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Abstract

In this study, we present a novel strategy to the method of finite elements (FEM) of linear

elastic problems of very high resolution on graphic processing units (GPU). The approach

exploits regularities in the system matrix that occur in regular hexahedral grids to achieve

cache-friendly matrix-free FEM. The node-by-node method lies in the class of block-iterative

Gauss-Seidel multigrid solvers. Our method significantly improves convergence times in

cases where an ordered distribution of distinct materials is present in the dataset. The

method was evaluated on three real world datasets: An aluminum-silicon (AlSi) alloy and a

dual phase steel material sample, both captured by scanning electron tomography, and a

clinical computed tomography (CT) scan of a tibia. The caching scheme leads to a speed-up

factor of ×2-×4 compared to the same code without the caching scheme. Additionally, it facil-

itates the computation of high-resolution problems that cannot be computed otherwise due

to memory consumption.

Introduction

Motivation

The method of finite elements (FEM) is a commonly used approach for solving partial differ-

ential equations, for example for the simulation of mechanical systems. The approach origi-

nates from engineering science, where objects are typically described as computer-aided

design (CAD) models using higher order curves, for example trimmed non-uniform rational

B-splines (NURBS). Classical FEM simulations require these higher order curves to be discre-

tized in the form of a volume mesh that is composed of individual cells (the finite elements).

Typical cell meshes have a hexahedral or tetrahedral topology. The mesh cells are flexible in

their connectivity in order to express a wide range of shapes. The individual cells are mapped

to standard elements of typically unit size, and mechanical laws are formulated through the

use of basis functions. Most often, product spaces of polynomials of degree one to three (linear,

quadratic, cubic) are used, but higher order degrees as well as more exotic functions such as

NURBS have also been used successfully [1].

The simulated mechanical properties of each finite element are described by a local stiffness

matrix, obtained by combining the element’s specific material properties with the basis
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functions. The interconnectivity of the finite elements is then modeled by combining the local

stiffness matrices into a single global stiffness matrix A. Typically it is symmetric, positive defi-

nite and often very sparse, as each finite element is typically incident to only a small number of

other elements. A system of equations of the form Ax = b models the complete mechanical sys-

tem, where b is the load vector containing volume forces as well as the boundary conditions

and x is a vector of unknown values, such as displacements. An overview of the notation is

given in Table 1.

The resulting algebraic system may be solved directly, for example through Pardiso [2, 3] or

Cholesky decomposition [4, 5]. However, for large systems this becomes infeasible and an iter-

ative numerical approach is used instead, for example the conjugate gradient method. A best-

guess starting point for the iterative solver may be approximated by first solving a coarser dis-

cretization of the same mechanical system. This may be repeated several times on successively

coarser representations, creating a hierarchy of discretizations; a process known as the multi-

grid method. In this publication we refer to these coarser discretizations as additional levels of

detail.

As FEM simulations of problems of practically relevant size can be very computationally

intensive, their parallelization has long been an active area of research. However, the require-

ments of parallelization schemes are often at odds with properties introduced to the finite ele-

ment model by unstructured mesh geometries. For example, modeling the connectivity

between elements in an arbitrary mesh introduces memory fragmentation, making efficient

parallel access more difficult. To combat this effect, mesh elements may be reordered to maxi-

mize memory bandwidth [6, 7]. In multigrid methods, topology changes between two discreti-

zation levels in unstructured meshes can cause ambiguities that are difficult to handle [8–10].

More recently, FEM simulations are increasingly applied to models that do not originate

from CAD software but are generated using three-dimensional imaging technologies such as

computed tomography (CT) or three-dimensional microscopy. Applications for these scenar-

ios are numerous. Biomechanical simulations are often based on clinical CT data [11, 12]. The

mechanical simulation of microstructures in materials science and engineering can be based

on three-dimensional electron microscopy techniques such as focused ion beam scanning elec-

tron microscopy (FIB/SEM) [13], electron-, or X-ray tomography [14].

These applications, together with continued advances in computing hardware, particularly

in the field of general-purpose GPU computing, have renewed interest in the field of fixed grid

finite element analysis. Here the problem is discretized by a regular grid of finite elements, typ-

ically hexahedra, having uniform size and orientation. This provides a basis for efficient and

predictable memory access and eliminates the possibility of ambiguous topology changes in

the multigrid method.

Table 1. Symbols used in the description of the algorithm.

Symbol Meaning Dimension Comment

K Local stiffness matrix at center vertex 3×3 K = M13

Mi Local stiffness matrix at neighbor vertex i 3×3 i � (0..26), i 6¼ 13
u Local displacement at center vertex 3×1
di Local displacement at neighbor vertex i 3×1 i � (0..26), i 6¼ 13
φ External force vector at center vertex 3×1 Boundary condition

δ Residual error at any vertex Scalar

f Local right hand side vector 3×1
ε Convergence threshold Scalar

https://doi.org/10.1371/journal.pone.0240813.t001
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The volume data generated in these applications typically has a high resolution. By con-

straining the shape and placement of finite elements to a fixed grid this resolution cannot be

decreased without also coarsening the shapes that are being modeled, leading to inaccuracies

in the simulation. When mapping the problem to GPU hardware this can result in very high

memory consumption and memory bandwidth bottlenecks, as the global stiffness matrix

becomes very large. To combat this problem, a matrix-free approach is often used [34], in

which entries in the global stiffness matrix are computed on-demand. This trades an increase

in computational effort for a reduction in memory bandwidth.

