundant
computations for overlapping windows by sorting values within slices and by applying run
length encoding. In contrast, Buckets and Tuple Buffer compute each window indepen-
dently. The machine data set shows slightly higher throughputs because the aggregated
column has only 37 distinct values compared to 84232 distinct values in the football
dataset. Fewer distinct values increase the savings achieved by run length encoding.
Aggregate trees (not shown) can hardly compute holistic aggregates. They maintain
partial aggregates for all inner nodes of a large tree which is extremely expensive for
holistic aggregations.

Summary. On time-based windows, stream slicing performs diverse distributive and
algebraic aggregations with similarly high throughputs. Considering count-based win-
dows and out-of-order tuples, invertible aggregations lead to higher throughputs than
not invertible ones.

139

Chapter 4. Efficient Window Aggregation with General Stream Slicing

100 101 102 103

104

105

106

of concurrent windows

th
ro
ug

hp
ut

[t
up

le
s/
s]

Time-based Slicing
Count-based Slicing
Count-based Tuple Buffer

Figure 4.19: The Impact of Different Window Measures.

4.7.3.3 Impact of Window Types

The window type impacts the throughput if we process context-aware windows because
these windows potentially require split operations. Note that context aware windows
cover arbitrary user-defined windows which makes it impossible to provide a general
statement on the throughput for all these windows. Thus, we evaluate the time required
to recompute aggregates for slices of different sizes when a split operation is performed
(Figure 4.18 on Page 139). Given a context aware window, one can estimate the through-
put decay based on the number of split operations required and the time required for
recomputing aggregates after splits. We show the sum aggregation as representative for
an algebraic function and the median as example for a holistic function.

The processing time for the recomputation of an aggregate increases linearly with
the number of tuples contained in the aggregate. If split operations are required to
process a context aware window, a system should monitor the overhead caused by split
operations and adjust the maximum size of slices accordingly. Smaller slices require more
memory and cause repeated aggregate computation when calculating final aggregates for
windows. In exchange, the aggregates of smaller slices are cheaper to recompute when
we split slices.

4.7.3.4 Impact of Window Measures

We compare different window measures in Figure 4.19. We use the same setup as before
(20% out-of-order tuples with delays between 0 and 2 seconds).

140

Chapter 4. Efficient Window Aggregation with General Stream Slicing

1 2 3 4 6 8104

105

106

107

Degree of paralellism

th
ro
ug

hp
ut

[t
up

le
s/
s]

Lazy Slicing Buckets

(a) Throughput.

1 2 3 4 6 8
0

200

400

600

800

Degree of paralellism
C
P
U

lo
ad

[in
%
]

(b) Processor Load.

Figure 4.20: Parallelizing the workload of a live-visualization dashboard
(80 concurrent windows per operator instance).

Time-Based Windows. For time-based windows, the throughput is independent
from the number of concurrent windows as discussed in our throughput analysis in
Section 4.7.2.2. The throughput for arbitrary advancing measures is the same as for
time-based measures because they are processed identically [36].

Count-Based Windows. The throughput for count-based windows is almost con-
stant for up to 40 concurrent windows and decays linearly for larger numbers. For up to
40 concurrent windows, most slices are larger than the delay of tuples. Thus, out-of-order
tuples still belong to the current slice and require no slice updates. The more windows
we add, the smaller our slices become. Thus, out-of-order tuples require an increasing
number of updates for shifting tuples between slices which reduces the throughput. Tu-
ple buffers are the fastest alternative to Slicing in our experiment. For 1000 concurrent
windows, slicing is still an order of magnitude faster than tuple buffers.

Summary. The throughput of time-based windows stays constant whereas the through-
put of count-based windows decreases with a growing number of concurrent windows.

141

Chapter 4. Efficient Window Aggregation with General Stream Slicing

4.7.4 Parallel Stream Slicing

In this experiment, we study stream slicing on the example of our dashboard applica-
tion [181] which uses the M4 aggregation [91]. We vary the degree of parallelism to
show the scalability with respect to the number of cores. We compare Lazy Slicing with
Buckets which are used in Flink.

Results. In Figure 4.20 on Page 141, we increase the number of parallel operator
instances of the windowing operation (degree of parallelism). The throughput scales
linearly up to a degree of parallelism of four (Figure 4.20a). Up to this degree, each par-
allel operator instance runs on a dedicated core with other tasks (data source operator,
writing outputs, operating system overhead, etc.) running on the remaining four cores.
For higher degrees of parallelism the throughput and the CPU load increase logarith-
mically, approaching the full 800% CPU utilization (Figure 4.20b). Slicing achieves an
order of magnitude higher throughput than buckets, because it prevents assigning tuples
to multiple buckets (cf. Section 4.7.2.1). The memory consumption scaled linearly with
the degree of parallelism for both techniques.

Summary. We conclude that stream slicing and buckets scale linearly with the number
of cores for our application.

4.8 Related Work

Optimizing Window Aggregations. Our general slicing techniques utilizes features
of existing techniques such as on-the-fly slicing [100], incremental aggregation [171],
window grouping [77, 78], and user-defined windows [36]. However, general stream slicing
offers a unique combination of generality and performance. One can extend other slicing
techniques based on this chapter to reach similar generality and performance. Existing
slicing techniques such as Pairs [100] and Panes [109] are limited to tumbling and sliding
windows. Cutty can process user-defined window types, but does not support out-of-
order processing [36]. Several publications optimize sliding window aggregations focusing
on different aspects such as incremental aggregation [27, 70, 171] or worst-case constant
time aggregation [170]. Hirzel et al. conclude that one needs to decide on a concrete
algorithm based on the aggregation, window type, latency requirements, stream order,
and sharing requirements because each specialized algorithm addresses a different set

142

Chapter 4. Efficient Window Aggregation with General Stream Slicing

of requirements [82]. Instead of alternating between different algorithms, we provide a
single solution which is generally applicable and allows for adding aggregation functions
and window types without changing the core of our technique. Our solutions can be
integrated in open source streaming systems such as Apache Flink [35], Spark [203], and
Storm [175].

Stream Processing in Batches. In contrast to our techniques, which adopts a tuple-
at-a-time processing approach, several works split streams in batches of data which they
process in parallel [21, 98, 202]. For example, D-Streams [202] processes mini-batches
of data, which are combined to windows. This requires the slide step and range of
sliding windows to be multiples of the batch size. SABER introduces window fragments
to decouple slide and range of sliding windows from the batch size [98]. However,
in contrast to our work, SABER does not consider aggregate sharing among queries.
Balkesen et al. use panes to share aggregates among overlapping windows [21]. None of
these works addresses the general applicability with respect to workload characteristics.

Complementary Techniques. Weaving optimizes execution plans to reduce the over-
all computation costs for concurrent window aggregate queries [77, 78, 155]. We use a
similar approach to fuse window aggregation queries when window edges match. This
optimization is orthogonal to the generalization of slicing which is the focus of this chap-
ter. Huebsch et al. study multiple query optimization when aggregating several data
streams which arrive at different nodes [85]. General stream slicing complements this
work with an increased per-node performance. Truviso proposes an alternative tech-
nique based on independent stream partitions to correct outputs when tuples arrive
after the watermark [99]. While our work focuses on slicing streams and computing
partial aggregations for slices, recent publications of Shein et al. further accelerate the
final aggregation step which is required when windows end [156, 157]. Trill [39] is an
analytics system that supports streaming, historical, and exploratory queries in the same
system. Trill supports incremental aggregation and performs aggregations on snapshots,
the state of the window at a certain point in time.

143

Chapter 4. Efficient Window Aggregation with General Stream Slicing

4.9 Conclusion

Stream slicing is a technique for streaming window aggregation which provides high
throughputs and low latencies with a small memory footprint. We contribute a gen-
eralization of stream slicing with respect to four key workload characteristics: Stream
(dis)order, aggregation types, window types, and window measures. Our general slicing
technique dynamically adapts to these characteristics, for example, by exploiting the
invertibility of an aggregation or the absence of out-of-order tuples.

Our experimental evaluation reveals that general slicing is highly efficient without
limiting generality. It scales to a large number of concurrent windows and consistently
outperforms state-of-the-art techniques in terms of throughput. Furthermore, it effi-
ciently supports application scenarios with large fractions of out-of-order tuples, tuples
with high delays, time-based and count-based window measures, context-aware window-
ing, and holistic aggregation functions. Finally, we observed that the throughput of
general slicing scales linearly with the number of processing cores.

In the next chapter, we integrate our flexible stream discretization and window ag-
gregation technique into an adaptive pre-processing pipeline for front-end applications.

144

5
Interactive Real-Time Visualization for

Streaming Data

Figure 5.1: Scope of Chapter 5 - Connecting Stream Analysis Systems
and Front-End Applications.

In this chapter, we connect stream analysis systems with front-end applications (Fig-
ure 5.1). We visualize the football data, which we also used in the preceding chap-
ters. Window discretization and aggregation (Chapter 4) are core steps of an adaptive
pre-processing pipeline in our example application. We present I2, an interactive de-
velopment environment that coordinates running cluster applications and corresponding
visualizations such that only the currently depicted data points are processed and trans-
ferred. To this end, we present an algorithm for the real-time visualization of time series,
which is proven to be correct and minimal in terms of transferred data. Moreover, we
show how cluster programs can adapt to changing visualization properties at runtime to
allow for interactive data exploration on data streams.

145

Chapter 5. Interactive Real-Time Visualization for Streaming Data

5.1 Introduction

The amount of available real-time data increases rapidly with the growth of the IoT.
Such data is provided in the form of continuous data streams and includes various kinds
of information including stock prices, Twitter messages, Wikipedia edits, weather data,
and GPS positions. Systems such as Apache Flink, Apache Spark and Apache Storm
can process huge amounts of data with low latencies in a cluster to provide real-time
analysis. Nevertheless, the development of analysis programs for these platforms remains
a complex task, which requires iterative refinements and adaptations to address changing
user request and to allow for discovering the input data.

Figure 5.2: The tradeoff between
depicted history and plot precision.

A visualization of the incoming datastream can pro-
vide insights to support refinements and adaptations,
but visualizing big data in real-time is a challenge it-
self. Since display capabilities are limited to a certain
plot resolution (height and width of the screen) and
local processing capabilities (e.g., a browser), it is usu-
ally impossible or unnecessary to show all individual
data points from a high bandwidth data stream. For
example, even though a time series may consist of 2000
measurements per second, the visualization of a second
in a line chart is limited to a certain amount of pixel
columns. Thus, a user has to trade off between the
length of the displayed history (time span covered on
the time axis) and the resolution of the provided plot
(pixel columns per time) as shown in Figure 5.2.

Interestingly, it is proven that the amount of data which is required to plot a correct
line chart depends only on the number of pixel columns and not on the data. Jugel et
al. [91] derive standard SQL queries from a given plot resolution and provide a loss-free
plot from only four values per pixel column which reduces the computational load of the
system. We show how the same values can be computed in a parallel dataflow program
to allow for the live visualization of incoming streaming data. Additionally, we handle
differences between event time and processing time, as well as tuples arriving out-of-
order, which makes processing streaming data a more complex task.

146

Chapter 5. Interactive Real-Time Visualization for Streaming Data

We integrate the efficient live visualization of time series as line chart together with
other types of visualizations in I2, our interactive development environment, which con-
nects distributed data analysis programs with the visualization of the results. The name
I2 emphasizes two types of interactivity: (i) through code changes and (ii) through an
interactive visualization GUI. With I2, developers can change and deploy the code of
analysis pipelines and corresponding result visualizations in a one-click fashion. More-
over, running applications adapt to changes in the visualization, e.g., if the user zooms
into a map, and ensure that only the data points which are depicted in the current visu-
alization are processed and transferred towards the front end. As a result, I2 decreases
the workload in the cluster backend as well as the visualization front end. I2 is available
online as open source project1.

Summarizing, the contributions of this chapter are:

1. We present an interactive environment for visualization supported development of
streaming cluster applications.

2. We show that our solution significantly reduces the amount of processed and trans-
ferred data, while still providing loss-free visualizations.

3. We provide an algorithm for the live visualization of time series in line charts,
which is proven to be correct and minimal in terms transferred data.

We demonstrate I2 with a front-end application for real-time sport analytics. There-
fore, we explore the data set from the DEBS 2013 Grand Challenge [131] which we also
used in the previous chapters of the thesis. This data set consists of more than 2.6 GB
sensor data recorded at a football match with up to 2000Hz sampling rates. The data
provides detailed real-time information about all players as well as the ball.

