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Abstract. This paper describes the learning of new similarity values
for existing measures within the framework FEATURE-TAK. Mainte-
nance of similarity measures is not easy, especially when having a semi-
automated approach to relieve the knowledge engineer. Based on the
extension of the vocabulary, the newly added values have to be integrated
into the similarity measures with an initial similarity value to be useful.
We describe the extension of the similarity measures with automated
taxonomy extension and one-mode projections and present a compre-
hensive evaluation and comparison between the different approaches to
highlight the advantages and short comings.

Keywords: Case-based reasoning · Similarity measures ·
Knowledge modeling · One-mode projection

1 Introduction

To solve occurring problems in areas like monitoring, maintenance and oper-
ation one requires knowledge of the situation and how to resolve the issue.
Knowledge can be approximated through storing data of a past problem descrip-
tion together with context information and executed solutions, which forms a
so-called case [1]. Case-based Reasoning (CBR) then tries to solve new prob-
lems through noticing similarities with previously solved problems and adapt-
ing their known solutions, as such modelling human reasoning [8]. This indi-
cates that similarity of problem descriptions remains pivotal to finding adequate
solutions. The quality of retrieved reference cases thus highly depends on the
defined similarity measures. Exact similarity measures frequently rely on use
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case specific variables and expert understanding of how an application oper-
ates. This dependence on expert knowledge imposes restrictions to completeness
and performance of any CBR implementation. To this end, the Framework for
Extraction, Analysis, and Transformation of UnstructuREd Textual Aircraft
Knowledge (FEATURE-TAK) is being developed, which aims at automating
knowledge acquisition, specifically in the aviation domain. From problem fault
descriptions in free-text form as provided by aviation maintenance personnel, it
retrieves keywords, phrases and synonyms/hypernyms for specific attributes to
enrich the systems vocabulary and allow for a more refined context description.
As of now, FEATURE-TAK employs keywords and synonym structure for local
(attribute level) similarity approximation for individual attribute values, and
sensitivity analysis for global (case-level) similarity approximation for similarity
of complete case descriptions. Similarity of single attributes is aggregated and
weighted to build up complete case similarities [9,10].

Local similarity operates on mostly non-numeric symbol attribute descrip-
tions (phrases from text) as opposed to numeric values. This makes attribute
similarity difficult to infer in a non-binary - not only attribute value equal to
or unequal to value X - manner. The approach currently employs taxonomies,
as such extracting dependent symbols to then infer level-based similarity prop-
erties. This assesses similarity only for related keywords, which greatly reduces
the actual number of at-all-similar relations. In its current implementation it
presents major implications regarding modelling assumptions and does not gen-
erally capture all attribute dependencies as it relies on synonyms and hypernyms.
The compromise is intentional though, because synonym-hypernym-connections
enable taxonomies in the first place and any taxonomy related implementation of
similarity will likely continue to employ synonyms/hypernyms. Global similarity
on the other hand weights single attributes through sensitivity analysis based on
relevance for solving cases. This allows the system to build averages used to cal-
culate the global similarity value for comparing different cases. As this presents
a primarily novel technique, it relies on mostly project-specific configuration and
uses fewer well-established procedures.

Overall case-similarity should take the total case description into account.
These local measures are then being weighted and combined into a final global
similarity, being in return utilized to rank the solutions and return the most
likely solution back to the system user. Exact local measures, weighting and
ranking implementations are an act of great balance, as it is both delicate and
non-deterministic which dependencies are impacting problem transference and to
what degree. Therefore, a projection-based similarity procedure [12,13] is being
incorporated into the framework’s local similarity assessment to add compari-
son between not directly related keywords. This Weighted One-Mode Projection
(WOMP) has proven successful in prior experiments [12] but was not tested on
real-world application data yet. This paper specifically displays the outcome of
properly integrating it into FEATURE-TAK, evaluating performance inside the
framework and act as a starting point to incorporate further concepts.
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In Sect. 2 we describe briefly the framework FEATURE-TAK, the WOMP
and its integration into the framework. Section 3 describes the evaluation setup
and the results of the comparison between the taxonomy similarity learning and
the one mode projection learning. Section 4 closes with a discussion and outlook.

