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I. ABSTRACT

Exponential growth of genome-wide assays of gene expres-
sions and their public access open new horizons for machine
learning methodologies to effectively perform genetic analysis.
In this work, domain specific pre-train k-mer embeddings of
DNA sequences are generated by utilising FastText approach.
Sequence co-expression pattern information is embedded into
200 dimensional vectors by training Fasttext model on 317,151
samples of DNA sequences (with k-mers representation). We
propose a novel idea to utilize the information of various
codons present in amino acids for the evaluation of learned
sequence vectors. We employ two diverse techniques to com-
pare the performance of generated task-specific k-mer embed-
dings with state-of-the-art publicly available generic k-mer
embeddings of genome. Firstly, we utilize a dimensionality
reduction approach namely PCA to alleviate the dimensions
of DNA sequences upto 50 features by preserving almost
85% of sequence features information. Afterwards, TSNE
algorithms is used to visualize k-mer embeddings and to
make sure whether different codons representing the same
amino acid are more closer to each other than the ones
representing different amino acids. Secondly, to assess the
analogy of k-mer embeddings, generated domain specific k-
mer embeddings are compared with state-of-the-art k-mer
embeddings by estimating the cosine similarity among those
codons vectors which represent same amino acid. Overall, we
believe that task-specific distributed representation of k-mers
would be useful for DNA methylation and Histone occupancy
prediction tasks.

Index Terms—Histones, Word2vec, FastText, Pretrain k-mer
embeddings,

II. INTRODUCTION

Organisms have a lot of biological sequences which commu-
nicate throughout their life spans. In genetics, communication
between sequences, and cells happens through certain symbols
and signs that plays a pivotal role in maintaining multifarious
body functions. Nowadays artificial intelligence is being ex-
tensively used in various genetic applications such as analysis
of protein-DNA interaction [1], prediction and representations
of protein coding regions [2], identification of splice sites,
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nucleosome positioning [3], and histone markers identification
[4]. State-of-the-art machine and deep learning methodologies
process k-mers of DNA sequences just like words of natural
language processing. Considering this sophisticated analogy,
we perform an in-depth exploration of existing natural lan-
guage processing (NLP) based k-mer neural embeddings to
acquire a better and explanatory understanding of how exactly
these methodologies support DNA sequence analysis.

In natural language processing (NLP), and DNA sequence
analysis, for machine learning methodologies, feature selection
has significant importance for various tasks such as classifica-
tion [5], [6] and clustering [7]. While the most sophisticated
algorithms perform poorly if inappropriate features are used,
simple methods manage to show great performance when they
are fed with the appropriate features [S]. Contrarily, deep
learning methodologies automate the process of feature engi-
neering, however for these methodologies, feature representa-
tion plays a pivotal role [8]. The performance of deep learning
methodologies decrease when the features are represented
through inappropriate feature representation approach as it
creates vanishing and exploding gradients problems during
back propagation and badly affect the process of feature
extraction [9]. Previously, one hot vector encoding was consid-
ered better feature representation technique for deep learning
methodologies [10]. However, with the rise and huge success
of neural word embeddings, the performance of diverse deep
learning methodologies has been revolutionized. Nowadays
in NLP, deep learning methodologies along with pre-trained
word embeddings are producing state-of-the-art performance
for various tasks such as text document classification [11] [12],
Text summarization [13], information extraction, and retrieval
[14]. Although DNA sequence classification can be consid-
ered another natural language processing task, however, deep
learning methodologies have been failed to imitate similar
promising performance for diverse sequence analysis tasks
such as sequence classification [15], codon region prediction
[2], nucleosome positioning [16]. This performance gap is
due to the lack of pre-trained word embeddings which are
in abundance for general natural language processing tasks.

