
Development and Implementation of a
Case-Based Reasoning Approach to Speed-Up

Deep Reinforcement Learning through
Case-Injection for AI Gameplay

Marcel Heinz1, Jakob M. Schoenborn1,2 and Klaus-Dieter Althoff1,2

1 University of Hildesheim
Universitätsplatz 1, 31141 Hildesheim, Germany
{heinzm, schoenb}@uni-hildesheim.de

2 German Research Center for Artificial Intelligence (DFKI)
Trippstadter Str. 122, 67663 Kaiserslautern, Germany

kalthoff@dfki.uni-kl.de

Abstract. Game environments offer properties that are useful for re-
searching challenges in artificial intelligence (AI). Gaming enables test-
ing, evaluation, and preparation of new methods for real-world scenarios.
Reinforcement learning (RL) has undergone enormous further develop-
ment in the recent years. The usage of artificial neural networks makes
it possible to use reinforcement learning algorithms in complex environ-
ments. To learn feasible solutions, RL agents have to interact with the
environment and learn based on their experience. Many scenarios re-
quire long training times and a vast amount of training data. Reusing
previously experience knowledge can be the key to shortened training cy-
cles and improved performance. Case-based reasoning (CBR) is another
methodology of artificial intelligence using experiences from previous sit-
uations for solving new situations by adapting known solutions. There-
fore, CBR appears to be particularly suitable for knowledge transfer in
the area of reinforcement learning and is applied to improve the learning
process of RL agents within video games. First, this work develops a
theoretical approach in order to show in a second step the practical fea-
sibility with the help of a prototypical implementation. The evaluation
of the proposed method confirms reduced training time and improved
performance.

Keywords: Case-Based Reasoning, Case-Injection, Reinforcement Learn-
ing, Transfer Learning, Gaming

1 Introduction

With the development of autonomous vehicles [8], automated diagnoses of dis-
eases [7], and rapidly evolving language assistants, the subject of AI continues

Copyright c© 2020 by the paper’s authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).



to appear in everyday life. For companies, research institutions or countries, AI
has become a panacea for many areas and promises solutions to urgent ques-
tions of the future. To solve these problems, a variety of different approaches
have been steadily researched, tested, and evaluated with techniques such as
RL, (Deep) Neural Networks (DNN) and CBR among a multitude of other ap-
proaches as well. We developed and implemented intelligent agents that are able
to reuse knowledge in a proficient way to overcome some of the obstacles of RL
agents, such as accelerating the learning phase. These hurdles are the limitation
of the learned task and the costly process of learning. RL agents still apply their
knowledge in a rather small operating area. In order to work in other games, it
has to be retrained, which is cost-intensive and time-consuming. A combination
of CBR, deep learning (DL) and RL together with the concepts of multi-agent
systems (MAS) and transfer learning (TL) can lead to a sophisticated solution
that overcomes the outlined difficulties.

The core of this work is the development of a general procedure based on the
CBR methodology for knowledge transfer within a DRL environment. The un-
derlying work examines the structure of a systematic transfer learning approach,
in which, as far as possible, all process steps run automatically. In order to build
the bridge from theory to practice, the proposed algorithm is prototypically
implemented3 and then evaluated.

2 Related Work

This section reviews research that is related to our new approach. Since the
topics CBR and DRL are in any case of great importance in AI research, the
main focus of this section is on the area of games.

Bianchi et al. examined the knowledge transfer through CBR components
within RL environments [3]. The main focus of the work is a case-based policy
inference algorithm. This accelerates the learning process through an intelligent
selection of similar, already learned cases within the case base. The publication
transfers the existing knowledge within a Q-learning environment. In contrast,
this work applies knowledge transfer to a DRL agent. The proposed algorithm
shows success in terms of temporal performance and more robust learning be-
havior. The more similar cases found, the lower ε can be chosen and thus in-
fluences the exploration-exploitation behavior [3]. The work uses a fixed value
for ε. A grid-world environment evaluates the proposed algorithm, in which an
agent starts at any randomly chosen point and has to navigate to a target point.
Based on this situation, the similarity measure consists of the Euclidean distance
from the start to the destination. In contrast, the suggested architecture of this
work calculates the similarity of visual and numerical inputs. In the experiment
phase, initial cases are generated, which are then reused in the later transfer of
knowledge. During the learning process, the cases from the case base are evalu-
ated and the best case is used. Bianchi et al. showed that their approach achieves

3 Code available: https://github.com/marcel-heinz/peng

https://github.com/marcel-heinz/peng


the same amount of reward as conventional Q-learning approaches in a shorter
time.