2 Weighted One Mode Projection in FEATURE-TAK

This section gives a brief overview of the FEATURE-TAK framework and then
describes the Weighted One Mode Projection and its integration in the frame-
work. This transitions into Sect. 3 with the description of the evaluation setup,
the results, and their interpretation.

2.1 FEATURE-TAK

Based on established procedures, namely the myCBR toolkit [4,6,11] and the
agent-based SEASALT architecture [3], the FEATURE-TAK framework has
been developed to support knowledge engineers in querying data that is orga-
nized in structured and unstructured format and with highly domain-specific
information. Technical maintenance data is frequently available in attribute-
value pairs, whereas logbook entries and feedback only exist in free-text for-
mat. Thus, a hybrid representation, combining attribute-value and textual
representation, is implemented by accounting for attributes specified from
meta-information surrounding a case description and incorporating informa-
tion entities from text; further detail regarding input- and attribute data in
[9]. FEATURE-TAK processes said free-text input, applying natural language
processing (NLP) techniques alognside CBR to extract keywords, phrases and
synonyms to comprise attribute values of a predefined case-structure. In addition
to known CBR procedures, some novel automated knowledge transformation is
added. The framework consists of five layers: Data-, Agent-, NLP-, CBR- and
Interface Layer. Inside the agent layer, multiple agents provide functionality in
form of designated tasks based on given input data and the required CBR data
structure. The tasks are regrouped and separated into sub-steps. From a given
free-text input file together with provided mapping-, abbreviation and white-
/black-list files the data sets are transformed into the internal representation
format. This process adapts dynamically to available input information. The
mapping file is in the XML format and describes which information in the initial
data are to be mapped to which attributes in the case structure. Exact transfor-
mation is based on the mapping information, which results in a case structure
with precisely defined 71 - possibly sparse - attributes. [9] The agents in the
framework are responsible for performing the tasks within FEATURE-TAK and
are implemented as follows:

– The Preprocessing Agent (Task 0) is a prerequisite for the subsequent
stages as it prepares the input data through part-of-speech (POS) tagging
and abbreviation identification.
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– The Collocation Agent (Task 1) extracts phrases as recurring word com-
binations based on standard English grammar and domain-specific patterns.

– The Keyword Agent (Task 2) extracts keywords via stop-word elimina-
tion, lemmatization and single word abbreviation replacement, returning the
word’s base form.

– The Synonym Agent (Task 3) identifies synonyms and hypernyms con-
sidering word context and -sense, thus utilizing the POS information and
provided black- and whitelists.

– The Vocabulary Manager (Task 4) adds phrases, keywords and syn-
onyms/hypernyms to the CBR system’s vocabulary.

– The Similarity Manager (Task 5) sets similarity values for concepts,
extending attribute similarity measures to compare overall cases with each
other, and respectively utilizes taxonomies on top of generated phrases, key-
words and synonyms/hypernyms to further infer attribute value proximity.

– The ARM Agent (Task 6) searches for association rules in word occurrences
within and across data sets, where - depending on data set size and perfor-
mance constraints - either the Apriori [2] or the FP-Growth [5] algorithm
with a high confidence of 0.9 being used to only allow rules found to be true
most of the time.

– The Clustering Agent (Task 7) generates a case from each corpus of input
data with an associated cluster (based on aircraft type and component, where
components are specified with a unique digit called Air Transport Association
(ATA) chapter) to persist it into the case bases.

– The Sensitivity Agent (Task 8) finally generates global similarity measure-
ment between complete cases by incrementally approximating weight vectors
over the set of attributes for each case cluster, resulting in a global relevance
weight matrix [14].

As such, starting from the sparse 71-attribute-representation with only
directly extracted values set, the pre-processing agent is engaged and subse-
quently the agents are traversed as described above. Note that tasks 0–3 are
executed in strict sequence on the previous task’s respective output, and only
then slight branching is being undergone. From there, with a concise vocabulary
description, similarity between values of a given attribute is aggregated, whereas
global case similarity through the sensitivity analysis operates on subsets of data
in form of generated case clusters as well as internal attribute similarity approx-
imation [9].