In the remainder of this chapter, we first present our solution for the visualization of
time-series in line charts in Section 5.2. We then present the over-all architecture of I2

in Section 5.3 and our example application in Section 5.4. We present related work in
Section 5.6 and conclude in Section 5.7

1Open Source Repository: https://github.com/TU-Berlin-DIMA/i2

147

https://github.com/TU-Berlin-DIMA/i2

Chapter 5. Interactive Real-Time Visualization for Streaming Data

Figure 5.3:
The M4 aggregation technique

for time-series data.

Figure 5.4:
Deriving a stream data flow program for the real-time

visualization of time-series data with M4.

5.2 Visualization of Time Series

High volume time series data is omnipresent in many domains such as banking, weather
data, facility monitoring, or, as in our example, sport analytics. A naive approach for the
visualization of time series would send all available data points towards the front-end,
which causes the visualization to crash, in case the amount of input data increases as we
will show in Section 5.4. The M4 aggregation technique [91] overcomes this limitation
and constantly transfers just four values per pixel column. Furthermore, M4 is proven
to provide loss-free plots compared to plots of the original data.

Figure 5.3 illustrates the key concepts of the M4 aggregation. For each pixel column,
M4 finds the minimum and maximum value as well as the first and the last value (min-
imum and maximum timestamp). All pixels which are crossed by the line connecting
the extracted data points are colored and, thus, become foreground pixels. The intuitive
approach to take only the minimum and maximum values into consideration would be
insufficient. This would result in the red dotted line in Figure 5.3 and cause the pixel
errors E1, E3 (wrongly colored) as well as E2 (not colored).

In I2, we want to visualize streaming data in real-time. While M4 only consid-
ers finite data stored in a relational database, the real-time requirement adds several
new challenges: instead of standard SQL queries, we now need parallelizable processing
pipelines. Due to network delays and failures, there might be a gap between event time
(the point in time a measure is taken) and processing time (the point in time the data is
processed). Since data points may arrive out-of-order, we can never guarantee that the
data for a pixel column is complete and possibly need to update past pixel columns in

148

Chapter 5. Interactive Real-Time Visualization for Streaming Data

10 20 30 40 50 60
0

400

800

1,200

depicted history [sec.]d
a
ta

tr
an

sf
er

[b
y
te
s/
se
c.
]

M4
M4 compressed
100Hz raw data
200Hz raw data
300Hz raw data

Figure 5.5: The required bandwidth for an 800x600px plot.

case of delayed input data. We address these challenges, as we derive a complete stream
processing pipeline from a given plot resolution and the length of the depicted history,
as shown in Figure 5.4 on Page 148. The pipeline mainly consists of four steps, each of
which can be executed as an operator with possibly multiple parallel instances. These
four steps form the adaptive pre-processing pipeline which we also show in our overall
architecture (Figure 5.1 on Page 145).

Watermarks. Watermarks flow through the pipeline alongside the regular data
and propagate the progress of event time. A watermark of time tw means that no later
processed event will have a timestamp te < tw. We input watermarks at the data source
of our pipeline to mark the smallest timestamp which is still covered by the live plot.
Hence, we update pixel columns in case data arrives out-of-order. However, we avoid the
unnecessary processing of out-of-order data that arrives so late that the corresponding
pixel column of the live chart is no longer displayed.

Windowing. We apply a time window function, which splits the stream into finite
data chunks spanning the time of one pixel column. We then compute the M4 aggregates
over these windows, and respectively for each pixel column.

Value compression. Finally, we map the results of the aggregation to the value
space of the y-axis, which allows us to represent each value with less bytes. Figure 5.5
shows the savings in the input bandwidth of the visualization assuming an 800x600px
plot, showing 4 byte integer values. Note that the bandwidth required by M4 is indepen-
dent from the frequency of the underlying raw data and solely depends on the length of
the depicted history. The longer the depicted history, the more data is aggregated into
one pixel column, which causes the required bandwidth to decrease. In the next section,
we show how our streaming ready M4 aggregation pipeline is integrated into the overall
architecture of the I2 development environment.

149

Chapter 5. Interactive Real-Time Visualization for Streaming Data

Figure 5.6: I2 architecture overview.

5.3 I2 Development Environment

The I2 development environment aims to seamlessly connect live data visualization with
the development of streaming data analysis pipelines. Therefore, we directly link a de-
velopment environment and result visualizations within a single front-end (Figure 5.6).
Developers can deploy data analysis pipelines as well as visualizations in a one-click
fashion. While the visualization is provided within the same GUI as the code editor,
the analytics pipeline is deployed on an Apache Flink cluster to be capable of processing
high bandwidth streams in parallel.

Apache Flink [7, 35] is an open source platform for big data batch and stream process-
ing. The basis of Flink is a fault tolerant execution engine. Programs are represented as
operator graphs and the full processing pipeline is executed concurrently. Thus, the out-
put tuples of an operator can be processed immediately by succeeding operators. Flink
allows operators to have state. An asynchronous snapshot algorithm [34] ensures exactly
once processing guarantees even in case of failures. Flink fits perfectly to I2 since we need
stateful operators to store current visualization parameters, and low latency processing
to quickly adapt running jobs to changes.

Apache Zeppelin. The I2 front-end is based on Apache Zeppelin [12], which we ex-
tended to support automatic data reduction depending on current visualization param-
eters. In general, Zeppelin aims to support quick development by enabling interactive
analytics in web based notebooks. It is similar to IPython [137], but focuses on big data
and distributed computing. Zeppelin notebooks are data driven, interactive, and can
be edited collaboratively by multiple users. Moreover, Zeppelin supports a variety of

150

Chapter 5. Interactive Real-Time Visualization for Streaming Data

Figure 5.7: A runtime adaptive filter operator
for variable thresholds in Apache Flink.

execution back ends. In addition to classical dashboards, Zeppelin allows for developing
source code, submitting jobs directly to the cluster, and retrieving results immediately.

Runtime Adaptive Operators. I2 informs running Flink jobs about changes of the
visualization parameters. For example, if the user zooms into a map or changes the
length of the depicted history of a time series plot. The running cluster program has
to adapt to such changes with low latency in order to immediately provide the required
data for the visualization. Since a redeployment of a job in the cluster can take more
than a minute, we need to adapt jobs at runtime.

We push changes of the visualization parameters as control messages in a separate
stream to the running Flink job. Only the type of an operator (e.g., filter or aggregation)
is defined a priori, while we allow to adjust the parameters of the operator (e.g., filter
predicate or aggregate function) on the fly at runtime. We use Flink’s CoMap operators
merge control messages and the actual data points in a runtime-adaptive operator.

Flink’s CoMap operators consume two input streams while input items from each
stream are processed by separate user defined functions (UDFs). Nevertheless, both
UDFs can access a shared operator state which is used to communicate between them.

151

Chapter 5. Interactive Real-Time Visualization for Streaming Data

(a) Interactive Dashboard (b) Development Environment

Figure 5.8: Selected screenshots from the I2 demonstration.

Figure 5.7 shows how we can utilize a CoFlatMap operator to adapt to changed proper-
ties: in this example, one input stream consists of control messages containing changes to
the threshold of a filter operation. The responsible UDF saves the current threshold as
operator state (Figure 5.7, Step 1). Each value from the actual data stream is compared
to the currently stored threshold and all smaller values are filtered out (Figure 5.7, Step
2). In general, arbitrary changes to a selection criteria, aggregation function, windowing
semantics, and other operations are possible using this architecture.

5.4 Example Application

We provide an example application to allow for experiencing the fast visualization sup-
ported development with I2. This covers the development of the Flink job running in the
cluster as well as changing the visualizations, which are part of the front-end application.
Our example application continuously shows the savings in terms of the transferred data
volume, which are achieved by I2. When we increase the data rates of the input streams,
I2 will hide that workload from the visualization front-end. Without using I2 the front
end would first become unresponsive and finally crash due to an overload.

Data. We replay the data set which was provided with the DEBS Grand Challenge
2013 [131]. This data set consists of sensor data, which was recorded at a football
match. The speed, acceleration, and position of the ball are tracked with a frequency

152

Chapter 5. Interactive Real-Time Visualization for Streaming Data

of 2000Hz. In addition, each player has two sensors close to his shoes which are tracked
with a 200Hz frequency. In total, roughly 15.000 data points are provided per second.

Use Case. We show an interactive dashboard to analyze the performance of individual
players in detail. Users can either select a player manually or automatically follow the
ball possession, which involves detecting peaks in the measures of the ball sensor as
well as correlating these peaks with the data from the player sensors. Our dashboard
shows different metrics (e.g, acceleration and speed) for the selected player as well as
the player’s current position on the football field (Figure 5.8a on Page 152).

Interactivity. Our application demonstrates the two types of interactivity in I2:

1. Visualization properties can be changed easily in the dashboard and the running
Flink job adapts with low latency to, e.g., changes in the player selection or the
length of the depicted history of line charts.

2. Interactive code changes allow an even more flexible data exploration and the rapid
development of cluster applications. The code for the visualizations can be adapted
and directly deployed without a need to restart the running Flink job. One can
also adapt the running Flink job. For example, one can connect an additional data
source, e.g., for twitter messages, and these messages can be correlated with the
data we used before. The extended Flink job is directly deployed to the cluster
with just one click.

I2 and our example application are available online as open source project2 and as ready-
to-run docker container3.

5.5 Evaluation

We first try to run the dashboard of our example applications without using I2, meaning
that no data reduction is applied and all data - roughly 15.000 tuples/sec. - are trans-
ferred towards the front-end. As shown in Figure 5.9 (left) on Page 154, the UI works
only for a short moment before it becomes unresponsive due to a CPU overload.

2Project Website: https://tu-berlin-dima.github.io/i2/
3Docker Hub Link: https://hub.docker.com/r/tuberlindima/i2/

153

https://tu-berlin-dima.github.io/i2/
https://hub.docker.com/r/tuberlindima/i2/

Chapter 5. Interactive Real-Time Visualization for Streaming Data

without I2 with I2

0

20

40

60

fr
am

e
ra
te

[f
ra
m
es
/
se
c.
]

0

20

40

60

fr
a
m
e
ra
te

[f
ra
m
es
/s
ec
.]

0

50

100
C
P
U

u
ti
li
za
ti
on

[%
]

0

50

100

C
P
U

u
ti
li
za
ti
o
n
[%

]

start data
transfer

ui
crash

constant load
when using I2

Figure 5.9: I2 Performance Monitoring.

We now run the same dashboard with I2, pushing the current visualization properties
to the running Flink job, as described in Section 5.3. This information is then used by
Flink to apply different data reduction techniques: knowing the currently selected player
enables adaptive filtering as shown in Figure 5.7, and knowing the plot resolution of line
charts allows to apply the M4 aggregation technique we presented in Section 5.2. The
soccer field map combines different data reduction techniques. We reduce the precision
of the position reports based on the plot resolution, and at the same time apply load
shedding [172] to reduce the data rate to the current frame rate of the visualization. As
shown on Figure 5.9 (right), the presented dashboard runs fluently when using I2 with
close to 60 frames per second and a CPU utilization below 50%.

We exemplarily compare the performance of I2 for the dashboard described above
(Figure 5.9). Our experiment shows that the data traffic, the memory utilization, the
CPU load, and the frame rate remain constant throughout the game when I2 is active.
Switching off I2 causes the visualization to become unresponsive immediately due to the
massive amount of arriving data. With I2 activated, the bottleneck is no longer the
visualization, but the throughput (i.e., input bandwidth) of the used Flink cluster.

154

Chapter 5. Interactive Real-Time Visualization for Streaming Data

5.6 Related Work

In contrast to existing data exploration techniques [86], I2 combines three functionalities
within a single environment:

1. Rapid development and deployment of cluster applications with streaming data.

2. Automatic adaptation of running cluster jobs to changed visualization properties.

3. Efficient reduction of data to prevent overload of the visualization front-end.

While other solution require an additional intermediate layer between database and
visualization [22], I2 directly integrates into data analysis applications.

Many other approaches use sampling strategies for data reduction to enable fast vi-
sualizations of huge amounts of data [2, 3, 96, 162]. In contrast to I2, these techniques
disregard physical display properties and do not cover live plots of streaming data. More-
over, sampling-based visualizations are usually lossy compared to plots of the original
data, while the M4-based visualization of I2 is proven to be loss-free [91].