We contribute to the class of matrix-free FEM for linear elasticity problems by presenting a

novel, GPU friendly caching scheme for linear elastic fixed-grid problems with a limited num-

ber of discrete materials. In this case, we observe that the global stiffness matrix has a specific,

highly redundant structure. Many vertices in the problem share the same spatial configuration

of materials and boundary conditions in the eight cells bordering that vertex. We call this the

local problem configuration. The stiffness matrices for these local problem configurations con-

tain constant terms, allowing them to be pre-computed and stored in L1 cache, thereby lower-

ing overall memory bandwidth for multi-material problems.

State-of-the-art

The most popular alternatives to FEM in elasticity are the finite difference methods (FDM).

FDM are also a class of numerical methods for solving partial differential equations by approx-

imating the derivatives with finite differences. FDM are widely used in numerical analysis and

several engineering applications [15]. Even in the field of linear elasticity, FDM are still an

active field of research, in particular with focus on staggered grids and locking-free concepts

[16]. The extension to generalized FDM has also proven to be a good meshless method for

elasticity problems [17].

Another alternative to the most common FEM simulations for linear elasticity problems is

the virtual element method (VEM) [18]. Virtual elements can be almost analogous to FEM by

using similar element spaces [19]. In contrast to classical FEM, the basis functions which

model the material inside the finite elements are defined only implicitly. This enables the use

of arbitrary polygonal elements within the same mesh, allowing more flexible meshing of com-

plex geometries. It also requires no special handling of hanging nodes, as the two incident

polygons sharing the hanging node can have different numbers of sides. However, the elemen-

tal stiffness matrix must be calculated with the help of consistency and stability terms to

recover an approximation of the basis functions, since these exist only virtually [20].

Multigrid methods are algorithmic concepts using a hierarchy of discretizations in the solv-

ing process [21, 22]. To accelerate the convergence of the solver, an iterative global correction

of the solution on the finest grid level is used in combination with the solution of a coarse

problem [23]. Here, the coarsening process is recursively used until a grid level is reached

where the problem can be solved very efficiently [24], which leads to a quicker distribution of

information over the computational domain and a dampening of low frequency errors. How-

ever, this hierarchy of grid levels necessitates efficient transfer operators from one grid level to

the next and back as well as representations of the discretized mechanical system on each grid

level. In combination, the coarse grid correction, restriction of the residual error to coarser

grid levels, projection of the computed correction to finer grid levels and smoothing of the

errors results in a faster convergence rate [25–27].

Multigrid methods are also used with locally adaptive refined and coarsened grid levels. In

this case, one distinguishes between level meshes, i.e. cells with the same refinement distance

from the coarse grid, and leaf meshes consisting of all active cells of the hierarchy. These
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concepts require specific algorithms and data structures [28]. In order to avoid the problems

of multigrid methods with complex geometries, algebraic multigrid methods were developed

acting only on the underlying linear system of equations and not on the grid itself [23].

As the performance bottleneck is often data movement rather than floating-point opera-

tions (flops), block-asynchronous multigrid smoothers on GPUs [29] perform more flops in

order to reduce the synchronization effort. For many problems, asynchronous iteration strate-

gies outperform the classical synchronized relaxation methods [30].

The algorithmic framework for matrix-free operator evaluation enables very efficient

implementations because the coefficient matrix is not stored explicitly. Instead, the access to

the matrix is realized by the evaluation of the underlying coefficients on the fly via matrix-vec-

tor products [31, 32]. Matrix-free FEM approaches have been proposed to reduce memory

requirements and alleviate memory bandwidth bottlenecks in parallel computing [33]. Origi-

nally developed for distributed computing clusters, these approaches show renewed interest

for general-purpose GPU applications. When working on a fixed grid with uniform element

sizes and a single material, all finite elements share the same local stiffness matrix, which can

be pre-computed [34]. Storing this matrix in constant memory further reduces bandwidth

requirements in the matrix-free GPU approach [35].

Per-vertex approaches, also known as node-by-node approaches, are a re-formulation of

the finite element problem with a focus on solving for individual nodes, rather than finite ele-

ments [36]. The closest related work to our approach is based on a per-vertex Gauss-Seidel

relaxation [37]. By shifting the computational focus away from elements and onto per-vertex

equations, vertices are iteratively updated by considering the updated displacements of their

direct neighbors. Our work improves over [37] for the class of multi-material problems by

introducing a highly efficient data representation that exploits self-similarity in the system

matrix, hereby reducing memory consumption and enhancing cache efficiency by several

orders of magnitude.