2.2 Integration of the Weighted One-Mode Projection

An alternative to manually described similarity matrices and also taxonomies
is the more general usage of projections of bipartite graph structures. Complex
network analysis is, generally speaking, an emerging field regarding modelling
relationship. In this context, bipartite graphs present a particular type of graph
that consists of two distinct populations of nodes between which, but not within
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which, nodes are connected. This type of graph can be nicely used to model real-
world systems such as for example describe personal preference [16] or depict
co-authorship in scientific publishing [7]. These scenarios all have two groups of
nodes interacting with each other, following the example of scientific publishing,
for example “authors” and “papers”. To find relations between entities within
one of the two populations, a simple One-Mode Projection (OMP) or if weighted
a Weighted One-Mode Projection (WOMP) can be calculated. Following the
co-authorship analogy above, this would find relations or “similarity” between
authors based on their collaboration in scientific publications. Regarding how the
projection is calculated, Fig. 1 provides a simple example: The idea is that for
each element in one population la ∈ L, one considers each other element lb ∈ L
that can be reached via one or more elements rj ∈ R of the opposing population.
Considering only reachability, one obtains a simple one-mode projection, while
counting the number of common elements in R results in a weighted one-mode
projection. We assume projections to be calculated on the set L for simplicity
reasons, projecting R can be done by simply inverting symbols in the notation
[15].

Fig. 1. Illustration of a bipartite graph and respective OMP/WOMP [12]

All of these approaches do however preserve the inherent projection problem
of symmetry. Assuming symmetry in similarities cannot always be guaranteed to
appy to real-world examples, as was stated in [12]. The so far discussed solutions
all produce a single projected edge between any two entities la, lb in population
L based on common properties through connections via a number of entities
of the opposing population R. The resulting edge in the projection graph is not
directed, la is as similar to lb as is lb to la. Also, for any rj that holds only a single
connection to L, this connection cannot be properly represented in the projection
graph’s edge weights. Thus, the approach motivated by [12] is based on the idea
introduced by [16] of nodes holding resources being distributed throughout the
network. One assumes a bipartite graph with weighted edges, unweighted edges
would correspond to all edges having a weight of 1.
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The procedure then calculates resources to be distributed (visualized in
Fig. 2). For each node li ∈ L one aggregates all weights wij of edges starting
in li and ending in all rj ∈ R to obtain the node’s weight WL

i as its held aggre-
gated resources (Fig. 2(a)). Similarly, WR

j is later calculated by aggregating all
resource shares wL→R

ij as they are propagated from L → R (Fig. 2(c)). Please
note that notation is critical here: All wij , wL→R

ij and wR→L
ij refer to weights of

the same edge connecting li and rj , with the former of the three considering the
original weights as of the initial weighted bipartite graph, while the latter two
are being calculated by the depicted procedure.

WL
i =

|R|∑

j=1

wij , wL→R
ij =

wij

WL
i

, WR
j =

|L|∑

i=1

wL→R
ij , wR→L

ij =
wL→R

ij

WR
j

(1)

To then obtain the final projection graph, one sums up all edges connecting
any pair of nodes (la, lb) via nodes rj ∈ R of the opposing population. However,
this shall result in a pair of directed weighted edges of weights wab and wba. The
difference in weights is achieved by not summing up all available edge weights
between la and lb, but rather by following along the respective wL→R

ab and wR→L
ab

according to the inherent direction (a ⇒ b or b ⇒ a), in which pij ∈ {0, 1} is
used as indication of whether or not li and rj share a connection. The resulting
network is then the projection graph (not bipartite anymore) of the original
(weighted) bipartite graph. This projection graph does not contain normalized
edge weights. To obtain fixed weights in the interval [0, 1], [12] proposes to utilize
normalized weights ŵL→L

ab obtained by aggregating all incoming weights wL→L
ab

that lead into lb and normalize by dividing though the aggregate (called wL→L
bb ).

wL→L
ab =

|R|∑

j=1

paj · pbj · (wL→R
aj + wR→L

bj ), ŵL→L
ab =

wL→L
ab

wL→L
bb

(2)

With FEATURE-TAK operating on symbol attribute descriptions retrieved
from free-text descriptions from maintenance operators, exact similarity rela-

Fig. 2. Algorithmic workings of asym. WOMP with resource distribution [12]
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tions between the retrieved keyword attribute values is non-trivial to infer. The
goal of the current taxonomy-based similarity assessment algorithm is to posi-
tion keywords alongside generated synonyms in a taxonomy structure that also
builds on top of specific similarity values provided by domain experts and cap-
tures new concepts in this environment. The subsequently presented projection
implementation has a different approach in that it specifically does not rely on
manual similarity measures but rather derives relations between keywords by
their co-occurrence in desired diagnosis results alone.