In the work of J. Hillman [4], RL improves the learning process with the help
of CBR and TL in a first-person shooter scenario. Hillman points at a practical
benefit for the use in real-world scenarios in which the state space grows enor-
mously. RL is used within the source domain to generate various cases for the
later target domain. The similarity measure for the retrieval is calculated from
the distance of the agent to the objects within its environment. In addition, the
algorithm accesses the case base within each episode after each step to find a suit-
able case. If the retrieval is not set optimally, this can lead to performance losses
in terms of required time. The algorithm presented here leads to a significant im-
provement within the realized domain. Kolbe et al. introduce an approach that
combines RL and CBR to improve the performance of an first person shooter
(FPS) agent [5]. For this purpose, Kolbe et al. build on the knowledge generated
by Hillmann [4] and develop a MAS inhabiting three interacting agents in a
Unity 3D game environment. To ensure that case retrieval delivers useful cases,
a RL agent was also implemented, which delivers the appropriate actions from
the case base on the basis of stored sequences. The variable reward function,
which is useful for this promising combination, adapts to the saved sequences
and the overall win chance. In our approach, the retrieval process is supported
by a RL component, which increased the performance in the conducted tests.

3 Past Experience Network for Gameplay (PENG)

This section lays the theoretical basis for the subsequent development of the
procedure. Besides, this section presents the Past Experience Network for Game-
play (PENG) process model, which reflects the basic features of an intelligent
agent architecture that reuses knowledge in the Atari2600 gaming environment.
Atari is well-known for famous arcade games such as Pacman and Breakout. The
PENG system builds on the basic principles of the CBR methodology and fulfills
the following characteristics: Manual input for game setup, flexible application
options with different domains, dealing with visual game environments, MAS
approach and evaluation of trained agents to identify a suitable agent. Figure 1
shows the proposed CBR cycle of the PENG architecture.

3.1 Nomenclature

As part of this work, a model repository R equals the case base. Also, in the
PENG process model, a case τ is divided into two parts, problem and solu-
tion. Equation 1 formalizes the model repository and equation 2 describes an
individual case.

R := {τ0, τ1, . . . , τn} (1)

τ := (Λτ , µτ ) (2)



Fig. 1. Proposed CBR cycle of PENG, based on [1]

With the target gameplay task Λ and the model µ as in Equation 3 and 4

Λτ := (Pixel Values, Number of Actions) (3)

µτ := (NN Architecture, Policy) (4)

The standard CBR methodology retains relevant knowledge within the knowl-
edge base. Within this knowledge base are the containers for general knowledge
such as adaptation knowledge or similarity measures. The PENG method stores
all available knowledge inside the knowledge center (KC). Figure 2 briefly de-
scribes the general process for the PENG architecture. The entire process is
described in detail in the following.

3.2 Similarity Measure

The similarity measure is an integral part of the overall PENG architecture.
As described above, the PENG component accesses the gameplay and nb action
attributes. The local similarity measures should be designed in such a way that
they cover the particular characteristics of the individual attributes. Therefore,
the local similarity measure at the attribute level should have the following
properties:



Fig. 2. PENG Process Model based on [2]



– A reliable similarity measure for integer values
– A reliable similarity measure for image data

We employ the Euclidean distance to measure the distance between the nb action
attribute. Since the proposed PENG system also works with image data, the re-
trieval step requires a similarity measure that handles pixel values and interprets
the stored data. The image classifier applies two DNNs, which use different pre-
diction methods. On the one hand, the prediction layer uses the softmax function.
On the other hand, the last layer uses the sigmoid function. The model with the
softmax activation function is stronger in classifying already known data, while
the model with the sigmoid activation function has an advantage when show-
ing the network environments that it has not seen before. The sigmoid function
shows nonetheless the (estimated) probability that a new environment belongs
to a trained class. Equation 5 presents the gameplay similarity, where SIP refers
to ‘sigmoid prediction’ and SOP to ‘softmax prediction’.

Simgameplay = wsigmoidSIP + wsoftmaxSOP (5)

Equation 6 shows the amalgamation function for the global similarity. When
calculating the global similarity, the attributes receive an individualized weight
w to bias the retrieval.