Wu et al. [196] take into account visualization properties and automatically derive
SQL-queries, but use a domain specific query language. In contrast, I2 works with any
query language integrated in Apache Zeppelin.

5.7 Conclusion

We connect stream analysis systems and front-end applications through the I2 devel-
opment environment. I2 enables two types of interactivity: first, the user can specify
real-time analysis programs and change them on-the-fly. Second, the interactive visu-
alization of the results adapts currently running cluster applications without a need to
restart. Using I2, the amount of data points to be processed and transferred to the front
end can be reduced significantly without quality loss, enabling the live visualization of
high bandwidth data streams. The capabilities of I2 have been shown in an interac-
tive example application using real-world sensor data which was recorded at a football
match. The front-end application presented in this section completes our end-to-end pro-
cessing pipeline for IoT sensor data. In the remaining chapters, we present additional
contributions in Chapter 6 and conclude the thesis in Chapter 7.

155

6
Additional Contributions

This chapter summarizes additional research contributions which have been made by the
author while working on this thesis. These additional contributions are not part of the
thesis contents, but closely related to the thesis topic or the systems used in this thesis.

Stream Processing Techniques. We presented additional techniques for efficient data
stream processing in the following four publications:

1. Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, Volker Markl:
Cutty: Aggregate Sharing for User-Defined Windows. ACM International on Con-
ference on Information and Knowledge Management (CIKM), 2016.

2. Philipp Marian Grulich, René Saitenmacher, Jonas Traub, Sebastian Breß,
Tilmann Rabl, Volker Markl: Scalable Detection of Concept Drifts on Data Streams
with Parallel Adaptive Windowing. International Conference on Extending Database
Technology (EDBT), 2018.

3. Ahmed Awad, Jonas Traub, Sherif Sakr: Adaptive Watermarks: A Concept Drift-
based Approach for Predicting Event-Time Progress in Data Streams. International
Conference on Extending Database Technology (EDBT), 2019.

4. Philipp Marian Grulich, Jonas Traub, Sebastian Breß, Asterios Katsifodimos,
Tilmann Rabl, and Volker Markl: Generating Reproducible Out-of-Order Data
Streams. ACM International Conference on Distributed and Event-based Systems
(DEBS), 2019.

156

Chapter 6. Additional Contributions

The paper Cutty: Aggregate Sharing for User-Defined Windows [36], introduces the
concept of user-defined windows (UDWs), a programming model that allows for defining
custom stream discretization, i.e., custom window types. Cutty uses stream slicing to
combine stream discretization with window aggregation and to share partial aggregates
among concurrent queries. Our general stream slicing technique presented in Chapter 4
supports user-defined windows and adds support for out-of-order processing, additional
aggregation types, and forward context aware windows.

In the paper Scalable Detection of Concept Drifts on Data Streams with Parallel
Adaptive Windowing [75], we address the problem of efficient concept drifts detection on
high-velocity data streams. Concept drift detection methods such as adaptive windowing
(ADWIN) [28] allow for detecting concept drifts on the fly in order to prevent wrong
results. We examine ADWIN in detail and point out its throughput bottlenecks. We
then introduce several parallelization alternatives to address these bottlenecks. Our
optimizations lead to a speedup of two orders of magnitude.

The paper Adaptive Watermarks: A Concept Drift-based Approach for Predicting
Event-Time Progress in Data Streams [19] applies the ADWIN algorithm to decide when
to generate watermarks which indicate the progress of event time in a streaming systems.
We use ADWIN to detect changes in the data arrival frequency and changes in delays of
out-of-order tuples. Compared to common periodic watermark generation, our adaptive
watermarks achieve a lower average latency, by triggering windows earlier, and a lower
rate of dropped elements, by delaying watermarks when expecting out-of-order data.

The publication Generating Reproducible Out-of-Order Data Streams [76] focuses on
evaluating modern stream processing systems in a reproducible manner. We present
an open source stream generator which generates reproducible and deterministic out-
of-order streams based on real data files, simulating arbitrary fractions of out-of-order
tuples and their respective delays.

Apache Flink. The Apache Flink stream analysis system was used in Chapters 4 and 5
of this thesis. We presented Apache Flink in two publications:

1. Tilmann Rabl, Jonas Traub, Asterios Katsifodimos, and Volker Markl:
Apache Flink in current research.
it-Information Technology, 58(4):157-165, De Gruyter Oldenbourg, 2016.

157

Chapter 6. Additional Contributions

2. Jonas Traub, Tilmann Rabl, Fabian Hueske, Till Rohrmann, Volker Markl:
Die Apache Flink Plattform zur parallelen Analyse von Datenströmen und
Stapeldaten.
Proceedings of the LWA Workshops: KDML, FGWM, IR, and FGDB, 2015.

The paper Apache Flink in current research [143] provides an overview of the Apache
Flink system and presents how Flink is used in current research projects. The German
paper Die Apache Flink Plattform zur parallelen Analyse von Datenströmen und Stapel-
daten [180] presents Flink to the German database community. The author of this thesis
also presented the research related to Apache Flink at the BOSS Workshop at the 42th
International Conference on Very Large Data Bases (VLDB) 2016 in New Delhi, at the
DB2 User Group Meeting 2015 at the IBM Böblingen Research Lab, at the 2nd BMBF
Big Data All Hands Meeting (BDAHM) and the 2nd Smart Data Innovation Conference
(SDIC) 2017 at KIT Karlsruhe (joint conferences), and as panelist at the BIRTE Work-
shop at the 44th International Conference on Very Large Data Bases (VLDB) 2018 in
Rio de Janeiro.

Modern Hardware. The following two publications focus on emerging modern hard-
ware and their application in the context of databases and stream processing:

1. Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Breß, Tilmann Rabl, Volker Markl: Analyzing
Efficient Stream Processing on Modern Hardware. Proceedings of the International
Conference on Very Large Data Bases (PVLDB), 2019.

2. Tobias Behrens, Viktor Rosenfeld, Jonas Traub, Sebastian Breß, Volker Markl:
Efficient SIMD Vectorization for Hashing in OpenCL.
International Conference on Extending Database Technology (EDBT), 2018.

In the paper Analyzing Efficient Stream Processing on Modern Hardware [205], we con-
duct an extensive experimental analysis of current SPEs and SPE design alternatives
optimized for modern hardware. Based on our analysis, we describe a set of design
changes to the common architecture of SPEs to scale-up on modern hardware. We show
that the single-node throughput can be increased by up to two orders of magnitude com-
pared to state-of-the-art SPEs by applying specialized code generation, fusing operators,
batch-style parallelization, and optimized windowing.

158

Chapter 6. Additional Contributions

In the paper Efficient SIMD Vectorization for Hashing in OpenCL [24], we add vec-
torized hashing primitives to OpenCL and show that these primitives are competitive
to low-level APIs on CPUs and Xeon Phis. Hashing is at the core of many database
operators. Vectorization uses Single Instruction Multiple Data (SIMD) instructions to
process multiple data elements at once. Applying vectorization to hash tables results in
promising speedups, but requires processor dependent low-level APIs. OpenCL provides
a higher abstraction and avoids processor dependencies.

Sensor Simulation. Realistically emulating IoT infrastructure involving a large num-
ber of heterogeneous sensors is important to enable IoT related research. We address
this issue in one publication which presents the Resense framework:

1. Dimitrios Giouroukis, Julius Hülsmann, Janis von Bleichert, Morgan Geldenhuys,
Tim Stullich, Felipe Gutierrez, Jonas Traub, Kaustubh Beedkar and Volker
Markl:
Resense: Transparent Record and Replay of Sensor Data in the Internet of Things.
International Conference on Extending Database Technology (EDBT), 2019.

Existing research on emulating sensors is often tailored to specific hardware and/or
software, which makes it difficult to reproduce and extend. In contrast, Resense [71]
emulates senors on the operating system level, and allows for managing experiments on
sensor node testbeds independent of the hardware and/or software under test.

159

7
Conclusion

The architecture presented in this thesis combines stream processing infrastructure with
extensions needed in the IoT era. Thereby, the thesis addresses major challenges that
arise from a growing number of sensors and sensor nodes, as well as a growing amount
of sensor data. We analyze all layers of the infrastructure stack and identify missing
control interfaces between these layers. By establishing these control interfaces, we solve
scalability issues and significantly improve efficiency. This lays the foundation for shared
data infrastructures in the IoT era. Our end-to-end architecture contributes to systems
that serve as public or private IoT clouds, covering the full processing pipeline from
sensors to front-end applications.

Our research unites aspects of network management and distributed processing from
a data management perspective. We connect stream analysis systems with sensor nodes
and introduce all required means to produce data streams based on the data demands
of applications. We further connect front-end applications and stream analysis jobs,
such that stream processing jobs running on streaming clusters can adapt at runtime to
application needs. The demand-driven acquisition of streaming data is fundamentally
different from existing approaches, which acquire as much data as possible without con-
sidering data demands. We found that demand-based data acquisition not only prevents
costly system scale-out and data transfer charges, but also reduces latencies by reduc-
ing the amount of data that streaming systems have to process for detecting events of
interest. We believe that the connection of networking, distributed processing, and data
management issues in the context of the IoT opens a new field of research with great
potential for novel features and performance optimizations.

160

Chapter 7. Conclusion

Future Research

This thesis lays the foundation for future research in several directions. In Chapter 2, we
introduced user-defined sampling functions (UDSFs). These functions allow for defining
data demands of applications flexibly. We have shown that UDSFs can express diverse
sampling techniques such as adaptive sampling, periodic sampling, and model-based
sampling. A future research goal is to automate the selection of optimal read time
tolerances and penalty functions for read requests posted by UDSFs. This goes beyond
existing adaptive sampling techniques, which adapt when and how often they read from
a sensor, but do not optimize how much read time deviation they allow and how they
penalize these read time deviations. We investigated the automatic tuning of read-time
tolerances for on-demand data streaming in a master’s thesis [108]. Initial experiments
with three different data sets show promising savings in sensor reads using an automatic
selection of read time tolerances. We plan to extend this work to ease the decision for
appropriate read time tolerances for users of our read scheduler.

While working on this thesis, we observed that there is no common benchmark
that evaluates the efficiency of data gathering and transmission systems in the IoT.
Existing IoT benchmarks focus on the performance of stream analysis systems with
respect to typical IoT applications, but disregard the efficiency of the preceding data
acquisition [15, 159, 160]. We investigated the idea to provide a benchmark for adaptive
data collection in the IoT in a master’s thesis [47]. We design a benchmark based on
the New York taxi dataset [132] which evaluates the efficiency of the data acquisition
for different scenarios. An extended version of our benchmark, in combination with the
Resense framework for managing sensor node testbeds [71], would be highly valuable for
comparing data gathering and transmission approaches in the IoT.

This thesis makes the case for demand-based data stream gathering, processing, and
transmission. Therefore, we move away from monolithic architectures and connect all
layers of the infrastructure stack. This connection enables an end-to-end optimization
of processing pipelines starting at sensors and reaching to front-end applications. Novel
IoT database systems can incorporate data gathering, data transmission, and central
stream analysis and, thereby, gain diverse new opportunities for novel query optimization
techniques. The architecture presented in this thesis is a first step towards an end-to-end
database system for the IoT era and will become a part of the NebulaStream platform
for application and data management in the IoT [204].