The projection operates on a bipartite graph of two populations:

– Population L, for which the one-mode projection graph is to be calculated,
consists of keywords and synonyms being allowed values for a given symbol
attribute description.

– Population R, which accounts for co-occurrence of to-be-projected attribute
values, consists of all viable diagnoses (/ solutions) for the persisted case
description.

A keyword/synonym li and diagnosis rj are connected if there exists at least
one case with diagnosis being rj that also contains the keyword/synonym li.
The bipartite graph is weighted, such that the value of an edge represents the
number of cases with the respective diagnosis in which the respective keyword
also occurred. As such, the final projection graph strongly connects keywords
together if and only if they co-occur in many cases with the same diagnoses.
Keywords and synonyms may - and probably will - occur in multiple cases with
possibly multiple different diagnoses and as such will be projected with the
procedure of [12] according to how a keyword’s “resources” are shared across
multiple diagnoses. Similarly to taxonomies, one receives separate bipartite- and
projection graphs for each of FEATURE-TAK’s symbolic attributes.

Regarding nodes in population R, current data does not persist proper sym-
bolic diagnosis classes. This is resolved by pattern-matching a case’s solution-
recommendation attribute, resulting in a class label out of the set of labels of
“UNKNOWN”, “FIX”, “REPLACE”, “RESET”, “DISPATCH” and “MISC”.

The implemented asymmetric weighted one-mode projection algorithm is
being split up into two parts, approximately depicting Eqs. 1 and 2, respectively.
Firstly, resources for L- and R-vertices as well as the edges are being composed,
which is done in a bipartite graph object. Inside the bipartite graph object, a
composeResources() function is being called with vertex- and edge-array-lists
being completed. It then assigns resources to each vertex li ∈ L, edge wL→R

ij ,
vertex rj ∈ R and edge wR→L

ij in precisely this order. Note that the depicted
procedure resembles the algorithm as mathematically proposed rather closely.
Secondly, the actual traversal of the bipartite structure according to Eq. 2 is
done to obtain the projected resource distribution relations.

Inside FEATURE-TAK’s architecture, local similarity assessment is done in
the SimilarityManager (task 5) and as such can expect to utilize all transformed
results from tasks 0 to 3 and an initially set (synonym) attribute and similarity
value from task 4. The current taxonomy-based similarity procedure is imple-
mented in a single function addSynonymSimilarity inside the task directory and



8 O. Berg et al.

engaged by the respective task (5) agent object in the framework. It ultimately
manipulates the taxonomy structure for the newly added synonyms (where appli-
cable) and outputs an integer count of how many synonyms got connected. Sim-
ilarly, projections would result in a secondary addProjectionSimilarity function
called by the task agent.

Concerning general implementation architecture, the projection objects and
graph structures are as of now disconnected from the framework’s overall struc-
ture as best they can. With one of the intended benefits of a projection-based
similarity computation being that of a more holistic, loosely coupled execution
of similarity computation, this becomes easier to achieve with a separate imple-
mentation. This does, however, not necessarily go as well regarding integration
in the object- and file formats defined in the underlying myCBR-framework. The
framework is already used for internal case representations and similarity func-
tion specifications as well as persisted attributes and project-file formats. As is,
the projection part of the framework does not implement interfaces of myCBR.