Simglobal = wnb actionSimnb action + wgameplaySimgameplay (6)

3.3 Retrieval Agent

The retrieval agent is the entry point to the PENG system, whenever the system
receives a new target gameplay task Λ. The main goal of this agent is to search
within the model repository for saved game environments that are similar to
the query case in order to train a more powerful DRL agent. Consequently, the
system utilizes problems and solutions from the past. Ideally, this agent should
output a significantly reduced section of the model repositories in the form of
Rtest. The retrieval agent’s function is to select appropriate models inRtest, that
are as similar as possible to the current task Λ. Whenever the retrieval agent
recovers a similar model from R, the DRL agent has the opportunity to learn
from past experience. Moreover, already trained and tested models are reused
or recycled, which contributes to the challenges task limitation and the costly
learning process. The main steps are:
1. Initialize the new environment, 2. Load the model repository and set the query
case, 3. Calculate the similarity between the number of actions, 4. Calculate the
similarity for gameplay images, 5. Calculate the global similarity.

3.4 Testing Agent

The testing agent receives the most similar case from the retrieval agent within
the R. The main goal of this agent is to apply the chosen model inside Rtest



with the corresponding architecture and policy to the query environment and
to select the best performing model. In other words, the agent uses Rtest to
identify a model that is already performing well for the target gameplay task
Λ. However, with the preselected models in Rtest, it is not guaranteed that the
stored models µ are also usable for the current application Λ. The agents output
is a suggested model for the current task Λ, that the testing agent passes on.
The main steps are:
1. Define the most similar model with architecture and policies, 2. Check if the
last layer of the DRL agent has to be changed, 3. Build the DRL agent, 4.
Test query environment with every policy from the most similar environment,
5. Select the best performing policy.

3.5 Training Agent

The central part of the training agent is to provide a reasonable solution for
the query environment. This objective can be achieved by either train the agent
with the Q-injection method from scratch, when no similar game environment
was found. The second way is to train the new game with the model-injection
procedure, which applies a similar solution from the model repository.

Q-Injection The Q-injection method introduces an additional probability φ,
besides the parameter ε that corresponds to the exploration-exploitation strat-
egy. φ determines if the agent injects Q-values during the training phase. From
the beginning, the Q-values are not definite, therefore random numbers between
[0,1] are drawn as a first heuristic in order to inject values into the DRL agent.
The range of numbers refers to the minimum and maximum values that are pos-
sible for the Q-values in this setting. This procedure takes advantage of the initial
instantiated Q-values that are zero. Moreover, Q-values turn into values between
[0,1] after training. Based on this, we assume that the injection of Q-values > 0
has a positive influence on learning behavior.

Model-Injection In this case, the DRL agent uses the complete model of the
previously trained agent, including architecture and policy, to solve Λ. The pro-
posed model serves as a blueprint for the new target gameplay task. Thereupon
the training agent injects the experienced model, including the policy into the
new agent. Once this transfer process is complete, the training phase starts. The
main steps are:
1. Initialize the DRL agent, 2. Check for transfer mode (Q-injection vs. model-
injection), 3. Check if the last layer of the DRL agent has to be changed, 4. Build
the DRL agent, 5. Config and compile the DRL agent, 6. Train the DRL agent.

3.6 Learning Agent

The central task of the learning agent is to save the newly generated informa-
tion and knowledge, that the PENG method can reuse for succeeding tasks.



The learning agent consists of two main components, first a learning compo-
nent and second a maintenance part. CBR systems store and process experience
knowledge, ordinarily with different approaches. The agent can build up knowl-
edge or reject the currently learned model τΛ. Consequently, the agent decides
whether she retains a model or not. The most obvious way is to compare the
recently learned model with the models within the model repository. Only if the
newly learned model is significantly different from the previous models within
the model repository, the agents saves it. For the implementation stage of the
learning agent, we used this comparison method, which learns models that are
fundamentally different from the previous ones. The main steps are:

1. Clean the model repository and learn new models, 2. Collect image data of the
game for NN, 3. Image augmentation, 4. Train the NN for image classification.

4 Experiment and results

The evaluation of the PENG system is essential to assess the theoretical elabo-
ration and practical implementation more precisely. Therefore, this section de-
scribes various experiments that have been carried out in order to determine the
performance of the system. The proposed framework consists of several parts,
based on the CBR methodology. Nevertheless, the main focus is on the behavior
achieved by the DRL agent. For this reason, the core of the experiments will rely
on the results of the agent performance, supported by the PENG methodology.

4.1 Experiment Setup

The defined specifications prior to the first run:

– PENG starts with an empty model repository

– the retrieval agent starts after the system trained three games in advance

– similarity threshold of 0.4 as first-fit heuristic

– weights for the amalgamation function are set equal to 0.5 for nb actions
and 0.5 for gameplay

– parameters of the DRL agent correspond to the work of Minh et al. [6]

– a deep Q network (DQN) is used as the baseline

Table 1 shows the used hyperparameters within the DQN and the PENG ex-
periments. The PENG system trained each game for 2,000,000 steps, and the
environment was freely selected from the Atari2600 repository.