161

List of Notations

Chapter 2

∆ Length on the confidence interval when optimizing read times 35

∆T Output of the PID controller to change T . 23

∆t Time step for the incremental computation . 44

γ Tolerated impression of adaptive sampling (maximum dist). 20

σ̂ Predicted standard deviation (part of AdaM adaptive sampling) 21

λi The average read frequency of a UDSF . 41

λtotal The combined average read frequency of all UDSFs (short: λ) 41

µ The event rate for an exponential distribution (µ = 1/ltotal).44

ρ(M) Function that computes Ti . 20

σ Actual observed standard deviation (part of AdaM adaptive sampling) .21

θ Interval adjustment parameter of FAST (amplifier) . 23

ξ Interval adjustment parameter of FAST (error tolerance) 23

A The optimal fragment for the next sensor read . 36

B The latest possible fragment for the second sensor read 36

b(t) Number of started intervals up to time t . 44

c The current confidence (part of AdaM adaptive sampling) 21

Cd Weight factor of the derivative term of the PID controller.23

162

List of Notations

Ci Weight factor of the integral term of the PID controller 23

Cp Weight factor of the proportional term of the PID controller 23

dist The distance between M ′ and M according to some distance metric. . . . 20

Ei The error between the previous an the new prediction in FAST 23

l Length of a fragment or tolerance interval . 35

li The average tolerance interval length provided by a UDSF.41

ltotal The average tolerance interval length among all UDSFs (short: l) 41

M A metric stream (stream of sensor values) . 20

M ′ A metric stream (stream of sensor values) read with adaptive sampling 20

m(t) Number of ended intervals up to time t . 44

o(t) Number of open intervals at time t . 44

p(t) A penalty function used for read time optimization . 28

p′Σ(t) The derivative of the sum of multiple penalty functions 35

pΣ(t) The sum of multiple penalty functions . 35

rInt Array of read requests . 34

rInt′ An array of all read requests which cannot be assigned to A 36

T The time period between two sensor reads . 20

t Timestamp of a sensor read or a tuple . 17

tD The desired read time of a read request .30

Ti The time period between ti and ti−1 . 20

ti The read time of the i-th value at the sensor . 20

tend End timestamp of a fragment. .35

Tmax The maximum time period between ti and ti−1 . 20

163

List of Notations

tmax End of a read time tolerance interval of a read request 30

Tmin The minimum time period between ti and ti−1 .20

tmin Start of a read time tolerance interval of a read request 30

tstart Start timestamp of a fragment. .35

v A sensor value. .30

vi A value from a sensor with id i . 23

X The expected time until the first interval ends . 45

xi Prediction of the evolution of M computed by FAST. 23

Y The expected number of started intervals up to time X 45

Chapter 3

α Tuning parameter for the coherence tradeoff (Ce-Cg-tradeoff) 75

αi The age of vi at the join time at senor si (tnow − ti) 71

αi;opt The optimal age to be selected at a node i .86

αmax Short notation for the maximum age; max(α1, . . . , αN) 74

αmin Short notation for the minimal age; min(α1, . . . , αN) 74

∆ Round trip time of a tuple in a sensing loop . 75

δ Mean hop time between sensor nodes . 76

δ(l, sa) Transmission latency between the loop node and a sensor sa 73

δ(sa, sb) Transmission and processing latency between two sensors sa and sb 73

∆t The maximum read time deviation from the desired read time t 65

E(t
(i)
now) Estimated or predicted join time at sensor node i . 84

µ Tuning parameter for the coherence tradeoff (Ce-Cg-tradeoff) 75

164

List of Notations

µnew Updated value for µ (Result of the µ-update rule) . 85

σ The standard deviation of the round trip time ∆ . 76

Ce The coherence estimate of a sensor data tuple . 64

Cg The coherence guarantee of a sensor data tuple . 64

Cgmax Upper limit for coherence guarantees . 60

Creal The real coherence of a sensor data tuple . 64

Dmax The desired upperbound for Cg (max. incoherence) . 76

le End time of a sensing loop (inbound transmission time) 68

ls Start time of a sensing loop (outbound transmission time) 68

N The number of sensor nodes in a sensing loop. .76

p A variable which indicates if Dmax was met (Cg < Dmax) 76

ri Short notation for the difference between t and t(i)now-α 86

s Step width exponent (scales step width for µ updates) 76

si Senor with id si (the i-th sensor in a sensing loop) . 71

t A time; usually the timestamp of a tuple . 57

t′ Shifted desired read time w.r.t. a clock offset . 73

t′i Shifted desired read time w.r.t. the clock offset at sensor si 73

ti Read time of vi at sensor i (according to the sensor node clock).65

tl The last time µ and α have been updated . 76

ti;opt The optimal read timestamp to be selected at a node i 85

ti;j Candidate j for the read timestamp to be selected at a node i 86

tmax Short notation for the maximum read time; max(t1, . . . , tN) 74

tmin Short notation for the minimal read time; min(t1, . . . , tN) 74

165

List of Notations

tnow Current time according to a sensor node clock . 73

t
(i)
now Join time at sensor node i . 84

u Desired change for the coherence guarantee Cg . 85

vi A sensor value from the sensor with the index i .57

w Step width for µ updates . 76

Wjoin Watermark indicating which values have been sent to a fallback node . . 92

Wsend Watermark indicating the largest processes request timestamp 92

Chapter 4

⊕ Combine operation (combining partial aggregates) . 112

Symbol for an aggregate. .109

Symbol for a window bucket. .109

| | Number of slices . 108

| | Number of values (i.e., tuples) . 108

|win| Number of windows in the allowed lateness . 108

	 Revert operation (removing a partial aggregate from another) 112

size() Size of an aggregate in byte . 108

size() Size of a bucket in byte (bucket metadata) . 108

size() Size of a slice in byte, including the slice aggregate 108

size() Size of a values (i.e., a tuple) in byte . 108

Symbol for a slice (including its partial aggregate) . 109

Symbol for a tuple . 109

A,B,C, ... Upper case letters correspond to slices . 118

166

List of Notations

a, b, c, ... Lower case letters correspond to aggregates of slices 118

c A callback object. .124

l The length of a window . 106

lg The minimum gap which separates sessions (session window gap) 106

ls The slide step of a sliding window (how often a new window starts). . .106

S A data stream . 107

si The i-th tuple of a stream (processing order) . 107

tend(A) End timestamp of a slice A .117

tfirst(A) Timestamp of the first tuple contained in a slice A 117

tlast(A) Timestamp of the last tuple contained in a slice A . 117

tstart(A) Start timestamp of a slice A .117

te An event-time . 107

te(si) The event time of the i-th tuple in a stream (processing order) 107

currWM Timestamp of the current watermark . 124

prevWM Timestamp of the previous watermark. .124

Chapter 5

te Event time of a tuple. .149

tw Timestamp of a watermark . 149

167

List of Figures

Chapter 1 1

1.1 A typical demand-oblivious processing pipeline in the IoT. 2
1.2 Demand-based data stream gathering, processing, and transmission. . . . 2
1.3 Infrastructure Stack. 3
1.4 Architecture overview of on-demand data stream processing. 9

Chapter 2 14

2.1 Scope of Chapter 2 - Read Scheduling on Sensor Nodes. 14
2.2 Multi-query read scheduling provides tailored data streams based on the

data demand of queries. 17
2.3 Sensor reads and transferred tuples for our introductory use-case on For-

mula 1 data. 18
(a) Number of sensor reads. 18
(b) Transferred tuples. 18

2.4 An example query with user-defined sampling and its corresponding pro-
cessing pipeline. 23

2.5 Example: Measuring the energy expenditure of Berlin. 24
2.6 On-demand streaming architecture. 26

(a) Overall on-demand streaming architecture. 26
(b) Read scheduler internals. 26

2.7 Example: Sharing sensor reads among two queries. 28
2.8 Examples for penalty functions. 29
2.9 Read request with desired read time, tolerance interval, and a convex

penalty function. 29
2.10 Model-driven data acquisition. 32

168

List of Figures

2.11 The latest possible time for the next read is the first interval end. Reading
at this time minimizes the number of sensor reads. 33

2.12 Challenges in the assignment of read read requests to selected fragments
in which we perform sensor reads. 36
(a) Tolerance intervals possibly cover several read operations. 36
(b) New read requests may cause earlier read times. 36

2.13 Deciding for a fragment in case a tolerance interval overlaps with several
sensor read times. 38
(a) max(B) < min(A)⇒ postpone. 38
(b) max(A) < min(B)⇒ assign to A. 38
(c) otherwise ⇒ postpone. 38

2.14 Plot of the Exponential Distribution with mean 1/λ. 42
2.15 Tolerance intervals in a birth and death process. 44
2.16 Expected values for the number of started, ended, and open intervals for

λ = 2 and l = 0.5. 45
2.17 Tolerance intervals in a birth and death process considering earlier interval

ends in case of shared sensor reads. 46
2.18 Comparison of birth and death processes with example requests issued to

a systems with N = 3 parallel lines. 46
(a) Result with Erlang B (Figure 2.15). 46
(b) Result with read sharing (Figure 2.17). 46

2.19 Number of sensor reads and data transmissions for an increasing the
number of queries. (random UDSFs; ∅sampling rate 1Hz per UDSF;
∅tolerance ±0.04s). 48

2.20 Sensor reads/transfers for for an increasing read time tolerance. (20
queries, i.e., 20 random UDSFs, ∅sampling rate 1Hz/UDSF). 49

2.21 Impact of read time optimization on read time deviations for an increasing
number of queries. (random UDSFs; ∅sampling rate 1Hz per UDSF;
∅tolerance ±0.04s). 49

2.22 Read time optimization with increasing read time tolerance. (20 queries,
i.e., 20 random UDSFs, ∅sampling rate 1Hz per UDSF). 50

2.23 Query prioritization with penalty functions. (20 queries; ∅sampling rate
1Hz/query; ∅tolerance ±0.04s). 51

169

List of Figures

2.24 Read time optimization on behalf of a single query in our introductory
use-case. 52

2.25 AdaM and FAST on football data with read time slack. 52
(a) Reads & Transfers. 52
(b) Value Deviation. 52

Chapter 3 56

3.1 Scope of Chapter 3 - The Sensor Control Layer. 56
3.2 Multilateration example. 60
3.3 Clock drifts of 20 simulated clock instances for three different clock types

assuming perfectly synchronized clocks on startup. 62
(a) System clock on Raspberry Pi [26] 62
(b) Ras clock RTC (14$/pc.) [134] . 62
(c) High precision clock (23$/pc.) [140] 62

3.4 General network and node setup in the IoT. 65
(a) Network connections and locations of clocks. 65
(b) Sensor node architecture. 65

3.5 Exploiting local proximity of loop nodes and sensor nodes. 66
3.6 Topologies for sensor data acquisition. 67

(a) Central Join. 67
(b) Sensing Pipeline. 67
(c) Sensing Loop. 67

3.7 Example of an architecture combination. 68
3.8 Overview of sensor node internals. 69
3.9 Incremental spatial aggregation in sensor node pipelines. 70
3.10 Illustration of the coherence guarantee Cg. 72
3.11 Illustration of the coherence estimate Ce. 72
3.12 Ce without clock synchronization. 73
3.13 The tradeoff between Ce and Cg. 74

(a) Best possible Cg. 74
(b) Best possible Ce. 74

3.14 Selecting the optimal α=3 for δ=1 and N=5. 78
3.15 The step width w in the tradeoff scope. 78
3.16 Convergence of Cg to Dmax with corresponding w and p. 79

170

List of Figures

3.17 Example calculation: One optimization iteration for α and µ in a sensing
loop with two nodes. 81

3.18 Sketch of the distances between the signal source and the sensors. 83
3.19 Evolution of coherence guarantees and estimates for changing incoherence

limits (Dmax). 94
(a) Result with scheduled sensor reads. 94
(b) Number of sensor reads. 94

3.20 Evolution of coherence guarantees and estimates for changing incoherence
limits (Dmax). Results with periodic scheduling. 95

3.21 Performance Evaluation on the Loop Node. 96
(a) Throughput. 96
(b) Latency. 96
(c) CPU time. 96

3.22 Evaluation of coherence measures. 97
(a) Coherence Guarantee. 97
(b) Coherence Estimate. 97
(c) Readtime Deviation. 97

3.23 Coherence measures depending on loop lengths and Dmax. 99
(a) Coherence Estimate (Ce) . 99
(b) Coherence Guarantee (Cg) . 99
(c) Read Time Deviation (∆t) . 99

Chapter 4 103

4.1 Scope of Chapter 4 - Flexible Stream Discretization and Efficient Window
Aggregation in Stream Analysis Systems. 103

4.2 Common Window Types. 106
4.3 Example Aggregation with Stream Slicing. 111
4.4 Architecture of General Stream Slicing. 115
4.5 Decision Tree - Which workload characteristics require storing individual

tuples in memory? . 116
4.6 Decision Tree: Are splits required? . 119
4.7 Decision Tree: How to remove tuples? . 119
4.8 The Stream Slicing and Aggregation Process. 120
4.9 Session Window Aggregate Sharing. 125