3 Evaluation

3.1 Similarity Matrix Computation and Modelling Assumptions

The presented projection approach is tested by loading project file informa-
tion from project-files into memory. Then for each (symbolic) problem descrip-
tion attribute (system, status, function, location) taxonomy similarity values
are calculated for each attribute value pair and the bipartite graph is composed
based on vertices created from symbolic attribute values and calculates similarity
through projection methods to compute the similarity matrix across all allowed
symbolic values for each similarity function (taxonomy, simple OMP, normal-
ized asymmetric WOMP), finally persisting similarity matrices to CSV files. This
reuses components of the myCBR framework as they had been used in the frame-
work FEATURE-TAK as well, though it omits actually executing FEATURE-
TAK itself. It rather operates in an “offline” mode, not relying on having to
execute all agents and waiting for feedback which itself does not provide results
to similarity measures. The framework FEATURE-TAK is meant to analyze
maintenance data and enrich the underlying CBR system; inspecting similarity
computation assumes the CBR system to be up-to-date to allow disregarding
the multi-agent system toolchain and operate on the CBR data directly. This
approach is valid as long as no intermediate FEATURE-TAK-specific informa-
tion and data structures are required. Specifically, synonym information would
be easily extractable from these data structures.

Regarding modelling diagnosis classes, the class labels are constructed by
keyword-matching according to the depicted keywords in Table 1.

The attribute “sol recommendation” is being checked for an exact match
of a part of the string-value and if the word(s) occur within the string the
corresponding class label is assigned. Slight exceptions to this procedure are
UNKNOWN (which requires not part of the value but the complete value to fit
the word) and MISC (which is assigned if none of the other class labels can be
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Table 1. Diagnosis class labels as manually assigned to case instances

Solution class label String words

UNKNOWN (precisely) “ unknown ”, “none”

FIX “fix”, “de-ice”

REPLACE “replace”, “interchange”, “swap”, “change”

RESET “reset”, “re-power”, “install new”

DISPATCH “dispatch”, “defer”

MISC (none of the above)

assigned, thus acting as a default label for attribute values not captured with
the generated rules).

The generated output as of the implementation of similarity computation
based on respective in- and outputs consists of a total of 20 CSV files. For each
of the four problem fault description attributes (“function”, “location”, “status”,
“system”) as well as for each similarity computation method (taxonomy, simple-
and weighted OMP, stock- and normalized asymmetric WOMP) a separate sim-
ilarity matrix was generated. Note that the only formal similarity matrices are
the ones of taxonomy and normalized asymmetric WOMP similarity, as no non-
normalized matrix representation allows for entries in the diagonal to have sim-
ilarities of 1 as they do not contain normalized values. As projections by them-
selves do not capture self-similarities of attributes, these needed to be added after
computations have already been executed. All non-normalized quasi-similarity
matrices do, however, show the intermediate relations depicted throughout the
projection process, which helps quantify the projection performance on the given
case instances. The taxonomy similarity matrices shall provide a baseline against
which to compare projection similarity measures.

3.2 Evaluation Results

As can be seen in Table 2, which shows excerpts of the “location” attribute
taxonomy similarity values, taxonomies in FEATURE-TAK produce similarity
matrices which hold similar non-zero entries across rows and columns.

The location attribute was chosen as an example due to the feasible amount of
75 attributes as well as it being well populated with taxonomy similarity mea-
sures other than 1 and 0.8 (synonym relations). For distributions of (non-)zero
entries and other characteristics across similarity matrices, see Table 4.

Considering the same attribute matrix but with entries calculated via projec-
tions the “location” attribute produces only two similarity values, thus Table 3
shows another excerpt of the projection similarity matrix that contains more non-
zero entries. Note that the two attributes “side” and “forward”: Both are approx-
imately - but not exactly - equally similar to each other (simside→forward =
0.015, simforward→side = 0.017). Compare this however to the attributes “aft”
and “forward”: With simforward→aft = 0.004, forward is much less similar to
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Table 2. Excerpt of prob fault description location taxonomy.csv

Attribute value d d w D f w u u u u c i c b l l m c b m

door 1 0 0 0 0 0 0.8 0.8 0.8 0.8 0.5 0 0 0 0 0 0.8 0.5 0 0.8

deck 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

washstand 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Door Right 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fore 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