In order to alleviate this performance gap and to raise
the performance of deep learning methodologies for DNA
Sequence analysis, Asgari et al. [17] provided 100 dimensional
pre-trained word vectors (bio-vec) for biological sequences
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by adopting a deep learning methodology namely word2vec.
To extract the relationship between the k-mers in a specific
context, a Skip-gram based word2vec model was trained
on 546,790 sequences (RNA, DNA, and proteins) collected
from Swiss-Prot database. T-Stochastic Neighbor Embedding
(TSNE) approach was used to validate the integrity of devel-
oped embeddings. A similar method was also used by Patrick
Ng. [18] to provide pre-trained word embedding of 100 dimen-
sions. For HG38 dataset, K-mers (k=3,4,...8) DNA fragments
were used to train the model and extract the relationships
among different k mers. Needleman-Wunsch algorithm was
used for measuring the alignment and cosine similarity of word
vectors. Moreover, Jingcheng Du et al. [19] prepared skip-
gram embeddings in various dimensions (50, 100, 200 and
300) on 984 datasets taken from Gene Expression Omnibus
(GEO) database. Gene-to-gene interaction was performed as
a down stream task. Jianliang et al. [20] proposed another
feature representation approach for protein sequences from five
datasets H.sapiens, M.musculus,D.melanogaster , C.elegans,
and S.cerevisiae taken from IntAct database. They utilized Pro-
tein to protein interaction (PPI) network using graphs where
each node was represented by a vector of 100 dimensions.
In all three discussed research papers, training corpora were
consisted of biological sequences taken from different do-
mains. In natural language processing recently, wang et al. [21]
performed extensive experimentation to compare the integrity
of various pretrained word embeddings. Their experimental
results prove that word embeddings trained on domain specific
corpus perform better as compared to the training them on
a large corpus which contain both domain specific and non
domain specific data. Inspired from their research findings,
we use Fasttext model to generate word embeddings on a
corpus of 317,151 DNA sequences which are only positively
charged. To evaluate the integrity of generated word vectors,
we performed quantitative and qualitative analysis. Qualitative
analysis is performed by the combination of two dimensional-
ity reduction approaches principal component analysis (PCA)
and TSNE. Finally, two dimensional vectors of each k-mer
are plotted using TSNE algorithm. From plotted k-mers, we
analysed weather different k-mers that belongs to the same
amino acid are nearest each other as compared to k-mers that
belongs to different amino acids. For quantitative analysis,
by using cosine similarity measure, we assess the level of
similarity between codon vectors of particular amino acid. To
sum up, by performing deep analysis of generated domain
specific vectors and general k-mer embeddings, we believe,
domain specific embeddings will largely assist deep learning
models to perform computational analysis of histone related
problems.

III. DISTRIBUTED REPRESENTATION

Machine learning methodologies require numeric feature
space in order to perform multifarious tasks such as clustering
[22], classification [23], and summarization [24]. The process
of creating numeric feature space is called feature representa-
tion or vectorization. Researchers have proved that even best
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machine learning algorithms perform worse with bad feature
representation, and less effective machine learning algorithms
produce good performance with better feature representation.
Feature representation has always been an attractive area of
research for numerous researchers and practitioners. With each
passing day, still several feature representation approaches
are being proposed and experimented. Initially, researchers
tend to use bag-of-words (BOW) based vectorization ap-
proaches such as Count Vectorizer or term frequency (TF),
term frequency inverse document frequency (TF-IDF), Latent
Dirichlet Allocation (LDA), and Latent Semantic Analysis
(LSA), to estimate continuous representations of corpus words.
In bag-of-words (BOW) based approach, every document is
represented with a fixed sized vector whose length is exactly
equivalent to the vocabulary of underlay corpus. Later on,
researchers utilized boolean vector encoding scheme known
as One Hot encoding. One hot encoding represents categorical
attributes in the form of binary vectors where 1 represents the
presence and O represents the absence of particular feature.
These approaches do not consider contextual information and
also produce high dimensional and sparse feature vectors
which are less memory efficient and hard to construct for
large scale datasets. Although Co-Occurrence matrix captures
the contextual information when constructed with a reasonable
context window, however it requires humongous memory and
computational time which makes it almost infeasible for large
datasets.

Contrarily, continuous distributed feature representation or
prediction based word embeddings are dense low dimensional
feature vectors which capture both syntactic and semantic
properties [25]. Furthermore, these embeddings are trained
in an unsupervised manner and can improve the performance
of diverse downsteam NLP tasks. Firstly, Bengio et al [26].
introduced the term “Word Embeddings” and trained them
with a deep language model in 2003. The proposed deep
language model was consist of feed forward neural network
having one hidden layer, which used to predict the subsequent
word of a sequence. Primary building blocks of Bengio model
embedding layer, intermediate layers, and softmax layer are
still an integral part of several word embedding and language
models.