Material and methods

Problem

Our method solves the following standard linear elasticity problem. Assume that the boundary

of the elastic body is divided into two disjoint sets ΓD (Dirichlet boundary) and ΓN (Neumann

boundary) and assume that a system of body forces f : O! R3 and surface tractions gN :

GN ! R
3

act on the body. On the other part ΓD of the boundary, the body is partially fixed in

space. Under the assumption of small displacements, the displacement u = (ui)1�i�3 satisfies

the following problem:

�
X3

j¼1

@sij

@xj
ðuÞ ¼ fi in O;

ui ¼ 0 on GD;

X3

j¼1

sijðuÞnj ¼ gi on GN ;

where n = (ni)1�i�3 is the unit outward normal to the boundary ΓD, fi and gi are the compo-

nents of the forces f and gN, and σij(u) is the stress tensor, cf. [38]. The problem is then discre-

tized in the standard way in finite element analysis. Therefore, standard notations for
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Lebesgue and Sobolev spaces are used. Let (�,�) denote the inner product in (L2(O))d,d�1. Find

u2H1(O)3 such that

aðu; vÞ ¼ hF; vi for all v 2 H1

DðOÞ
3
; with the scalar product

aðu; vÞ ¼
R

O
sðuÞ : εðvÞdx þ

R

GN
gN � v ds and the bilinear form

hF; vi ¼
R

O
f � v dx:

Algorithm

Our approach (Fig 1) is based on a number of assumptions about the mechanical problem. In

most problems with a limited number of discrete materials [11, 38, 40], the global stiffness

matrix contains many redundant entries. Firstly, there are often large regions of uniform mate-

rial. In the case of a fixed-grid with uniform finite element size and shape, this corresponds to

blocks in the FEM matrix that are identical up to relatively simple index changes. Secondly,

even if the materials around any vertex are not uniform, the same configuration of boundary

condition and local material distribution should appear many times in the problem, also lead-

ing to a redundant matrix structure. Experimental support of this assumption is shown in the

results section.

Fig 1. Overview of our approach. a) Two distinct materials are represented with red and blue. The solution is

updated by locally working on update regions. The number and size of the update regions depends on the GPU

architecture. The problem is solved by selecting and processing update regions in a loop until a convergence criterion

is reached. b) Vertices in the update regions are transferred to shared memory. The update regions are processed by

repeatedly updating the position of a number of randomly selected vertices. When the update region is locally

converged, the result is transferred back to global memory. c) For the purpose of updating a vertex position, we define

a local problem as follows: A local problem corresponds to solving for the position (x,y,z) of a center vertex, while

assuming the positions of all 26 neighboring vertices are fixed for the duration of this update step. d) We solve for the

center vertex position by assigning a configuration ID depending on its boundary conditions and the layout of

materials of the eight incident voxels. We call this the local problem configuration, with each unique configuration

above represented by a different color. For each configuration, local stiffness matrices for the 27 vertices in the local

problem are pre-computed and stored in a cache friendly format. The key observation is that for large problems with

an ordered distribution of discrete materials, many vertices will share the same configuration.

https://doi.org/10.1371/journal.pone.0240813.g001
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In a vertex-based approach, each vertex can be regarded as the center of a 27-vertex local

problem (Fig 1C). In this view, the 26 outer vertices can be treated as fixed while the center ver-

tex is free to move to a new equilibrium point in relation to its neighbors. Solving this local sys-

tem requires the stiffness matrices and displacement vectors of all 27 vertices, as well as any

boundary conditions assigned to the center vertex. If the center vertex is part of the problem

boundary, then some neighboring vertices may not exist. In this case, the missing vertices are

substituted with a null stiffness matrix. Crucially, in the case of linear elasticity, the matrices

and boundary conditions for this vertex remain constant for all subsequent relaxations.

u ¼ K � 1 �
X26

i ¼ 0;
i 6¼ 13

Midi

0

B
B
@

1

C
C
A
þ φ

0

B
B
@

1

C
C
A

ð1Þ

Eq 1: The stiffness matrices M of the 26 outer vertices are multiplied with their displace-

ment vectors d and summed to form the right-hand side (RHS) vector. Index 13 is understood

to be the center vertex, which should not contribute to the RHS as it is the vertex being solved

for. If applicable, external incident forces φ are added. To solve the system, the pre-inverted

stiffness matrix K-1 of the center vertex is multiplied with the RHS vector, giving the new dis-

placement vector u of the center vertex. The pre-calculation of K-1 is numerically stable, as K is

very small (3×3) compared to the global system matrix.

The algorithm begins by visiting each vertex of the global problem to examine the distribu-

tion of materials in the eight incident voxels, as well as the boundary conditions of the center

vertex. Together, this information is called the local problem configuration. If the configuration

is known, the vertex is assigned the respective ID, otherwise a new ID is generated and

assigned. Assuming the number of configurations is below 65,536, each vertex requires a

2-byte configuration ID and a three-component displacement vector with either single or dou-

ble precision.

Once all vertices have been visited, the 27 3×3 stiffness matrices for each unique local prob-

lem configuration are computed from the material properties of the eight voxels. Each unique

local problem configuration also contains a three-component vector describing the external

force incident at the center vertex, corresponding to any Neumann boundaries that were

assigned to this vertex. Vertices that are exclusively surrounded by voxels containing no mate-

rial, subsequently referred to as void voxels, are assigned an invalid ID and are later ignored

during the update phase. Vertices that are assigned Dirichlet boundaries are also assigned an

invalid ID. This ensures that the vertex retains its initial displacement throughout the

simulation.

In order to map the algorithm to GPU hardware, a large number of vertices are processed

in parallel and results are exchanged asynchronously. However, in order to make the most effi-

cient use of memory bandwidth and caches, we must ensure data locality at the hardware level.