washbowl 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

upper [...] door #1 0.8 0 0 0 0 0 1 0.8 0.8 0.8 0.5 0 0 0 0 0 0.8 0.5 0 0.8

upper [...] door #2 0.8 0 0 0 0 0 0.8 1 0.8 0.8 0.5 0 0 0 0 0 0.8 0.5 0 0.8

upper [...] door #3 0.8 0 0 0 0 0 0.8 0.8 1 0.8 0.5 0 0 0 0 0 0.8 0.5 0 0.8

upper [...] door #4 0.8 0 0 0 0 0 0.8 0.8 0.8 1 0.5 0 0 0 0 0 0.8 0.5 0 0.8

cabin work station 0.5 0 0 0 0 0 0.5 0.5 0.5 0.5 1 0 0 0 0 0 0.5 0.5 0 0.5

incline 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

cargo 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

bathroom 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

lav 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

level 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

main [...] door #1 0.8 0 0 0 0 0 0.8 0.8 0.8 0.8 0.5 0 0 0 0 0 1 0.5 0 0.8

cookhouse 0.5 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0.5 1 0 0.5

basin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

main [...] door #4 0.8 0 0 0 0 0 0.8 0.8 0.8 0.8 0.5 0 0 0 0 0 0.8 0.5 0 1

aft than the other way around (simaft→forward = 0.014). This can be explained
with forward being more closely related to other more impactful attributes (like
“side”and “right”), while aft distributes its similarity over mostly shared “main
deck left hand door #[1,3,4]” attributes.

Considering all the different matrix similarity representation formats, the dif-
ferent produced matrices show how the similarity computation proceeds across
multiple stages. For illustration purposes, Fig. 3 shows original taxonomy sim-
ilarity matrix, WOMP and both stock- and normalized asymmetric WOMP
similarity matrices, with coloring indicating strength of similarity values. The
matrices are excerpts of the problem fault description status attribute example,
which is more densely populated with also different WOMP values (see Table 4
for more detail). All matrices apply on the same attribute pairs.

Figure 3 illustrates that distinct different relations exist between taxonomy-
and projection measures. While the taxonomy relies on nodes modeled by domain
expert and taxonomy similarities, the projection builds up over multiple stages
from the symmetric WOMP of the bipartite graph, which is then traversed asym-
metrically and normalized. Note that the asymmetric (non-normalized) WOMP
is not computed from the simpler WOMP directly, but the properties as of the
symmetric WOMP carry over into the asymmetric representation.
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Table 3. Projected normalized asymmetric similarity values

Attribute value m m m s m m s w u u f u c r s s a

main [...] #1 1 0 0.015 0 0 0.014 0 0 0 0 0.009 0 0 0 0 0 0.012

main [...] #2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

main [...] #3 0.020 0 1 0 0 0.020 0 0 0 0 0.014 0 0 0 0 0 0.017

side 0 0 0 1 0 0 0 0 0 0 0.015 0 0 0.016 0 0 0

middle 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

main [...] #4 0.020 0 0.020 0 0 1 0 0 0 0 0.014 0 0 0 0 0 0.017

side of meat 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

washbasin 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

upper [...] #2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

upper [...] #3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

forward 0.004 0 0.005 0.017 0 0.005 0 0 0 0 1 0 0 0.015 0 0 0.004

upper [...] #4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

crew rest [...] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

right 0 0 0 0.019 0 0 0 0 0 0 0.015 0 0 1 0 0 0

sanitary 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

storey 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

aft 0.020 0 0.020 0 0 0.020 0 0 0 0 0.014 0 0 0 0 0 1

The displayed taxonomy excerpt contains 1.0 entries on the diagonal indi-
cating self-similarity, but also in other non-diagonal entries where attributes
have been connected via parent nodes of value 1.0 (e.g. “problem” and “inac-
tive”). The 0.8 values indicate similarity between synonyms (e.g. “inactive” and
“stuck”). The entries of value 0.3 are connected via weaker parent nodes, result-
ing in smaller similarity (e.g. “inactive” and “unserviceable”).

On the projection side of things, one can observe that more entries are set to 0
(attributes not similar). Few entries have values (number of common neighbors in
R-population) greater than 1. The continued asymmetric projection still captures
higher values for entries with values greater than 1 in the previous weighted pro-
jection, where the asymmetry and weighting across complete attribute similar-
ity values introduce further deviation. The final normalized asymmetric WOMP
then contains entries generally being very small in similarity value. Relations
from the previous non-normalized asymmetric WOMP largely persist, but are
heavily scaled down, which gets further amplified for larger similarity matrices.
Manually inserting self-similarity properties through 1.0 entries in the diagonal
appear disproportional to other similarity values. As Fig. 3 shows, though for-
mats of both taxonomy- and projection similarity build on fundamentally similar
ideas, they yield different values through different ways of reasoning. This leaves
open the question of how well these different measures are comparable not from
a conceptual standpoint but from an application and data-oriented one.