171

List of Figures

4.10 Out-of-order Processing with Session Windows. 126
4.11 In-order Processing with Context Free Windows. 129
4.12 Increasing the number of concurrent windows including 20% out-of-order

tuples and session windows. 130
(a) Football data set [131]. 130
(b) Machine data set [88]. 130

4.13 Memory Experiments with Out-of-order Streams. 132
(a) Raising slices/time with Time-Based Windows. 132
(b) Raising tuples/time with Time-Based Windows. 132
(c) Raising slices/time with Count-Based Windows. 132
(d) Raising tuples/time with Count-Based Windows. 132

4.14 Output Latency of Aggregate Stores. 134
(a) Latency for sum with tuple-dependent techniques. 134
(b) Latency for sum with slice-dependent techniques. 134
(c) Latency for median with tuple-dependent techniques. 134
(d) Latency for median with slice-dependent techniques. 134

4.15 Impact of Stream Order on the Throughput. 136
(a) Increasing the fraction of out-of-order tuples. 136
(b) Increasing the delay of out-of-order tuples. 136

4.16 Impact of Aggregation Types on Throughput. 137
4.17 Throughput for Median Aggregation. 138

(a) Football data set [131]. 138
(b) Machine data set [88]. 138

4.18 Processing Time for Recomputing Aggregates. 139
4.19 The Impact of Different Window Measures. 140
4.20 Parallelizing the workload of a live-visualization dashboard (80 concurrent

windows per operator instance). 141
(a) Throughput. 141
(b) Processor Load. 141

Chapter 5 145

5.1 Scope of Chapter 5 - Connecting Stream Analysis Systems and Front-End
Applications. 145

5.2 The tradeoff between depicted history and plot precision. 146

172

List of Figures

5.3 The M4 aggregation technique for time-series data. 148
5.4 Deriving a stream data flow program for the real-time visualization of

time-series data with M4. 148
5.5 The required bandwidth for an 800x600px plot. 149
5.6 I2 architecture overview. 150
5.7 A runtime adaptive filter operator for variable thresholds in Apache Flink. 151
5.8 Selected screenshots from the I2 demonstration. 152

(a) Interactive Dashboard . 152
(b) Development Environment . 152

5.9 I2 Performance Monitoring. 154

173

List of Tables

2.1 Fraction of prevented sensor reads [in %] compared to an execution with-
out sensor read sharing. The savings increase when λ or l increase. The
time unit is irrelevant as long as it is the same for λ and l. 43

3.1 Specifications of different clocks at 30°C 62

4.1 Memory Usage and Visualization of Aggregation Techniques. 109

174

Bibliography

[1] Karl Aberer, Manfred Hauswirth, and Ali Salehi. Infrastructure for data processing
in large-scale interconnected sensor networks. In IEEE International Conference
on Mobile Data Management, pages 198–205, 2007.

[2] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar, Michael Jordan,
Samuel R Madden, Barzan Mozafari, and Ion Stoica. Knowing when you’re wrong:
building fast and reliable approximate query processing systems. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pages
481–492, 2014.

[3] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel R Mad-
den, and Ion Stoica. BlinkDB: queries with bounded errors and bounded response
times on very large data. In Proceedings of the ACM European Conference on
Computer Systems, pages 29–42. ACM, 2013.

[4] Shweta Agrawal, Krithi Ramamritham, and Shetal Shah. Construction of a tempo-
ral coherency preserving dynamic data dissemination network. In IEEE Real-Time
Systems Symposium (RTSS), 2004.

[5] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, et al. The dataflow model: A practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order data pro-
cessing. Proceedings of the International Conference on Very Large Data Bases
(PVLDB), 8(12):1792–1803, 2015.

[6] Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. A
survey on sensor networks. IEEE Communications Magazine, 40(8):102–114, 2002.

[7] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Frey-
tag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl,

175

BIBLIOGRAPHY

Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax, Sebastian
Schelter, Mareike Höger, Kostas Tzoumas, and Daniel Warneke. The Stratosphere
platform for big data analytics. VLDB Journal, 23(6):939–964, 2014.

[8] Rajagopal Ananthanarayanan, Venkatesh Basker, Sumit Das, Ashish Gupta,
Haifeng Jiang, Tianhao Qiu, Alexey Reznichenko, Deomid Ryabkov, Manpreet
Singh, and Shivakumar Venkataraman. Photon: Fault-tolerant and scalable join-
ing of continuous data streams. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 577–588, 2013.

[9] Kiam Heong Ang, Gregory Chong, and Yun Li. PID control system analy-
sis, design, and technology. IEEE Transactions on Control Systems Technology,
13(4):559–576, 2005.

[10] Apache Apex. Enterprise-grade unified stream and batch processing engine. 2018.
Accessed Dec. 2018, https://apex.apache.org/ (project website).

[11] Apache Beam. An advanced unified programming model. 2018. Accessed Dec.
2018, https://beam.apache.org/ (project website).

[12] Apache Zeppelin. Web-based notebook that enables data-driven, interactive data
analytics and collaborative documents with sql, scala and more. 2018. Accessed
Dec. 2018, http://zeppelin.apache.org/ (project website).

[13] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous query
language: semantic foundations and query execution. VLDB Journal, 15(2):121–
142, 2006.

[14] Arvind Arasu and Jennifer Widom. Resource sharing in continuous sliding-window
aggregates. Proceedings of the International Conference on Very Large Data Bases
(PVLDB), pages 336–347, 2004.

[15] Martin Arlitt, Manish Marwah, Gowtham Bellala, Amip Shah, Jeff Healey, and
Ben Vandiver. IoTAbench: an internet of things analytics benchmark. In Proceed-
ings of the ACM/SPEC International Conference on Performance Engineering,
pages 133–144, 2015.

[16] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu,
Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. Structured streaming: A

176

BIBLIOGRAPHY

declarative API for real-time applications in Apache Spark. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 601–613,
2018.

[17] Karl Johan Åström and Tore Hägglund. PID controllers: theory, design, and
tuning, volume 2. Instrument Society of America, 1995.

[18] Karl Johan Åström and Richard M Murray. Feedback systems: an introduction for
scientists and engineers. Princeton university press, 2010.

[19] Ahmed Awad, Jonas Traub, and Sherif Sakr. Adaptive watermarks: A concept
drift-based approach for predicting event-time progress in data streams. In Proceed-
ings of the International Conference on Extending Database Technology (EDBT),
2019.

[20] Andreas Bader, Oliver Kopp, and Michael Falkenthal. Survey and comparison of
open source time series databases. Datenbanksysteme für Business, Technologie
und Web (BTW), 2017.

[21] Cagri Balkesen and Nesime Tatbul. Scalable data partitioning techniques for par-
allel sliding window processing over data streams. In International Workshop on
Data Management for Sensor Networks (DMSN), 2011.

[22] Leilani Battle, Michael Stonebraker, and Remco Chang. Dynamic reduction of
query result sets for interactive visualizaton. In IEEE International Conference
on Big Data, pages 1–8, 2013.

[23] Jonathan Beaver, Mohamed A Sharaf, Alexandros Labrinidis, and Panos K
Chrysanthis. Power-aware in-network query processing for sensor data. In Pro-
ceedings of the Hellenic Data Management Symposium (HDMS), 2003.

[24] Tobias Behrens, Viktor Rosenfeld, Jonas Traub, Sebastian Breß, and Volker Markl.
Efficient SIMD vectorization for hashing in OpenCL. In Proceedings of the Inter-
national Conference on Extending Database Technology (EDBT), pages 489–492,
2018.

[25] Andreea Berfield and Daniel Mossé. Efficient scheduling for sensor networks. In
IEEE International Conference on Mobile and Ubiquitous Systems, pages 1–8,
2006.

177

BIBLIOGRAPHY

[26] Remi Bergsma. How accurately can the Raspberry Pi keep
time? In Remi Bergsma’s blog, 2013. Accessed Dec. 2018,
https://blog.remibergsma.com/2013/05/12/how-accurately-can-the-raspberry-pi-
keep-time/.

[27] Pramod Bhatotia, Umut A Acar, Flavio P Junqueira, and Rodrigo Rodrigues.
Slider: Incremental sliding window analytics. In Proceedings of the International
Middleware Conference, pages 61–72. ACM, 2014.

[28] Albert Bifet and Ricard Gavalda. Learning from time-changing data with adaptive
windowing. In Proceedings of the SIAM international conference on data mining,
pages 443–448, 2007.

[29] Brice Bingman. Poor performance with sliding time windows. In Flink Jira Issues
(Accessed Dec. 2018, issues.apache.org/jira/browse/FLINK-6990), 2018.

[30] Irina Botan, Roozbeh Derakhshan, Nihal Dindar, Laura Haas, Renée J. Miller,
and Nesime Tatbul. Secret: A model for analysis of the execution semantics of
stream processing systems. Proceedings of the International Conference on Very
Large Data Bases (PVLDB), 3(1-2):232–243, 2010.

[31] E Brockmeyer, HL Halstrøm, Arne Jensen, and Agner Krarup Erlang. The life
and works of A. K. Erlang. 1948.

[32] Fatos Bytyci and Maja Zuvela. Serbia, Kosovo power grid row delays euro-
pean clocks. Reuters, 2018. Accessed Dec. 2018, https://www.reuters.com/
article/serbia-kosovo-energy/serbia-kosovo-power-grid-row-delays-european-
clocks-idUSL5N1QP2FF.

[33] Paris Carbone. Scalable and Reliable Data Stream Processing. PhD thesis, KTH
Royal Institute of Technology, 2018.

[34] Paris Carbone, Gyula Fóra, Stephan Ewen, Seif Haridi, and Kostas Tzoumas.
Lightweight asynchronous snapshots for distributed dataflows. arXiv, 2015.

[35] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. Apache Flink: Stream and batch processing in a single
engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 38(4):28–38, 2015.

178

BIBLIOGRAPHY

[36] Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, and Volker Markl.
Cutty: Aggregate sharing for user-defined windows. In Proceedings of the ACM
International on Conference on Information and Knowledge Management, pages
1201–1210, 2016.

[37] Kevin Carter and William Streilein. Probabilistic reasoning for streaming anomaly
detection. In IEEE Statistical Signal Processing Workshop, pages 377–380, 2012.

[38] Ufuk Celebi. How Apache Flink handles backpressure. Data Artisans Blog,
2015. Accessed Feb. 2019, https://www.da-platform.com/blog/how-flink-handles-
backpressure.

[39] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel
Fisher, John C Platt, James F Terwilliger, and John Wernsing. Trill: A high-
performance incremental query processor for diverse analytics. Proceedings of the
International Conference on Very Large Data Bases (PVLDB), 8(4):401–412, 2014.

[40] Yen-Kuang Chen. Challenges and opportunities of Internet of Things. In Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 383–388, 2012.

[41] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves,
Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry
Peng, and Paul Poulosky. Benchmarking streaming computation engines: Storm,
Flink and Spark streaming. In IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), pages 1789–1792, 2016.

[42] David Chu, Amol Deshpande, Joseph M Hellerstein, and Wei Hong. Approximate
data collection in sensor networks using probabilistic models. In IEEE Interna-
tional Conference on Data Engineering (ICDE), pages 48–48, 2006.

[43] Razvan Cristescu, Baltasar Beferull-Lozano, Martin Vetterli, and Roger Wat-
tenhofer. Network correlated data gathering with explicit communication: NP-
completeness and algorithms. IEEE Transactions on Networking (ToN), 14(1):41–
54, 2006.

[44] Jakub Czyz, Michael Kallitsis, Manaf Gharaibeh, Christos Papadopoulos, Michael
Bailey, and Manish Karir. Taming the 800 pound gorilla: The rise and decline of
NTP DDoS attacks. In Proceedings of the Conference on Internet Measurement,
pages 435–448. ACM, 2014.

179

BIBLIOGRAPHY

[45] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. Approximate join pro-
cessing over data streams. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 40–51, 2003.

[46] Anirban DasGupta. Poisson processes and applications. In Probability for Statis-
tics and Machine Learning: Fundamentals and Advanced Topics, pages 437–462.
Springer New York, 2011.

[47] Vianney de Cibeins. A benchmark for adaptive data collection in the Internet of
Things. Master’s thesis, Technische Universität Berlin, 2017.

[48] Corrado De Fabritiis, Roberto Ragona, and Gaetano Valenti. Traffic estimation
and prediction based on real time floating car data. In IEEE Intelligent Trans-
portation Systems Conference (ITSC), pages 197–203, 2008.