Later on in 2008, Collobert et al. [27] showed that word
embeddings contain significant amount of syntactic and se-
mantic information when trained on a substantially large data.
They also presented the utilization of pre-trained neural word
embeddings. Their most significant publication “A unified
architecture for natural language processing” did not only
reveal a deep neural architecture (CW model) which is a part
of several current approaches, but it also prove that word
embeddings are extremly effective for downstream natural lan-
guage processing (NLP) tasks [27]. Nonetheless, the ultimate
popularization of neural word embeddings is mostly accredited
to Mikolov et al. [28], who is the pioneer of robust word
embedding toolkit known as Word2vec. They presented two
architectures namely Continuous bag-of-words (CBOW), and
Skip-gram in quest of learning neural word embeddings and
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also improved these models by utilizing additional approaches
to raise training speed along with accuracy [29]. Both proposed
neural architectures vary on the basis of training objective.
While Continuous bag-of-words (CBOW) preditcs the target
word by considering the context of n surrounding words, Skip-
gram utilizes the target word to predict the neightbouring
words. Former one does not capture rare words as its primary
focus is to predict the word of highest probability, however
latter one capables to capture rare words and considered more
optimal option.

Undoubtedly, Word2vec exploded the research in word
embeddings as Word2vec toolkit provides the simplest way
to utilize pre-trained word embeddings or seamless training
for downstream NLP tasks. Inspiring from Word2vec, in
2014, Pennington et al. [30] came up with a competitive
but similar set of pre-trained neural word embeddings and
named it as “Glove”. They utilized word co-occurrence to
construct this model as they considered that co-occurring
words have semantic or syntactic similarities. Word2vec, and
Glove associate a distinct vector to every single word and
ignores the word morphology, thus these models find it hard
to build word embeddings for those languages which have
huge vocabularies and substantial amount of rare words. To
overcome this limitation, Bojanowski et al. [31] came up with
a naive approach based on Skip-gram model in which every
word is expressed as a bag of n-grams characters. Each n-gram
character gets a vector representation, words being expressed
as the addition of these representations. For instance, consider
the word “Abnormal” with n-gram equals to 3. FastText repre-
sentations of n-grams characters are <ab, bno, nor, orm, rma,
mal, al>, where angle brackets are embedded as boundary
symbols to effectively disparate n-grams from the actual word.
FastText representations have not only been proved fast but it
also enabled the representations of those words which did not
appear in the corpus as it utilizes character level embeddings.

With the rise of prediction based embeddings, it has become
a pivotal part of feature representation as they are readily avail-
able, and do not need expensive annotation. Moreover, they
have literally improved the performance of diverse downsteam
NLP tasks.

IV. GENERATING DNA SEQUNECE EMBEDDINGS USING
FASTTEXT

FastText word embeddings have proved extremely effective
and outperformed word2vec, and Glove for diverse natual lan-
guage processing (NLP) tasks. FastText splits each word into
a set of n-gram characters (sub-words) which are eventually
added together in order to construct the word as an ultimate
feature. It utilizes the Skip-gram core objective along with
negative sampling, where sub-words are positive instances, and
the random samples from the corpus dictionary are considered
as negative instances. In this way, FastText word embeddings
embed sub-word information and effectively tackle the rep-
resentation of those words which have not appeared in the
training data.
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This paper utilizes 3-mers of DNA sequences, and FastText
distributed representation learning approach for 317151 DNA
sequences of 18 public corpora to prepare a task-specific word
embeddings. In order to generate 3-mers of DNA sequences
we slide a window of size 3 on the sequence with stride size
1. Using FastText approach we generated 200 dimensional
vectors for each k-mer. Moreover, in embedding corpora
we discarded all k-mers which occurs less then 5 times in
a sequence. K-mer representation is learned by rotating a
window of size 5.

V. EMBEDDINGS DATASETS

This section briefly describes basic concepts of genetics
along with detailed description of DNA sequence data which is
used to train fasttext model for the generation of task-specific
embeddings.