To additionally compare not only representations across the same attribute,
but also overall shape and how many actual similarity relations are contained
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Fig. 3. Comparing similarity matrix representations of the “status” attribute

in the presented similarity matrices, Table 4 shows an overview of how many
entries of a particular type of similarity value are in different similarity matri-
ces across multiple attributes. For all four problem fault description attributes,
the taxonomy and asymmetric projection matrices are covered as well as the
intermediate symmetric weighted projection. The numbers for the asymmetric
projection holds for both the normalized and not normalized matrices, thus it
is only listed once. The symmetric projection is included to give an intuitive
understanding of how many occurrences of attributes overlap in the resulted
projection, to which the simple non-weighted projection does not provide addi-
tional insight, thus it is excluded from the overview.

Inspected matrix properties are the number of total entries and non-zero (as
similarity is always positive this depicts all entries of sima→b > 0) as well as non
self-similar values (thus excluding entries d on the diagonal). For taxonomies
it is also interesting how many non-intrinsically related similarity values - in
the sense of values not specifically assigned by domain experts directly or the
framework FEATURE-TAK implicitly through synonym structures - exist, thus
only entries of similarity 0.8 are excluded further from the measure to exclude
synonym relations. This does also neglect valid taxonomies just happening to
return a similarity of 0.8 without the prior use of synonym constructs, but after
manually inspecting the taxonomy similarity table and operation of FEATURE-
TAK, this possibility was estimated to be unlikely. Note that domain experts
specify intermediate nodes, which as such not necessarily depict attribute val-
ues expected to occur in real cases, and as such they needed not be inspected
separately from formally calculated similarity values. For the intermediate sym-
metric weighted projection, an important measure is that of similarity relations
depicted through values greater than 1, because these correspond to multiple
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Table 4. Similarity matrices statistics across attributes

Attribute Taxonomy N. Asym. WOMP Symmetric WOMP

Function
(65× 65, 4225 entries)

>0: 577 >0: 133 >0: 68

>0, ¬d: 512 >0, ¬d: 68 >0, >1: 6

>0, ¬d, ¬0.8: 0
Location
(75× 75, 5625 entries)

>0: 967 >0: 177 >0: 102

>0, ¬d: 892 >0, ¬d: 102 >0, >1: 0

>0, ¬d, ¬0.8: 498
Status
(137× 137, 18769 entries)

>0: 4151 >0: 669 >0: 532

>0, ¬d: 4014 >0, ¬d: 532 >0, >1: 66

>0, ¬d, ¬0.8: 3082
System
(979× 979, 635209
entries)

>0: 22827 >0: 22373 >0: 21576

>0, ¬d: 22030 >0, ¬d: 21576 >0, >1: 62

>0, ¬d, ¬0.8: 21386

common neighbors across attributes pairs, which in return allows to draw con-
clusions towards respective influences on the distribution of similarity in the
normalized asymmetric projection values.

As seen in the left-most column of Table 4, the different attributes are very
different in size with problem-fault-description-system being by far the largest
of the four and the others being approximately of the same size with just -
status being noticeably larger. As can be seen in the second and third column
for taxonomy- and (normalized) asymmetric WOMP respectively, the attributes
are more or less sparse depending on the type of values considered. Taxonomy
values are largely zero with function, location, status and system having 14%,
17%, 22% and 4% non-zero entries, respectively. Compare this to 3%, 3%, 4% and
4% non-zero values for the asymmetric projection, which is considerably more
sparse (except for the largest “system”-matrix). Though “status” is denser than
“location” still being denser then “function” with taxonomies, this gets reduced
to an even 3–4% across all attributes for projections. This drop is even more
severe considering not only non-zero values but also values not equal to 0.8. Here,
taxonomies maintain 0%, 9%, 16% and 3% similarity values with “location”
keeping many-, while “status” and “system” keep most values. Problem fault
description “function” only contains values of self- or synonym-similarity.