This means clustering vertices as tightly as possible, however in a parallel setting this can lead

to race conditions. This dilemma is solved using the following multi-color partitioning scheme

also used in [37], which ensures that no two neighboring vertices are updated in parallel, while

still allowing parallel updates to many vertices inside each block.

The partitioning scheme places vertices into eight distinct subsets, with the k-th vertex of

each voxel being placed into the kth subset. This process is repeated for all vertices in the

update region. This pattern ensures that no two vertices in the same subset are adjacent to one

another. The eight partitions are updated sequentially while the vertices inside each partition

may be updated in parallel. This partitioning refers to the order of computation and should

not be confused with element connectivity.
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To further improve convergence speed, a multigrid method is employed. For each level of

detail, the fixed-grid approach allows eight voxels to be combined into one. This results in an

eightfold reduction in problem size with each successive level of detail. The fixed-grid approach

also allows materials, displacements, and boundary conditions to be mapped directly from one

level to another. Coarse grid voxels are assigned a material by majority vote of their eight chil-

dren. Ties are broken by choosing the material with the larger ID. Additionally, void materials

are not considered in the majority voting, meaning a coarse grid voxel is only assigned the void

material if all of its children are also void. At each level of detail, the multi-grid structure is then

used in the conventional way: an approximate starting point for the iterative solution is found

by first solving a coarser level and projecting the resulting displacements to the finer level.

Implementation

The algorithm was implemented using C++ and Nvidia CUDA 10. A fixed-grid, hexahedral

representation of the mechanical problem is generated and stored on the host. This representa-

tion is called the discrete problem, which holds the material assignments of all hexahedral ele-

ments as well as the boundary conditions of the problem. The discrete problem is an

intermediate representation not used in the iterative solver, instead serving to assist in the pre-

processing of the multigrid structure and the local problem configurations. A vertex-based

representation is generated from the nodes of the discrete problem in which vertices, rather

than hexahedral elements, are stored. Local problem configurations are referenced by the con-

figuration IDs stored in the vertices. Each configuration consists of 27 matrices of dimension

3×3 and one three-component vector for the Neumann stress incident at the faces connected

to the center vertex of the local problem. The total number of configurations is heavily depen-

dent on both the number and distribution of discrete materials in the problem. The configura-

tions are pre-computed on the host and stored in texture memory on the GPU, after which

they are treated as read-only. These steps are repeated for each level of the multigrid, down to

a minimum problem size encompassing the size of one update region. We employ a half

V-Cycle multigrid as the simplest possible approach that is compatible with our solver. Each

level of the multigrid is solved completely before projecting the resulting displacements down

to the next level. Once a coarse level has converged and the result projected to the next finer

level of detail, the associated data may be discarded. In principle, more elaborate multigrid

cycle schemes such as F-Cycles or W-Cycles are also compatible with our solver.

For each level of detail, the algorithm consists of two nested iterative loops, one on the host

and one on the GPU. The host loop is responsible for selecting update regions and managing

CUDA kernel launches. The number of update regions per host iteration is selected based on

problem size, hardware capabilities, and the strategy used to distribute the update regions

inside the problem. For simplicity, we will assume update regions are placed sequentially and

non-overlapping, such that all vertices in the problem are covered. An overview of the simula-

tion loop is presented as pseudocode (Fig 2).

On the GPU, each thread block first copies the vertices of its update region into shared

memory (Fig 3A). It is important to note that an additional 1-vertex border on all sides must

also be included, as the vertices at the edges of the update region require the displacements of

neighbors that lie outside the update region. The vertex data is updated frequently and must be

available to all threads in the block during construction of the RHS vectors, so these are stored

in shared memory. The local problem configurations, on the other hand, are read-only and

should be cached as efficiently as possible in the L1 cache of each streaming multiprocessor.

Each thread block is divided into groups of nine warps with 32 threads each, henceforth

called a worker (Fig 3B). The number of workers is chosen to reflect the capabilities of the
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hardware with more workers allowing more vertices to be updated in parallel inside the update

region. For simplicity, we will assume nine workers for the remainder of this paper.

Each worker is comprised of a single warp containing 32 threads. To ensure coherence, we

disable 6 threads in each warp using the __ballot_sync intrinsic, leaving 26 threads to assemble

the RHS entries for each of the 26 neighbors in the local problem. The update is performed by

the following computations: (1) Each worker is assigned a vertex in the active partition of the

update region. (2) For each of the 26 neighboring vertices, one thread is used to compute the

RHS contribution by multiplying the current displacement with the neighbor’s corresponding

stiffness matrix stored in the local problem configuration. (3) The 26 contributions are

summed using the CUDA __shfl_down_sync intrinsic, which sums the values of a warp in-reg-

ister. (4) The first three threads of each warp then place the summed contribution into the

appropriate RHS vector component in shared memory. (5) A block-wide __syncthreads call

ensures that the RHS components of all workers are complete before moving on. This is

required to avoid race conditions when transferring the new displacements back into shared

memory. (6) Three threads are selected to calculate the x, y, and z components of the new dis-

placement by adding the Neumann stress to the RHS and multiplying with the pre-inverted

Fig 2. Pseudocode of the central update loop.

https://doi.org/10.1371/journal.pone.0240813.g002

Fig 3. The software architecture is driven by GPU hardware capabilities. a) Memory layout. Vertex displacements

of active update regions are stored in shared memory of each thread block. Problem configurations are stored in global

memory. As they remain constant, they can be cached in L1. b). Thread layout. A thread block corresponds to an active

update region. The thread block is subdivided into nine warps called “workers”. Each worker updates one vertex at a

time by assembling the right-hand side (RHS) and multiplying it with the inverted stiffness matrix of the center vertex.