[49] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[50] Alan Demers, Johannes Gehrke, Rajmohan Rajaraman, Niki Trigoni, and Yong
Yao. The Cougar project: a work-in-progress report. ACM Sigmod Record,
32(4):53–59, 2003.

[51] Pavan Deolasee, Amol Katkar, Ankur Panchbudhe, Krithi Ramamritham, and
Prashant Shenoy. Adaptive push-pull: disseminating dynamic web data. In Pro-
ceedings of the ACM International Conference on World Wide Web, pages 265–274,
2001.

[52] Amol Deshpande, Carlos Guestrin, Samuel R Madden, Joseph M Hellerstein, and
Wei Hong. Model-driven data acquisition in sensor networks. Proceedings of the
International Conference on Very Large Data Bases (PVLDB), pages 588–599,
2004.

[53] Xenofontas Dimitropoulos, Paul Hurley, Andreas Kind, and Marc Ph Stoecklin.
On the 95-percentile billing method. In Passive and Active Network Measurement
(PAM), pages 207–216. Springer, 2009.

[54] Leandro D’Orazio, Filippo Visintainer, and Marco Darin. Sensor networks on the
car: State of the art and future challenges. In IEEE Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 1–6, 2011.

180

BIBLIOGRAPHY

[55] Benjamin Dowling, Douglas Stebila, and Greg Zaverucha. Authenticated network
time synchronization. In USENIX Security Symposium, pages 823–840, 2016.

[56] Partha Dutta, Vivek Mhatre, Debmalya Panigrahi, and Rajeev Rastogi. Joint
routing and scheduling in multi-hop wireless networks with directional antennas.
In IEEE International Conference on Computer Communications, pages 1–5, 2010.

[57] Lasse Eriksson and Heikki N Koivo. Tuning of discrete-time PID controllers in
sensor network based control systems. In IEEE International Symposium on Com-
putational Intelligence in Robotics and Automation (CIRA), pages 359–364, 2005.

[58] Liyue Fan and Li Xiong. Adaptively sharing time-series with differential privacy.
arXiv, 2012.

[59] Liyue Fan and Li Xiong. Real-time aggregate monitoring with differential pri-
vacy. In Proceedings of the ACM International Conference on Information and
Knowledge Management, pages 2169–2173. ACM, 2012.

[60] Liyue Fan and Li Xiong. An adaptive approach to real-time aggregate monitoring
with differential privacy. IEEE Transactions on Knowledge and Data Engineering,
26(9):2094–2106, 2014.

[61] Liyue Fan, Li Xiong, and Vaidy Sunderam. FAST: differentially private real-time
aggregate monitor with filtering and adaptive sampling. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 1065–
1068, 2013.

[62] Xiaolin Fang, Hong Gao, Jianzhong Li, and Yingshu Li. Application-aware data
collection in wireless sensor networks. In IEEE International Conference on Com-
puter Communications, pages 1645–1653, 2013.

[63] Elena Fasolo, Michele Rossi, Jorg Widmer, and Michele Zorzi. In-network aggre-
gation techniques for wireless sensor networks: A survey. IEEE Wireless Commu-
nications, 14(2):70–87, 2007.

[64] National Institue for Standards and Technology. NIST Authenticated NTP Service.
Created 2010, Updated 2017. Accessed Feb. 2019, https://www.nist.gov/pml/
time-and-frequency-division/time-services/nist-authenticated-ntp-service.

181

BIBLIOGRAPHY

[65] Behrouz A Forouzan and Sophia Chung Fegan. TCP/IP protocol suite. McGraw-
Hill Higher Education, 2002.

[66] Paul Fremantle. A reference architecture for the Internet of Things. WSO2 White
paper, 2014.

[67] Elena I Gaura, James Brusey, Michael Allen, Ross Wilkins, Dan Goldsmith, and
Ramona Rednic. Edge mining the Internet of Things. IEEE Sensors Journal,
13(10):3816–3825, 2013.

[68] Buğra Gedik. Generic windowing support for extensible stream processing systems.
Software: Practice and Experience (SPE), 44(9):1105–1128, 2014.

[69] Megan Geuss. European grid dispute resolved, lost 6 minutes returned to oven
clocks. ars Technica, 2018. Accessed Dec. 2018, https://arstechnica.com/tech-
policy/2018/04/european-grid-dispute-resolved-lost-6-minutes-returned-to-oven-
clocks/.

[70] Thanaa M Ghanem, Moustafa A Hammad, Mohamed F Mokbel, Walid G Aref,
and Ahmed K Elmagarmid. Incremental evaluation of sliding-window queries over
data streams. IEEE Transactions on Knowledge and Data Engineering (TKDE),
19(1):57–72, 2007.

[71] Dimitrios Giouroukis, Julius Hülsmann, Janis von Bleichert, Morgan Geldenhuys,
Tim Stullich, Felipe Gutierrez, Jonas Traub, Kaustubh Beedkar, and Volker Markl.
Resense: Transparent record and replay of sensor data in the Internet of Things.
In Proceedings of the International Conference on Extending Database Technology
(EDBT), 2019.

[72] Google. Cloud prediction API - pricing and terms of service, accessed
05.05.17. prices: $0.50/1,000 predictions beyond the initial 10,000. 2017.
https://cloud.google.com/prediction/pricing.

[73] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Mining
and Knowledge Discovery (DMKDFD), 1(1):29–53, 1997.

182

BIBLIOGRAPHY

[74] Michael Grossniklaus, David Maier, James Miller, Sharmadha Moorthy, and
Kristin Tufte. Frames: data-driven windows. In Proceedings of the ACM In-
ternational Conference on Distributed and Event-based Systems (DEBS), 2016.

[75] Philipp Grulich, René Saitenmacher, Jonas Traub, Sebastian Breß, Tilmann Rabl,
and Volker Markl. Scalable detection of concept drifts on data streams with parallel
adaptive windowing. In Proceedings of the International Conference on Extending
Database Technology (EDBT), 2018.

[76] Philipp Grulich, Jonas Traub, Sebastian Breß, Asterios Katsifodimos, Tilmann
Rabl, and Volker Markl. Generating reproducible out-of-order data streams. In
ACM International Conference on Distributed and Event-based Systems (DEBS),
pages 256–257, 2019.

[77] Shenoda Guirguis, Mohamed A Sharaf, Panos K Chrysanthis, and Alexandros
Labrinidis. Optimized processing of multiple aggregate continuous queries. In
Proceedings of the International Conference on Information and Knowledge Man-
agement, pages 1515–1524. ACM, 2011.

[78] Shenoda Guirguis, Mohamed A Sharaf, Panos K Chrysanthis, and Alexandros
Labrinidis. Three-level processing of multiple aggregate continuous queries. In
IEEE International Conference on Data Engineering (ICDE), pages 929–940, 2012.

[79] Pieter Hintjens. ZeroMQ: messaging for many applications. O’Reilly Media, Inc.,
2013.

[80] Martin Hirzel, Henrique Andrade, Buğra Gedik, Gabriela Jacques-Silva, Rohit
Khandekar, Vibhore Kumar, Mark Mendell, Howard Nasgaard, Scott Schneider,
Robert Soulé, et al. IBM streams processing language: Analyzing big data in
motion. IBM Journal, 57(3/4):7.1–7.11, 2013.

[81] Martin Hirzel, Henrique Andrade, Buğra Gedik, Vibhore Kumar, Giuliano Losa,
Howard Nasgaard, Robert Soulé, and Kun-Lung Wu. SPL stream processing lan-
guage specification. IBM Research Report, 2009.

[82] Martin Hirzel, Scott Schneider, and Kanat Tangwongsan. Sliding-window aggre-
gation algorithms: Tutorial. In Proceedings of the ACM International Conference
on Distributed and Event-based Systems (DEBS), pages 11–14, 2017.

183

BIBLIOGRAPHY

[83] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm. A
Catalog of Stream Processing Optimizations. ACM Computing Surveys, 46(4):46,
2014.

[84] Kartik Hosanagar, John Chuang, Ramayya Krishnan, and Michael D Smith. Ser-
vice adoption and pricing of content delivery network (CDN) services. Management
Science, 54(9):1579–1593, 2008.

[85] Ryan Huebsch, Minos Garofalakis, Joseph M Hellerstein, and Ion Stoica. Sharing
aggregate computation for distributed queries. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pages 485–496, 2007.

[86] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. Overview of data
exploration techniques. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 277–281, 2015.

[87] Ankur Jain, Edward Y Chang, and Yuan-Fang Wang. Adaptive stream resource
management using kalman filters. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 11–22, 2004.

[88] Zbigniew Jerzak, Thomas Heinze, Matthias Fehr, Daniel Gröber, Raik Hartung,
and Nenad Stojanovic. The DEBS 2012 grand challenge. In Proceedings of the
ACM International Conference on Distributed and Event-based Systems (DEBS),
pages 393–398, 2012.

[89] Barbara Jorgensen. Electronic component shortages will worsen through Q4. EPS
News for Electronics Purchasing and the Supply Chain, 2018. Accessed Dec. 2018,
https://epsnews.com/2018/08/30/component-shortages-worsen/.

[90] Barbara Jorgensen. Electronic Component shortages: ‘no end in sight’. EPS
News for Electronics Purchasing and the Supply Chain, 2018. Accessed Dec. 2018,
https://epsnews.com/2018/05/23/electronic-component-shortages/.

[91] Uwe Jugel, Zbigniew Jerzak, Gregor Hackenbroich, and Volker Markl. M4: a
visualization-oriented time series data aggregation. Proceedings of the Interna-
tional Conference on Very Large Data Bases (PVLDB), 7(10):797–808, 2014.

[92] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
volume 82, pages 35–45. American Society of Mechanical Engineers, 1960.

184

BIBLIOGRAPHY

[93] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. Benchmarking distributed stream processing en-
gines. In IEEE International Conference on Data Engineering (ICDE), 2018.

[94] Paul Keeler. Notes on the Poisson point process. Tech. Report, 2016.

[95] David G Kendall. On the generalized "birth-and-death" process, volume 19. Insti-
tute of Mathematical Statistics, 1948.

[96] Albert Kim, Eric Blais, Aditya Parameswaran, Piotr Indyk, Samuel R Madden,
and Ronitt Rubinfeld. Rapid sampling for visualizations with ordering guarantees.
Proceedings of the International Conference on Very Large Data Bases (PVLDB),
8(5):521–532, 2015.

[97] Mieczyslaw M. Kokar and KH Kim. Review of multisensor data fusion architectures
and techniques. In Proceedings of the IEEE International Symposium on Intelligent
Control (ISIC), pages 261–266, 1993.

[98] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L
Wolf, Paolo Costa, and Peter Pietzuch. SABER: Window-based hybrid stream
processing for heterogeneous architectures. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 555–569, 2016.

[99] Sailesh Krishnamurthy, Michael J Franklin, Jeffrey Davis, Daniel Farina, Pasha
Golovko, Alan Li, and Neil Thombre. Continuous analytics over discontinuous
streams. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 1081–1092, 2010.

[100] Sailesh Krishnamurthy, Chung Wu, and Michael Franklin. On-the-fly sharing for
streamed aggregation. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pages 623–634, 2006.

[101] Srdjan Krčo, Boris Pokrić, and Francois Carrez. Designing IoT architecture(s): A
european perspective. In IEEE World Forum on Internet of Things (WF-IoT),
pages 79–84, 2014.

[102] Sandeep S Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj Avva, and
Marcelo Leone. Logical physical clocks. In Proceedings of the International Con-
ference on Principles of Distributed Systems (OPODIS), pages 17–32. Springer,
2014.

185

BIBLIOGRAPHY

[103] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind
Srinivasan. Algorithmic aspects of capacity in wireless networks. ACM SIGMET-
RICS Performance Evaluation Review, 33(1):133–144, 2005.

[104] Sami M Lasassmeh and James M Conrad. Time synchronization in wireless sensor
networks: A survey. In Proceedings of the IEEE SoutheastCon, pages 242–245,
2010.

[105] Trong Nhan Le, Olivier Sentieys, Olivier Berder, Alain Pegatoquet, and Cecile
Belleudy. Power manager with PID controller in energy harvesting wireless sensor
networks. In IEEE International Conference on Green Computing and Communi-
cations (GreenCom), pages 668–670, 2012.