4.2 Metrics

This subsection implements some metrics that provide sufficient information
about the success or failure of the proposed PENG method.



DQN PENG

Training Steps 2.000.000 2.000.000
Learning Rate 0.00025 0.00025
Gamma 0.99 0.99
Target Model Update 10.000 10.000
Warmup Steps 50.000 50.000
Epsilon Start 1.0 0.5
Epsilon End 0.1 0.1
Annealing Steps 1.000.000 1.000.000
Replay Limit 1.000.000 1.000.000
Reward [-1.0, +1.0] [-1.0, +1.0]

Table 1. Hyperparameters: DQN vs. PENG

Performance Increase/Decrease Algorithms that take less effort to achieve a
defined goal are successful in practical implementation. Therefore, it is desirable
to investigate how many steps were needed to reach the same reward level as
the baseline algorithm after 2,000,000 steps and vice versa. Equation 7 and
equation 8 formalizes this metric.

PI = 100 ·
Total StepsDQN

StepsPENG|RewardPENG=Total RewardDQN

(7)

PD = 100 ·
StepsDQN |RewardDQN=Total RewardPENG

Total StepsPENG
(8)

Episode Reward The achieved reward in the particular episode provides an
insight into the learning behavior of the agent over the entire period. Equation 9
defines the Episode Reward.

Episode Reward =

Episode End∑
step=0

Rewardstep (9)

Sum Reward RL agents are conventionally measured by how beneficial a pro-
posed policy is or how much reward an agent gets in its environment. One way to
demonstrate the performance of an RL agent is to show the total of all rewards
received over the entire period. Equation 10 defines the sum reward.

Sum Reward =

Total Episodes∑
i=0

RewardEpisodei (10)

4.3 Results

This section provides the test results of the experiments based on the imple-
mented method. We present the experiment results of the model-injection pro-
cedure, and the results of the Q-injection method. The abbreviations from the
data tables refer to the following Atari2600 games:



– B - Breakout
– MP - MsPacman
– S - Seaquest
– A - Alien

Model-Injection The results in Table 2 show that the presented method has
achieved a definite increase in performance if the PENG system found a similar
case within the model repository. The technique achieved the most significant
performance increase of 121.54%. In this case, the target gameplay task was
‘Breakout’, and the retrieval agent recovered the most similar case ‘Breakout’
from the model repository.

Approach B MP S A

DQN Steps 2000000 2000000 2000000 2000000
PENG Steps 1645490 1924129 1941309 1821558
PI/PD 121.54% 103.94% 103.02% 109.80%

Table 2. Experiment Results for model-injection - PI/PD

Table 3 shows the measured values for the cumulative reward over the entire
time. The average reward and maximum reward at the end of training are sig-
nificantly higher in all gaming environments. The obtained results indicate that
the search for a similar case leads to a not inconsiderable increase in the overall
reward.

Approach B MP S A

DQN SR
Mean 9161.17 54012.14 8011.16 33211.40
Max 41640.00 132169.00 21640.00 81105.00
Std 10959.72 39447.67 6413.29 23882.56

PENG SR
Mean 17887.57 56945.64 9889.01 42653.81
Max 51909.00 136346.00 22445.00 89691.00
Std 15658.34 40482.38 6784.25 26854.50

100%PENG
DQN SR

Mean 195.25% 105.43% 123.44% 128.43%
Max 124.66% 103.16% 103.72% 110.57%
Std 142.87% 102.62% 105.78% 112.44%

Table 3. Experiment Results for model-injection - Sum Reward(SR)

Q-Injection Table 4 describes whether the method is attributable to a perfor-
mance increase. The data shows a comparison between the baseline method with
the experiment of the Q-injection method. Since all experiments were stopped
after 2,000,000 steps, the games Breakout, MsPacman, and Alien achieved fewer
rewards in total within the PENG learning cycle. Based on the 2,000,000 steps,
there is only a performance increase of 102.99% in the game Seaquest.

Table 5 shows the recorded data points of the accumulated rewards over the
entire training period. The data shows that only the game Seaquest achieved



Approach B MP S A

DQN Steps 1928880 1958882 2000000 1948749
PENG Steps 2000000 2000000 1941861 2000000
PI/PD 96.44% 97.94% 102.99% 97.44%

Table 4. Experiment Results for Q-injection - PI/PD

more rewards throughout the 2,000,000 steps, increasing by 104.78%. The lowest
value achieved the Breakout environment with 95.34%. Interestingly, the average
for the sum of the rewards is higher in the game Alien, but the maximum result
is below the baseline method.