The RHS is assembled in parallel using 26 threads in each warp, one for each neighboring vertex.

https://doi.org/10.1371/journal.pone.0240813.g003
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center stiffness matrix, which is also stored in the local problem configuration. The new dis-

placement vector is transferred to shared memory, available for the next iteration.

We assign nine workers per thread block, giving a total of nine warps or 288 threads per

block. We chose to use update regions of 6×6×6 vertices, which expands to 8×8×8 vertices with

the required 1-vertex border. The multi-color partitioning results in eight distinct partitions of 27

vertices each. The border vertices are not considered for partitioning since they are never

updated. Thus, nine workers are able to update each partition in three steps, updating nine verti-

ces in parallel per step. The vertices in each region are updated a total of three times to help ensure

the entire update region has converged to its new equilibrium. The thread block then terminates

after the new displacements are transferred from shared memory back to global memory.

Determining convergence

Determining a suitable termination criterion is an important aspect of numerical approaches

to solving systems of equations. Such criteria are often defined in terms of minimizing an

error function to a specified lower threshold value ε, after which the solution is deemed to

have converged. For the solver presented in this paper we define the error function as the rela-

tive error of the equilibrium condition Ku = f:

d ¼
kKu � f k2

kf k
2

; kf k
2
6¼ 0 ð2Þ

We will refer to this term as the residual error of a vertex. In cases where kfk2 = 0 the residual

error is set to zero. Residual errors are sampled by scheduling a periodic update of the vertices in

the solution. As this process does not write results back into the solution there are no data depen-

dencies between vertices, so all vertices inside an update region may be processed in parallel. Fur-

thermore, to reduce both the computational effort and the storage requirements by a factor of

eight the residual errors are only calculated for every second vertex in each spatial dimension.

Each vertex is assigned one thread to complete the residual error calculation as defined in

(2). The result is stored in a separate array, of which two copies exist. One holds the result of

the previous residual error pass δk−1 while the other holds the result of the current pass δk.
These arrays are alternated between kernel executions.

dtotal ¼
1

N

XN

j 2 ð0::NÞ;

dj 6¼ 0

d
k� 1

j � d
k
j

The final convergence criteria δtotal<ε for the solution is used to determine if the iterative

procedure can be terminated. However, when taking the mean of the residual errors in this

way, two things must be considered. As void voxels have a fixed displacement of zero and are

ignored during the update phase, they should not contribute to the overall error of the solu-

tion. Furthermore, in the initial iterations of the solution the only vertices with a non-zero

residual error are those directly affected by the external forces. Taking the mean of all vertices

can therefore terminate the solution prematurely. For these reasons, all vertices with a residual

error of exactly zero are ignored when calculating the residual error of the solution.

Datasets used for evaluation

Three datasets were used for evaluation purposes (Fig 4). The first consisted of a materials sci-

ence sample of aluminum with embedded silicon (AlSi) coral-like structures, imaged using
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focused ion beam scanning electron microscopy (FIB/SEM) [41]. The dataset contains subset

of 64×64×64 voxels, with a voxel size of 46×46×46 nm, for a total of 262,144 voxels. Material

properties of the two phases were assigned from literature values [39]. For the aluminum

phase, a Young’s modulus of 70 GPa and a Poisson ratio of 0.34 are assumed, for the eutectic

silicon a Young’s modulus of 107 GPa and a Poisson ratio of 0.27. The bottom of the sample

was fixed in z direction while two sides were fixed in x and y directions respectively. A com-

pressive force of 6 Newtons was uniformly distributed over the top face of the sample.

The second dataset (dual phase steel) consisted of a larger materials science sample of two-

phase steel consisting of a ferrite matrix with martensite inclusions, captured through serial

sectioning scanning electron microscopy with a voxel size of 411×411×407 nm. The resolution

of this dataset was 256×256×100, for a total of 6,553,600 voxels. The ratio of ferrite to martens-

ite was approximately 90:10 respectively. A Young’s modulus of 200 GPa for the ferrite phase

and 220 GPa for the martensite phase were used. Both phases were assigned a Poisson ratio of

0.27. The sample was fixed analogous to the AlSi dataset and a compressive force of 1000 New-

tons was uniformly distributed over the top face of the sample.