[106] In Lee and Kyoochun Lee. The Internet of Things (IoT): Applications, investments,
and challenges for enterprises. 58(4):431–440, 2015.

[107] Mei Leng and Yik-Chung Wu. On clock synchronization algorithms for wireless
sensor networks under unknown delay. IEEE Transactions on Vehicular Technology
(TVT), 59(1):182–190, 2010.

[108] Chiao-Yun Li. Automatic tuning of read-time tolerances for on-demand data
streaming. Master’s thesis, Technische Universität Berlin, 2017.

[109] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A Tucker. No
pane, no gain: efficient evaluation of sliding-window aggregates over data streams.
SIGMOD Record, 34(1):39–44, 2005.

[110] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A Tucker. Se-
mantics and evaluation techniques for window aggregates in data streams. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 311–322, 2005.

[111] Jin Li, Kristin Tufte, David Maier, and Vassilis Papadimos. AdaptWID: An adap-
tive, memory-efficient window aggregation implementation. IEEE Internet Com-
puting, 12(6):22–29, 2008.

[112] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore John-
son, and David Maier. Out-of-order processing: A new architecture for high-
performance stream systems. Proceedings of the International Conference on Very
Large Data Bases (PVLDB), 1(1):274–288, 2008.

186

BIBLIOGRAPHY

[113] Ming Li, Tingxin Yan, Deepak Ganesan, Eric Lyons, Prashant Shenoy, Arun
Venkataramani, and Michael Zink. Multi-user data sharing in radar sensor net-
works. In ACM Conference on Embedded Networked Sensor Systems, pages 247–
260, 2007.

[114] Ning Lu, Nan Cheng, Ning Zhang, Xuemin Shen, and Jon W Mark. Connected
vehicles: Solutions and challenges. IEEE Internet of Things Journal, 1(4):289–299,
2014.

[115] Ren C Luo and Michael G Kay. Multisensor integration and fusion in intelligent
systems. IEEE Transactions on Systems, Man, and Cybernetics, 19(5):901–931,
1989.

[116] Ren C Luo, Chih-Chen Yih, and Kuo Lan Su. Multisensor fusion and integration:
approaches, applications, and future research directions. IEEE Sensors Journal,
2(2):107–119, 2002.

[117] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. TAG:
A tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS Operating
Systems Review, 36(SI):131–146, 2002.

[118] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. The
design of an acquisitional query processor for sensor networks. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 491–502,
2003.

[119] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
TinyDB: an acquisitional query processing system for sensor networks. ACM
Transactions on Database Systems, 30(1):122–173, 2005.

[120] Linux Programmer’s Manual. getrusage. Accessed May 2018.
http://man7.org/linux/man-pages/man2/getrusage.2.html.

[121] David Meyer. How a mysterious case of ’missing energy’ caused europe’s clocks to
run 6 minutes slow. Fortune, 2018.

[122] David Mills. Network time protocol (version 2) specification and implementation.
Network Working Group, University of Delaware, 1989.

187

BIBLIOGRAPHY

[123] David Mills. Network time protocol (version 3) specification, implementation and
analysis. Network Working Group, University of Delaware, 1992.

[124] David Mills, Jim Martin, Jack Burbank, and William Kasch. Network time pro-
tocol version 4: Protocol and algorithms specification. Internet Engineering Task
Force (IETF), 2010.

[125] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac.
Internet of Things: vision, applications and research challenges. Ad hoc networks,
10(7):1497–1516, 2012.

[126] Pulkit A Misra, Jeffrey S Chase, Johannes Gehrke, and Alvin R Lebeck. En-
abling lightweight transactions with precision time. ACM SIGARCH Computer
Architecture News, 45(1):779–794, 2017.

[127] Gianmarco De Francisci Morales and Aristides Gionis. Streaming similarity self-
join. Proceedings of the International Conference on Very Large Data Bases
(PVLDB), 9(10):792–803, 2016.

[128] Kannan M Moudgalya. Proportional, integral, derivative controllers. Digital Con-
trol, pages 301–325, 2007.

[129] Conor Muldoon, Niki Trigoni, and Greg MP O’Hare. Combining sensor selection
with routing and scheduling in wireless sensor networks. International Workshop
on Data Management for Sensor Networks, 2011.

[130] Rene Muller and Gustavo Alonso. Efficient sharing of sensor networks. In IEEE
International Conference on Mobile Adhoc and Sensor Systems, pages 109–118,
2006.

[131] Christopher Mutschler, Holger Ziekow, and Zbigniew Jerzak. The DEBS 2013
grand challenge. In Proceedings of the ACM International Conference on Dis-
tributed and Event-based Systems (DEBS), pages 289–294, 2013.

[132] New York City Taxi and Limousine Commission. Taxicab passenger enhance-
ments project (TPEP). 2018. Accessed Dec. 2018, http://www.nyc.gov/html/tlc/
html/industry/taxicab_serv_enh.shtml (project website).

188

BIBLIOGRAPHY

[133] Ninja (Username). Time and timezone issues on Pi. In Raspberry Pi on Stack-
Exchange, 2017. Accessed Dec. 2018, https://raspberrypi.stackexchange.com/
questions/59860/time-and-timezone-issues-on-pi.

[134] NXP Semiconductors N.V. Pcf2127 accurate RTC with integrated quartz crystal
for industrial applications. product data sheet. 2014.

[135] OpenJDK. JMH benchmarking suite project website. 2018. Accessed Dec. 2018,
http://openjdk.java.net/projects/code-tools/jmh/.

[136] OpenJDK. Nashorn project, objectsizecalculator. 2018. Accessed Dec. 2018,
http://openjdk.java.net/projects/nashorn/.

[137] Fernando Pérez and Brian E Granger. IPython: A system for interactive scientific
computing. Computing in Science & Engineering (CISE), 2007.

[138] Su Ping. Delay measurement time synchronization for wireless sensor networks.
Intel Research Berkeley Lab, 6:1–12, 2003.

[139] Giuseppe Piro, Nicola Baldo, and Marco Miozzo. An LTE module for the ns-3
network simulator. In Proceedings of the International Conference on Simulation
Tools and Techniques (ICST), pages 415–422, 2011.

[140] IQD Frequency Products. TCVCXO specification; part no. + packaging:
LFTVXO076344Reel/LFTVXO076344CUTT. product data sheet. 2017. Ac-
cessed Dec. 2018, https://eu.mouser.com/datasheet/2/741/LFTVXO076344Reel-
1148063.pdf.

[141] Valentin Protschky, Christian Ruhhammer, and Stefan Feit. Learning traffic light
parameters with floating car data. In IEEE Intelligent Transportation Systems
Conference, pages 2438–2443, 2015.

[142] Friedrich Pukelsheim. The three sigma rule. The American Statistician, 48(2):88–
91, 1994.

[143] Tilmann Rabl, Jonas Traub, Asterios Katsifodimos, and Volker Markl. Apache
Flink in current research. it-Information Technology, 58(4):157–165, 2016.

[144] Abdullah Raouf. Minimize frequency drift in crystals. ElectronicDesign, 2013. Ac-
cessed Feb. 2109, https://www.electronicdesign.com/analog/minimize-frequency-
drift-crystals.

189

BIBLIOGRAPHY

[145] Usman Raza, Alessandro Camerra, Amy L Murphy, Themis Palpanas, and
Gian Pietro Picco. What does model-driven data acquisition really achieve in
wireless sensor networks? In IEEE International Conference on Pervasive Com-
puting and Communications, pages 85–94, 2012.

[146] Felix Rempe, Philipp Franeck, Ulrich Fastenrath, and Klaus Bogenberger. On-
line freeway traffic estimation with real floating car data. In IEEE Intelligent
Transportation Systems Conference, pages 1838–1843, 2016.

[147] Mehdi Riahi, Thanasis G. Papaioannou, Immanuel Trummer, and Karl Aberer.
Utility-driven data acquisition in participatory sensing. In Proceedings of the Inter-
national Conference on Extending Database Technology (EDBT), pages 251–262.
ACM, 2013.

[148] George F Riley and Thomas R Henderson. The ns-3 network simulator. In Modeling
and tools for network simulation, pages 15–34. Springer, 2010.

[149] A Wayne Roberts and Dale E Varberg. Convex functions, volume 57. Academic
Press, 1973.

[150] David Salomon. Variable-length Codes for Data Compression. Springer, 2007.

[151] Theodoor Scholte, Davide Balzarotti, and Engin Kirda. Have things changed
now? An empirical study on input validation vulnerabilities in web applications.
Computers & Security, 31(3):344–356, 2012.

[152] Mohamed A Sharaf, Jonathan Beaver, Alexandros Labrinidis, and Panos K
Chrysanthis. TiNA: A scheme for temporal coherency-aware in-network aggre-
gation. In Proceedings of the ACM International Workshop on Data Engineering
for Wireless and Mobile Access, pages 69–76, 2003.

[153] Mohamed A Sharaf, Jonathan Beaver, Alexandros Labrinidis, and Panos K
Chrysanthis. Balancing energy efficiency and quality of aggregate data in sen-
sor networks. VLDB journal, 13(4):384–403, 2004.

[154] Mehdi Sharifzadeh and Cyrus Shahabi. Supporting spatial aggregation in sen-
sor network databases. In Proceedings of the ACM International Workshop on
Geographic Information Systems, pages 166–175, 2004.

190

BIBLIOGRAPHY

[155] Anatoli U Shein, Panos K Chrysanthis, and Alexandros Labrinidis. F1: Accel-
erating the optimization of aggregate continuous queries. In Proceedings of the
ACM International on Conference on Information and Knowledge Management
(CIKM), pages 1151–1160, 2015.

[156] Anatoli U Shein, Panos K Chrysanthis, and Alexandros Labrinidis. Flatfit: Accel-
erated incremental sliding-window aggregation for real-time analytics. In Proceed-
ings of the International Conference on Scientific and Statistical Database Man-
agement (SSDBM), 2017.

[157] Anatoli U Shein, Panos K Chrysanthis, and Alexandros Labrinidis. Slickdeque:
High throughput and low latency incremental sliding-window aggregation. In
Proceedings of the International Conference on Extending Database Technology
(EDBT), 2018.

[158] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash
Suri. Medians and beyond: new aggregation techniques for sensor networks. In
Proceedings of the International Conference on Embedded Networked Sensor Sys-
tems (Sensys), pages 239–249. ACM, 2004.

[159] Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan. RIoTBench: An IoT
benchmark for distributed stream processing systems. Concurrency and Compu-
tation: Practice and Experience, 29(21):e4257, 2017.

[160] Anshu Shukla and Yogesh Simmhan. Benchmarking distributed stream processing
platforms for IoT applications. In Technology Conference on Performance Evalu-
ation and Benchmarking, pages 90–106. Springer, 2016.

[161] Mihail L Sichitiu and Chanchai Veerarittiphan. Simple, accurate time synchro-
nization for wireless sensor networks. In IEEE Wireless Communications and
Networking Conference (WCNC), volume 2, pages 1266–1273, 2003.

[162] Lefteris Sidirourgos, Martin Kersten, and Peter Boncz. Scientific discovery through
weighted sampling. In IEEE International Conference on Big Data, pages 300–306,
2013.

[163] Fikret Sivrikaya and Bülent Yener. Time synchronization in sensor networks: A
survey. IEEE network, 18(4):45–50, 2004.

191

BIBLIOGRAPHY

[164] Antonios Skordylis and Niki Trigoni. Jointly optimizing data acquisition and de-
livery in traffic monitoring VANETs. In Proceedings of the ACM symposium on
Applied Computing (SIGAPP), pages 2186–2190, 2009.

[165] R. Srinivasan, Chao Liang, and K. Ramamritham. Maintaining temporal co-
herency of virtual data warehouses. In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS), pages 60–70, 1998.

[166] Andy Stanford-Clark and Hong Linh Truong. MQTT for sensor networks (MQTT-
SN) protocol specification. IBM Corporation, 2013.

[167] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. The 8 requirements of
real-time stream processing. ACM Sigmod Record, 34(4):42–47, 2005.

[168] Leo Syinchwun. Lightweight event time window. In Flink Jira Issues (Accessed
Dec. 2018, issues.apache.org/jira/browse/FLINK-5387), 2016.

[169] Hideaki Takagi and Bernhard H. Walke. Derivation of formulas by queueing the-
ory. In Spectrum Requirement Planning in Wireless Communications: Model and
Methodology for IMT-Advanced, pages 201–217. Wiley, 2008.