Considering weighted projections, both “function” and “status” hold a fair
share of values larger than one, which allows for a more varying degree of sim-
ilarity in the asymmetric projections, as opposed to larger matrices such as
with “system” with fewer overlapping neighbors. In order to compare similar-
ity measures of projections to their established taxonomy counterparts, a Mean
Squared Error (MSE) estimation summing up the squared difference in values
for all entries in both matrices was intended to be done, comparing the overall
deviation in values between the taxonomy similarity matrix and the normalized
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asymmetric WOMP similarity matrix of each attribute separately. This however
resulted in incredibly large deviations, because those similarity matrices do not
overlap in most - if not all - non-zero values. Upon closer inspection as to why
the values mostly do not overlap, it was found that the synonym structure as
well as keywords related over said synonyms frequently happen to be conceptu-
ally related, without being used interchangeably in cases with similar solutions.
What this means is that the taxonomies capture (pre-)defined classes of con-
cepts, while projections rather capture concepts of different keywords used in
similar situations in a scenario more closely related to the solution procedure of
the case (as they get connected over solution classes).

4 Discussion and Outlook

The evaluation addresses inadequate symmetric self-similarity and small similar-
ity values for sparse data as major issues. Regarding symmetric self-similarity,
projections do not yield similarities of 1 for attributes to themselves. After hav-
ing normalized all other non-self similarities, the similarities of attributes to
themselves can be set to 1 manually, but they are not a result of the projec-
tion procedure itself, because the projection accounts only for co-occurrences of
attribute values. The procedure of traversing the right-population has as conse-
quence that any traversal is related to the resource being distributed to different
solution classes, thus even adjusting for traversing all edges of the bipartite graph
from a left-node to itself results in related twisted aggregated values due to WR

being typically non-zero, which is correlated to wR→L. While taxonomy simi-
larity has attribute self similarity as inherent property, projections do not. This
technically violates the fundamental notion of similarity, and requires manual
adaptation if used on its own. Furthermore, as could be seen in Fig. 3, the differ-
ent intermediate similarity matrices of symmetric-, asymmetric non-normalized-
and asymmetric normalized WOMP have very different scaling across similar-
ity values. When compared with similarity values in the taxonomy similarity
matrix being nicely distributed over the interval [0, 1], the values of the final
normalized asymmetric WOMP are incredibly small and - not counting self-
similarity - rarely exceed a similarity of 0.1. This trait, however, is not shared
across the intermediate representations, where the non-normalized matrix con-
tains what seems like more adequate values, which can be larger than 1. Note
that the basic normalization idea of [12] still applies, but it seems to not scale
well in application, especially with a small number of connections between the
populations of the bipartite graph as a result of a low number of cases.

A solution to this could be a logarithmic function, which maps normalized
projection-based similarity values to a range incorporating also similarities closer
to 1. Compared to a baseline of no mapping, this logarithmic mapping would
ensure that for small projection similarities their output similarity value in the
similarity matrix would be larger - e.g. attain a value of 1 for a value of 1 in
the normalized projection similarity and setting larger values to exactly 1. The
steepness of the initial logarithmic incline for very small values and how quickly
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the maximum similarity should be attained depends on the number of input cases
and distribution of attributes and attribute co-occurrences within the attribute
descriptions. A further study inspecting different parameters and their influence
would be worthwhile.

With projections being more of an extension to - rather than a substitution
of - taxonomy relations, under the given analysis and computations it seems
that a combined application of projections as well as taxonomies is more likely
to succeed as compared to utilizing projections on their own. How exactly both
procedures get interconnected in the application architecture of FEATURE-TAK
and how nicely the different components extend already implemented function-
ality was sketched but can at this point only be estimated. The idea of combining
projections with taxonomies works intuitively from an ideological point of view
- with both incorporating expert knowledge in a network structure, while result-
ing in different sets of similarity relations - where the combination procedure
requires further planning.

Possible future work includes incorporating projections more closely into
FEATURE-TAK’s workflow and implementing projection similarity measures in
myCBR as the underlying CBR framework. The maintenance procedure for con-
tinuous operation of FEATURE-TAK allowing scaling across longer framework
runs is considerably easier for taxonomies than for projections, but trade-offs in
complexity can be expected by batch-updating the bipartite graph.
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