The final dataset (tibia) was a computed tomography (CT) scan of a human tibia with a

complex fracture and an intermedullary nail. The implant was assigned material properties

consistent with titanium, with a Young’s modulus of 108 GPa and a Poisson ratio of 0.342. The

tibia bone was manually segmented into two distinct materials, cortical and cancellous bone,

based on the grey values found in the CT data. Additionally, both the fracture gap and callus

were segmented as separate material classes to allow the evaluation of strains in the fracture

area. Including the void material this gives a total of 6 distinct material classes. Cortical bone

was assigned a Young’s modulus of 18 GPa and a Poisson ratio of 0.3, cancellous bone 590

MPa and 0.3 respectively. The fracture gap and callus were assigned a Young’s modulus of 5

MPa and a Poisson ratio of 0.4. After preprocessing and cropping, the dimensions of the tibia
dataset were 169×281×1334, for a total of 63,350,326 voxels, with a voxel size of 0.44×0.44×0.3

mm. A compressive force of 902 Newtons was applied to the tibial plateau to simulate a stand-

ing body weight of 92 kg. The distal end of the tibia was fixed in all directions while the tibial

Fig 4. Datasets used for the evaluation. a) A material probe obtained through FIB/SEM containing silicon pockets

embedded in aluminum. b) A sample of dual-phase steel captured through serial sectioning. c) A tibia bone with a

distal fracture and intermedullary nail captured by computed-tomography (CT) scan.

https://doi.org/10.1371/journal.pone.0240813.g004
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plateau was fixed in x and y directions. Note that a large number of voxels (approximately 56

million) surrounding the bone are filled with void material.

Evaluation environment

Evaluation was performed on a headless GPU server with an Intel Xeon E5-2680, 256 GB of

RAM and one Nvidia Tesla P100 with 16 GB of memory. The P100 includes 56 streaming mul-

tiprocessors (SM) each with 24 kB of L1 cache.

As a baseline, each dataset was also simulated using the iterative solver in the commercially

available software Abaqus. Datasets were not re-meshed for this purpose. The simulation was

performed in parallel on a workstation with 16 CPU cores and 128 GB of RAM. The linear

solver was configured to use the iterative method with convergence criterion of 5.0×10−3 for

the average flux norm and 1.0×10−2 for displacement corrections.

Results

Performance

The performance of the proposed caching strategy was evaluated on the three datasets

described above. The experiments were performed using single precision with a convergence

criterion of 1.0×10−6

When the proposed caching strategy is disabled, each vertex is assigned a unique local con-

figuration ID, which results in the required stiffness matrices being pre-computed and stored

for all vertices in the problem. The algorithm then corresponds to the one proposed in [37]. In

all cases the time taken to read the dataset was not included.

With two additional levels of detail the AlSi dataset took 13.7 s with caching disabled and

6.8 s with the proposed caching scheme enabled (Table 2). This represents a speedup of factor

two. The iterative solver in Abaqus1 was able to compute a solution in 17 s. An analysis of the

corresponding simulation precisions is presented below.

With three additional levels of detail the dual phase steel dataset took 63.7 s with caching

disabled and 14.3 s with the proposed caching scheme enabled; a speedup of factor 4.5. The

iterative solver in Abaqus1 required 17 minutes for a solution.

With five additional levels of detail the tibia dataset could not be completed with caching

disabled. After 51 minutes of computation time the available GPU memory was exhausted

upon transition to the full resolution detail level. A comparison with Abaqus1 also failed due

to insufficient system memory. Using the proposed caching scheme, the full dataset was com-

pleted in 8.9 minutes.

Convergence properties

To verify the correctness of the converged solutions, the AlSi dataset was compared to a

ground-truth solution generated by Abaqus1. Various voxel sizes were experimented on,

Table 2. Comparison of execution times of our solver with and without the proposed caching scheme enabled.

Dataset Number of elements Abaqus Caching disabled Caching enabled Speedup factor

AlSi 262,144 17 s 18.6 s 9.7 s 2x

Dual Phase 6,553,600 13 min 77.2 s 19.6 s 4x

Tibia 65,350,326� n/a n/a 8.9 min n/a

The tibia dataset could not be computed with caching disabled due to memory exhaustion. Results from the commercial software Abaqus were generated with the

iterative solver using 16 CPU cores. �A large number of elements (~56 million) are filled with void material and not actively processed during the solution phase.

https://doi.org/10.1371/journal.pone.0240813.t002
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including anisotropic voxel sizes in each of the three degrees of freedom. In addition, both the

magnitude and direction of the applied force was varied. In all cases the mean squared error

over all vertex displacements was below 4%, using 1×10−7 as the convergence criterion. To

facilitate accurate comparisons with the Abaqus1 solution, these experiments were performed

using double precision using a higher convergence criterion and no additional levels of detail.

Thus, the total computation time on the AlSi dataset is significantly longer than the results pre-

viously presented.

As our solver showed a discrepancy to the Abaqus solution of at least 3% the following

experiment verified correct convergence to an analytically known problem. The test problem

consists of a steel beam with dimensions 10m×1m×1m, elastic modulus of 210×109 and Pois-

son ratio of 0.3. A compressive load of -1.0×109 N was simulated parallel to the longest axis. In

this standard example the maximum displacement of the beam is:

dmax ¼
F � L
E � A

¼
� 1 � 109 � 10

210 � 109 � 1
¼ � 0:047419m

A discretization of 100×10×10 elements was used with no additional levels of detail under a

variety of convergence criterion (Fig 5C). Maximum displacement differed by 0.88% with a

convergence criterion of 1.0×10−6, falling to 0.15% at 1.0×10−9 using double precision.