[170] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. Low-latency sliding-
window aggregation in worst-case constant time. In Proceedings of the ACM In-
ternational Conference on Distributed and Event-based Systems (DEBS), pages
66–77, 2017.

[171] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu. General
incremental sliding-window aggregation. Proceedings of the International Confer-
ence on Very Large Data Bases (PVLDB), 8(7):702–713, 2015.

[172] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael
Stonebraker. Load shedding in a data stream manager. In Proceedings of the
International Conference on Very Large Data Bases (PVLDB), volume 29, pages
309–320, 2003.

[173] Alejandro Tauber. Electric clocks in europe have been running slow for
over a month. tnw, 2018. Accessed Dec. 2018, https://thenextweb.com/eu/
2018/03/06/electric-clocks-europe-running-slow-month/.

192

BIBLIOGRAPHY

[174] Arsalan Tavakoli, Aman Kansal, and Suman Nath. On-line sensing task optimiza-
tion for shared sensors. In Proceedings of the ACM/IEEE International Conference
on Information Processing in Sensor Networks, pages 47–57, 2010.

[175] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Don-
ham, et al. Storm@twitter. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 147–156, 2014.

[176] Jonas Traub, Sebastian Breß, Tilmann Rabl, Asterios Katsifodimos, and Volker
Markl. Optimized on-demand data streaming from sensor nodes. In Proceedings
of the Symposium on Cloud Computing (SoCC), pages 586–597. ACM, 2017.

[177] Jonas Traub, Philipp Grulich, Alejandro Rodriguez Cuellar, Sebastian Breß, Aste-
rios Katsifodimos, Tilmann Rabl, and Volker Markl. Efficient window aggregation
with general stream slicing. In Proceedings of the International Conference on
Extending Database Technology (EDBT), 2019.

[178] Jonas Traub, Philipp Marian Grulich, Alejandro Rodriguez Cuellar, Sebastian
Breß, Asterios Katsifodimos, Tilmann Rabl, and Volker Markl. Scotty: Efficient
window aggregation for out-of-order stream processing. In IEEE International
Conference on Data Engineering (ICDE), pages 1300–1303, 2018.

[179] Jonas Traub, Julius Hülsmann, Sebastian Breß, Tilmann Rabl, and Volker Markl.
SENSE: Scalable data acquisition from distributed sensors with guaranteed time
coherence. 2019. arXiv 1912.04648; https://arxiv.org/abs/1912.04648.

[180] Jonas Traub, Tilmann Rabl, Fabian Hueske, Till Rohrmann, and Volker Markl.
Die Apache Flink Plattform zur parallelen Analyse von Datenströmen und Stapel-
daten. In Proceedings of the LWA Workshops: KDML, FGWM, IR, and FGDB,
pages 403–408, 2015.

[181] Jonas Traub, Nikolaas Steenbergen, Philipp Grulich, Tilmann Rabl, and Volker
Markl. I2: Interactive real-time visualization for streaming data. In Proceedings of
the International Conference on Extending Database Technology (EDBT), pages
526–529, 2017.

[182] Martin Treiber and Arne Kesting. Trajectory and Floating-Car Data. Springer,
2013.

193

BIBLIOGRAPHY

[183] Niki Trigoni, Yong Yao, Alan Demers, Johannes Gehrke, and Rajmohan Rajara-
man. Wave scheduling and routing in sensor networks. ACM Transactions on
Sensor Networks (TOSN), 3(1):2, 2007.

[184] Demetris Trihinas, George Pallis, and Marios D Dikaiakos. AdaM: An adaptive
monitoring framework for sampling and filtering on IoT devices. In IEEE Inter-
national Conference on Big Data, pages 717–726, 2015.

[185] Demetris Trihinas, George Pallis, and Marios D Dikaiakos. ADMin: Adaptive mon-
itoring dissemination for the internet of things. In IEEE Conference on Computer
Communications (INFOCOM), pages 1–9, 2017.

[186] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. Exploiting
punctuation semantics in continuous data streams. IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), 15(3):555–568, 2003.

[187] Daniela Tulone and Samuel R Madden. PAQ: Time series forecasting for approx-
imate query answering in sensor networks. In European Workshop on Wireless
Sensor Networks, pages 21–37. Springer, 2006.

[188] James Turnbull. Monitoring with Prometheus. Turnbull Press, 2018.

[189] Kostas Tzoumas, Stephan Ewen, and Robert Metzger. High-throughput, low-
latency, and exactly-once stream processing with Apache Flink. 2015. Ac-
cessed Dec. 2018, https://data-artisans.com/blog/high-throughput-low-latency-
and-exactly-once-stream-processing-with-apache-flink.

[190] LiveOverflow (user name). Don’t trust time. Security Flag GmbH on Youtube,
2017. Accessed Feb. 2019, https://www.youtube.com/watch?v=ylfyezRhA5s.

[191] Rob van der Meulen. Gartner says 6.4 billion connected ”things” will be in use in
2016, up 30 percent from 2015. Gartner Newsroom Press Release, 2015.

[192] Potdar Vidyasagar, Sharif Atif, and Chang Elizabeth. Wireless sensor networks:
a survey. In AINA Workshops, volume 641, 2009.

[193] Mikhail Vorontsov. Memory consumption of popular Java data types - part
2. Java Performance Tuning Guide, 2013. Accessed Dec. 2018, http://java-
performance.info/memory-consumption-of-java-data-types-2/.

194

BIBLIOGRAPHY

[194] Kang Wang, Shuhua Chen, and Aimin Pan. Time and position spoofing with open
source projects. Black Hat Europe, 2015.

[195] Liuping Wang, TJD Barnes, and William R Cluett. New frequency-domain design
method for PID controllers. IEE Proceedings-Control Theory and Applications,
142(4):265–271, 1995.

[196] Eugene Wu, Leilani Battle, and Samuel R Madden. The case for data visualiza-
tion management systems: Vision paper. Proceedings of the VLDB Endowment,
7(10):903–906, 2014.

[197] Jark Wu. Improve performance of sliding time window with pane optimization.
In Flink Jira Issues (Accessed Dec. 2018, issues.apache.org/jira/browse/FLINK-
7001), 2017.

[198] Shili Xiang, Hock Beng Lim, and Kian-Lee Tan. Impact of multi-query optimiza-
tion in sensor networks. In Proceedings of the International Workshop on Data
Management for Sensor Networks, pages 7–12. ACM, 2006.

[199] Shili Xiang, Hock Beng Lim, Kian-Lee Tan, and Yongluan Zhou. Two-tier multiple
query optimization for sensor networks. In IEEE International Conference on
Distributed Computing Systems, pages 39–39, 2007.

[200] Shili Xiang, Wei Wu, and Kian-Lee Tan. Optimizing multiple data acquisition
queries in sparse mobile sensor networks. In IEEE International Conference on
Mobile Data Management, pages 137–146, 2012.

[201] Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. Distributed aggregation for
data-parallel computing: interfaces and implementations. In Proceedings of the
ACM SIGOPS Symposium on Operating Systems Principles, pages 247–260, 2009.

[202] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. Dis-
cretized streams: An efficient and fault-tolerant model for stream processing on
large clusters. Proceedings of the USENIX conference on Hot Topics in Cloud
Ccomputing, 12:10–10, 2012.

[203] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,

195

BIBLIOGRAPHY

Michael J Franklin, et al. Apache Spark: A unified engine for big data processing.
Communications of the ACM, 59(11):56–65, 2016.

[204] Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavriilidis,
Dimitrios Giouroukis, Sebastian Bress Philipp M. Grulich, Jonas Traub, and Volker
Markl. The NebulaStream Platform: Data and application management for the
internet of things. In Conference on Innovative Data Systems Research (CIDR),
2020 (to appear). arXiv 1910.07867; https://arxiv.org/abs/1910.07867.

[205] Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Breß, Tilmann Rabl, and Volker Markl. Analyzing
efficient stream processing on modern hardware. In Proceedings of the International
Conference on Very Large Data Bases (PVLDB), 2019.

[206] Yawei Zhao, Deke Guo, Jia Xu, Pin Lv, Tao Chen, and Jianping Yin. CATS:
Cooperative allocation of tasks and scheduling of sampling intervals for maximizing
data sharing in WSNs. ACM Transactions on Sensor Networks (TOSN), 12(4):29,
2016.

[207] Yanxu Zheng, Sutharshan Rajasegarar, and Christopher Leckie. Parking availabil-
ity prediction for sensor-enabled car parks in smart cities. In IEEE International
Conference on Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), pages 1–6, 2015.

[208] Wolfgang Ziegler. Incorrect date and time on Raspberry Pi. In Blog:
make stuff and blog about it, 2017. Accessed Dec. 2018, https://wolfgang-
ziegler.com/blog/incorrect-date-and-time-on-raspberrypi.

196

	Cover Page
	Acknowledgements
	Abstract
	Zusammenfassung / German Abstract
	Table of Contents
	Introduction
	Motivation
	Research Problems and Contributions
	Layer 1: Sensor Nodes (Chapter 2)
	Layer 2: Sensor Control (Chapter 3)
	Layer 3: Stream Analysis Systems (Chapter 4)
	Layer 4: Front-End Applications (Chapter 5)

	High-Level Architecture
	Impact of Thesis Contributions
	Structure of the Thesis

	Optimized On-Demand Data Streaming from Sensor Nodes
	Introduction
	A Motivating Example
	Background
	Pull- and Push-Based Data Transfer
	Adaptive Sampling
	The User's Perspective

	System Architecture
	User-Defined Sampling
	Enabling Read and Traffic Sharing
	Global Read Time Optimization
	Modelling Read Requests
	User-Defined Sampling Functions
	Local Filter Functions

	Multi-Query Read Scheduling
	Minimizing Sensor Reads
	Optimizing Read Times
	The Overall Scheduling Algorithm

	Analytical Evaluation
	Key Properties of Sampling Functions
	Distribution of Tolerance Intervals
	The Fraction of Prevented Sensor Reads
	Differentiation from the Erlang B Formula

	Experimental Evaluation
	Experimental Setup
	Detailed Experiments
	Discussion

	Related Work
	Conclusion

	Scalable Data Acquisition with Guaranteed Time Coherence
	Introduction
	Application Example: Precision of Multilateration
	Sources of Incoherence
	SENSE Architecture
	Definition of Coherence Measures
	General Network and Node Setup
	Global Architecture
	Internal Architecture

	Coherence Guarantees and Coherence Estimates
	Coherence Guarantees
	Coherence Estimate
	Coherence Tradeoff (Ce-Cg-Tradeoff)

	Optimizing Time Coherence
	Solution Overview
	Sensor Node Algorithm
	Loop Node Algorithm
	Example Calculation
	Splitting and Merging Sensing Loops
	Additional Optimizations
	Multilateration: Revisiting our Application Example
	Mathematical Details

	Scheduling Sensor Reads
	Failure Handling
	Introducing Fallback Nodes
	Managing Buffer Overflows

	Evaluation
	Experiment Setup
	Optimizing Time Coherence
	Throughput, Latency, and CPU Load
	Coherences and Read Time Deviations
	Large Scale Parameter Exploration

	Related Work
	Conclusion

	Efficient Window Aggregation with General Stream Slicing
	Introduction
	Preliminaries
	Window Aggregation Concepts
	Tuple Buffer
	Aggregate Trees
	Buckets
	Stream Slicing

	Workload Characterization
	Characteristic 1: Stream Order
	Characteristic 2: Aggregation Function
	Characteristic 3: Windowing Measure
	Characteristic 4: Window Type

	General Stream Slicing
	Storing Tuples vs. Partial Aggregates
	Slice Management
	Processing Input Tuples
	User-Defined Windows and Aggregations

	Stream Slicing for Session Windows
	Aggregate Sharing for Session Windows
	Session Windows on Out-Of-Order Streams

	Evaluation
	Experimental Setup
	Stream Slicing Compared to Alternatives
	Studying Workload Characteristics
	Parallel Stream Slicing

	Related Work
	Conclusion

	Interactive Real-Time Visualization for Streaming Data
	Introduction
	Visualization of Time Series
	I2 Development Environment
	Example Application
	Evaluation
	Related Work
	Conclusion

	Additional Contributions
	Conclusion
	Future Research

	List of Notations
	List of Figures
	List of Tables
	Bibliography