Approach B MP S A

DQN SR
Mean 9161.17 54012.14 8011.16 33211.40
Max 41640.00 132169.00 21640.00 81105.00
Std 10959.72 39446.67 6413.29 23882.56

PENG SR
Mean 8583.87 51706.76 7430.91 35012.35
Max 39701.00 128620.00 22675.00 79180.00
Std 10568.42 36998.50 6351.68 23743.15

100%PENG
DQN SR

Mean 93.70% 95.73% 92.76% 105.4%
Max 95.34% 97.31% 104.78% 97.63%
Std 96.43% 93.79% 99.04% 99.42%

Table 5. Experiment Results for Q-Injection - Sum Reward(SR)

4.4 Discussion

The results of this paper are two-fold concerning the DRL learning process. We
showed that the model-injection method provides a distinct advantage when
the model repository stores a similar case. On the opposite, the Q-injection
method yields to an equal or even more miserable result, compared to the base-
line method. The applied t-Test verified the findings for both methods with a
high significance (p=0.01). However, our paper examined a limited represen-
tation of Atari2600 games that could affect the validity of the data. In future
work, we advise conducting the experiments on a high-performance computer
system, in order to obtain more results in parallel and scrutinize more games
or other game environments. On a side note, the Q-injection method was in-
stantiated with random values between [0,1]. Therefore, a better-constructed
initialization technique for the corresponding Q-values may produce better re-
sults. Furthermore, we measured the achievement of the DRL agent to reason
about the acceleration of the learning process. Further analyses should also focus
on the required time for the complete PENG cycle since improvements regard-
ing the learning period also correlate with the overall process. For the evaluation
of the results, the algorithm operated for 2,000,000 steps. Future investigations
should test a different stop criterion for assessing the procedure, such as the
number of episodes or the reward to be achieved. Also, we implemented the



PENG framework prototypically with a first-fit heuristic. Consequently, we sug-
gest that especially the testing agent and training agent evolves, in order to
inject a more beneficial model with probably more robust results. Despite the
mentioned obstacles, the outcomes indicate that PENG can support the DRL
learning behavior within the Atari2600 gaming environment and can serve as a
benchmark for further developments linked to our procedure.

5 Conclusion

We provided and evaluated the proposed PENG methodology and processed the
measurement results from the experiments. The defined metrics were applied to
the model-injection and Q-injection methods. The validation showed that the
model-injection procedure has a clear advantage and we found indications for a
lower performance of the Q-injection method. The statistical analysis shows that
the model-injection methodology yields a significant improvement in training
behavior, whereas the results from the Q-injection procedure can be put into
perspective, since the result unveils no significant difference between DQN as
baseline and PENG, except for the Breakout game. The obtained knowledge
inside the KC can be further tested for other games, especially in terms of
testing the process of adapting knowledge between different games. Furthermore,
the parameters for both, the DRL agent and any agent involved in the PENG
methodology can be further investigated.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Commun. 7(1), 39–59 (1994)

2. Amailef, K., Lu, J.: Ontology-supported case-based reasoning approach for intelli-
gent m-government emergency response services. Decision Support Systems 55(1),
pp. 79–97 (2013)

3. Bianchi, R.A.C., et al.: Heuristically accelerated reinforcement learning by means of
case-based reasoning and transfer learning. Journal of Intelligent & Robotic Systems
91(2), pp. 301–312 (2018)

4. Hillmann, J.: Conception and development of a prototype for a multi-agent-system
with learning capabilities using case-based reasoning in the first-person perspective
scenario. (2017), master thesis at University of Hildesheim

5. Marcel Kolbe, Pascal Reuss, J.M.S., Althoff, K.D.: Conceptualization and imple-
mentation of a reinforcement learning approach using a case-based reasoning agent
in a FPS scenario. CEUR Workshop Proceedings 2454 (2019)

6. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), pp. 529–533 (2015)

7. Newman, T.: Could artificial intelligence be the future of cancer diagnosis?
(2019), https://www.medicalnewstoday.com/articles/325750.php, last validation:
02/17/2020

8. Saleem, F.: The future of self-driving cars: New generation of transporta-
tion (2018), https://innov8tiv.com/the-future-of-self-driving-cars-new-generation-
of-transportation/, last validation: 02/17/2020

https://www.medicalnewstoday.com/articles/325750.php
https://innov8tiv.com/the-future-of-self-driving-cars-new-generation-of- transportation/
https://innov8tiv.com/the-future-of-self-driving-cars-new-generation-of- transportation/

	Development and Implementation of a Case-Based Reasoning Approach to Speed-Up Deep Reinforcement Learning through Case-Injection for AI Gameplay 