Fig 5. Effect of convergence criterion on overall solution accuracy. a) A solution for the AlSi dataset was computed

with Abaqus and considered as ground-truth for this purpose. The mean relative error of the displacements as

compared to this ground-truth solution was calculated on the full resolution detail level and plotted as a function of the

convergence criterion. At 6% error a value of 1.0×10−5 already gives a good approximation of the final solution, with

the overall error stabilizing at 3.7% for a value of 1.0×10−7. b) Mean relative error of the displacements as a function of

simulation time, using no additional levels of detail and 1.0×10−7 as convergence criterion. c) Relative error of the

maximum displacement in an analytical example consisting of a steel beam with a compressive load applied parallel to

the longest axis. The error continues to decrease as the convergence criterion is lowered, with a value of 0.46% using

1.0×10−7 and 0.15% using 1.0×10−9. These experiments were performed with double precision.

https://doi.org/10.1371/journal.pone.0240813.g005
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The convergence criterion is directly related to both the final accuracy and total computa-

tion time of the simulation. In cases where a fast approximation of the solution is sufficient, a

large convergence criterion can be chosen to dramatically reduce computation time.

Distribution of configurations

One of the assumptions underlying the presented approach is that in cases with a limited num-

ber of discrete materials, a small number of unique local problem configurations should suffice

to describe the majority of vertices in the problem. Indeed, the three datasets examined in this

work do exhibit this property (Fig 6). In the case of the dual phase dataset just two configura-

tions are sufficient to describe 90% of the vertices in the problem. However, we also see that in

the tibia dataset significantly more configurations are required to reach the same percentile.

Here, the six unique materials and the irregular distribution of cortical and cancellous bone

throughout the dataset result in a higher number of configurations overall. Still, in this chal-

lenging case just 41 out of a total 5897 configurations are sufficient to describe 90% of the verti-

ces in the problem, even after filtering out all vertices which are surrounded by void materials.

Impact of increasing number of materials

The impact of the proposed caching scheme on a problem depends on the number and spatial

distribution of materials. We used three real life examples to evaluate this effect in practice. To

get a better understanding on the robustness of the caching behavior under different, less

favorable conditions, we also modified the dual phase steel dataset by artificially introducing

Fig 6. Distribution of local problem configurations in the three datasets. For each dataset, the 90, 95 and 99

percentiles are shown. Both axes have been logarithmically scaled. For both material probe samples, a small number of

unique configurations are sufficient to describe 90% of the vertices in the problem. In the tibia case the combination of

four distinct materials in a highly irregular fashion leads to a higher number of unique configurations. In all cases,

voxels corresponding to void materials were filtered out.

https://doi.org/10.1371/journal.pone.0240813.g006

PLOS ONE A GPU-based caching strategy for multi-material linear elastic FEM on regular grids

PLOS ONE | https://doi.org/10.1371/journal.pone.0240813 October 30, 2020 13 / 19

https://doi.org/10.1371/journal.pone.0240813.g006
https://doi.org/10.1371/journal.pone.0240813


additional materials. We distributed these additional materials along the x axis of the problem,

such that slices of unique materials are created in the y-z plane. As a worst case we also investi-

gate assigning each voxel a random material.

The additional materials all have the same material parameters as the ferrite steel phase in

the original dataset but are treated as unique materials throughout the software. This is done

to isolate the effect of decreased cache efficiency from any influence that varying material

properties might also have. For example, softer materials lead to higher deformations which

would also affect total simulation time. In addition, tests of materials with very large differ-

ences in elasticity ratios, for example on the order of 107, have shown similar computational

errors as in other FEM approaches. For such cases a deflation preconditioner may need to be

used. The boundary conditions and additional levels of detail are analogous to the original

dataset.

The efficiency of the L1 cache decreases slightly from 99% to 98% as the number of materi-

als increases (Table 3). The effect on total run time is at the border of measurement precision

with a slight increase from 12 s to 13 s in the 256-material case. In the case of 256 materials dis-

tributed randomly throughout the ferrite phase L1 cache efficiency drops considerably to 71%

and the total run time of the simulation approaches the upper bound where the caching

scheme is disabled entirely.

Numerical precision

In order to investigate questions of numerical precision, we repeated the experiments on all

three data sets (AlSi, Dual Phase, Tibia) in both single and double precision. For the used con-

vergence criterion, we found no measurable difference in the precision of the result. Perfor-

mance was observed to be less than 10% slower when using double precision.

Technical performance

For the purposes of discussing technical performance we focus on the dual phase steel dataset

with no additional levels of detail. The Nvidia Visual Profiler was used to investigate various

performance metrics on the GPU during execution. A total of 448 update regions were pro-

cessed per kernel execution, corresponding to eight thread blocks per available SM. Each

thread block consists of nine warps of 32 threads each.

The main compute kernel, responsible for updating vertices in each update region as

described in the implementation section, was found to exhibit 56% occupancy with four active

blocks per SM, limited by total register count. With a 99.49% L1 cache hit rate for global mem-

ory accesses the scheduler in each SM averaged 3.7 active eligible warps per cycle. Average SM

Table 3. Impact of increasing numbers of materials on cache efficiency and execution time.

Case Number of configurations L1 cache efficiency Total runtime

Dual phase steel (unmodified) 376 99% 19 s

Dual phase steel (64 materials) 1,161 99% 22 s

Dual phase steel (256 materials) 2,313 98% 22 s

Dual phase steel (256 materials, random distribution) 6,670,944 71% 75 s

Caching disabled 6,670,949 71% 77 s

All experiments were done with 4 additional levels of detail. Shown are the number of unique local problem configurations and observed L1 cache efficiency on the full

detail level, as reported by the Nvidia Visual Profiler. When materials are distributed in an orderly fashion (here along the x-axis of the problem) the resulting impact on

the caching strategy is minimal. With 256 materials distributed randomly throughout the problem the result closely matches the case with the proposed caching strategy

disabled.

https://doi.org/10.1371/journal.pone.0240813.t003
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efficiency was 90.5%. Stalls were attributed primarily to memory dependency (22%), execution

dependency (17%) and synchronization (7%).

Discussion

The closest related work to our study is presented by Dick et al. in [37]. However, there are

several key differences in the two approaches. The previous work stores all data required

to perform the FEM simulation explicitly for both elements and vertices. This includes the

elastic modulus, density and rotation matrices for elements, and for vertices an external

force vector, Dirichlet conditions, the 27 3×3 local stiffness matrix coefficients, displacement

vector, residual vector and RHS vector. This results in a considerable memory requirement

of 1 KB per vertex using single precision, which the previous work attempted to mitigate

through explicit indexing of finite elements to avoid allocating space for void regions in the

problem.

In contrast, our approach requires no data to be stored on the GPU for the finite elements

themselves and minimizes the memory requirements for vertex data through the proposed

caching scheme. Using single precision, the 63 million vertices in the tibia dataset require just

1,013 MB of global memory on the GPU, with an additional 5,793 kB to store the 5,897 unique

local problem configurations. The residual errors, stored one level of detail coarser than the

corresponding problem, require just 128 MB of global memory. Together this represents an

amortized memory requirement of just 18 bytes per vertex. For a single GPU with 8 GB of

memory this gives a theoretical maximum size of approximately 400 million voxels for prob-

lems typical of the examples presented in this paper.

By assigning an invalid local problem configuration ID to vertices that are surrounded

entirely by void materials these can be ignored during the update phase. Together with the

reduction in memory requirements, this allows the use of implicit indexing based on the struc-

tured regular grid, which both simplifies the algorithm and allows for more predictable mem-

ory access patterns on the GPU.

Furthermore, by leveraging both the L1 cache and shared memory each vertex in an update

region can be processed several times before the resulting displacements are written back into

global memory. This allows the entire update region to converge to the local equilibrium over

several steps, each time considering the deformation of the previous step, without requiring

additional global memory bandwidth. We find that up to two additional updates to each vertex

are beneficial, after which the active vertices in the update region are typically in equilibrium

with the fixed vertices of the update region’s border.

Experiments on using different numeric precisions (single vs. double precision floating

point) showed no impact on the simulation results. This shows that for our specific experi-

ments, the simulation precision is limited by the used termination criterion, not numeric pre-

cision. It also hints at a favourable numeric stability of our method, i.e. a relatively low

numerical precision is required for a system matrix of given condition number.

Computation times were about 10% slower when using double precision. This slowdown

originates entirely from the increased memory consumption, as the used P100 GPU is

designed for double precision arithmetic and computation operations do not benefit from

reducing floating point numbers to single precision. We speculate that the results would look

differently on consumer hardware and that using double precision would have a much larger

performance impact on these systems.

In order to give a baseline for the performance of our approach, we compared the imple-

mentation to the commercially available Abaqus1 software. We found that the performance

of our approach is superior in the defined case. However, one has to keep in mind that our
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approach is limited to linear elastic systems on regular hexahedral grids while Abaqus1 offers

a much wider set of features.

While the experiments on the increasing numbers of materials are somewhat artificial, they

serve to show that the caching strategy continues to be beneficial in cases where the number of

materials increases as long as the assumption of an orderly distribution of materials still holds.

However, a random distribution of a high number of unique materials defeats the caching

strategy and nullifies any performance benefits. However, this case is quite rare in the fields of

material science and medical CT images which comprise the primary focus of this work.

The convergence time of the presented solver is heavily dependent on the type of problem

being solved. Elongated problems with forces acting parallel to the longest edge, such as the

tibia dataset, tend to take longer to converge with respect to the total number of voxels. In

addition, we found that external forces resulting in a pronounced lateral bending of long

objects result in higher simulation times. This is not surprising as the successive update strat-

egy favors shorter distances, for example in the dual phase steel dataset. Future work may help

to mitigate this effect, for example by determining a better starting estimate for the solution or

by improving the accuracy of the multigrid method for extremely coarse levels of detail.

A last consideration is that the caching scheme currently assumes that the material proper-

ties of the object in question remain constant throughout the simulation. However, in many

physical systems this assumption does not hold, for example in the case of plastic

deformations.

Conclusions

We have presented a new caching strategy for finite element analysis on GPU for systems gen-

erated from computer-aided imaging techniques such as CT scans and scanning electron

microscopy. We show that the regular grid structure of such datasets can be exploited to dra-

matically increase both memory and cache efficiency on GPU. This allows for the simulation

of very large datasets on consumer grade workstations in a reasonable time. Furthermore, the

method supports multi-material problems and seamlessly integrates both Dirichlet and Neu-

mann boundary conditions. In principle, the method can also be expanded into other fields of

simulation on regular grids, in particular those where at least a subset of the required compo-

nents can be pre-computed.
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