Genome is a genetic material and most significant part of
all living organisms, which contains hereditary information
e.g. running, building, maintenance of an organism and repro-
duction. Human genome is made up of 3 billion nucleotides
(A, C, G and T) organized in a proper sequence and form a
DNA of an organism. Histones are lightweight proteins (14-18
kDa) also known as basic building blocks of genomes. They
are essential part of all eukaryotic organisms (like human,
animals) and are made up of amino-acids in which 20-24
% sequences contain lysine and arginine amino acid. There
are five core histone proteins H1, H2A, H2B, H3, H4 and
each one has its variants and post-translational modifications
(PTMs). Humans have 55 histone variants which differ from
each other on the basis of amino acid sequences especially
at the tail N-terminal, while PTMs are the modification of
acetylene, phosphorylation, methylene or ubiquitination etc.
on tails of sequences by writers or erasers. Histone PTMs
have a significant role in cellular processes like delimiting
the boundary regions for euchromatin and heterochromatin,
stemness maintenance and process of controlling the cell
cycle. Combination of two tetramer H3-H4 and two dimers
H2A-H2B form histone octamer, which is the core part of
nucleosome and present at the centre of it. In nucleosome, it
is superhelically wrapped by 146 base pairs of DNA in eukary-
otes and plays a significant role in the process of transcription
(DNA to RNA) which is further used for translation (RNA to
Protein) process.

We have prepared the 3-mer DNA sequence representation
using H3, H4 histone proteins and some of its PTMs which
are explained in table I with 500 base sequence length. Where
H3 is 15-16 kDa histone having 135 amino acid. Its total
variants are 216 in different species while the human body has
6 variants. K and its leading number denote the *"* modified
amino acid, for example, K4 represents that modification
of 4th amino acid. Each amino acid modification affects
differently like H3K4 is considerably behind the activation
of both methyl or acetyl group while H3K36 is considered a
fine wine; intriguing, complex and attracts several researchers
to this. In methylation process, PTMs are performed by
three types of modifications mono, di and tri methylation as
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Dataset Name Description Positive Samples | Nagative Samples | Length of Sequence
H3 H3 occupancy 7667 7298 500
H4 H4 occupancy 6480 8121 500
H3K4mel H3K4 mono-methylation relative 17266 14411 500
H3K4me2 H3K4me2 H3K4 di-methylation relative to H3 18143 12540 500
H3K4me3 H3K4me3 H3K4 tri-methylation relative to H3 19604 17195 500
H3K36me3 H3K36me3 H3K36 tri-methylation relative to H3 18892 15988 500
H3K79me3 H3K79me3 H3K79 tri-methylation relative to H3 15337 13500 500
H3K9%ac H3K9 acetylation relative to H3 15415 12367 500
H3K14ac H3K14 acetylation relative to H3 18771 14277 500
H4ac H4 acetylation relative to H4 18410 15686 500
Promoters E. coli promoter gene sequences with partial domain theory 53 53 57
Genomes Nucleosome Positioning Dataset for nucleusomal and linker DNA sequences 1880 1740 150
Homo-Sapiens Nucleosome Positioning Dataset for formation and inhibiting nuclesome DNA segment | 2,273 2,300 147
Drosophila Melanogaster | Nucleosome Positioning Dataset for formation and inhibiting nuclesome DNA segment | 2,900 2,850 147
Caenorhabditis Elegans Nucleosome Positioning Dataset for formation and inhibiting nuclesome DNA segment | 2,567 2,608 147
DSB genome Double strand DNA break sites in genomes 3600 1001
SNP genome Single Nucleotide Polymorphism in genomes 6637 1001
ORI genome Origin of replication sites in genomes 322 1001
TABLE I: Characteristics of Corpus used for embedding generation
Amino Acid DNA codons T .
Tsoloucine ATT, ATC, ATA damage, heter.ochr(.)matmlsatlon, and~cancer hallmarks.. H4 is
Leucine CTT, CIC, CTA, CTG, TTA, TTG used as docking site for all other histones. We use its only
Valine GTT, GTC, GTA, GTG one modifier H4ac. These all DNA sequence datasets are
Phenylalanine TTT, TTC classified into 2 classes based on methyl and acetyl occupancy.
Methionine ATG If hvl d 1 . h iddl .- .
Cysteine TGT, TGC methyl and acetyl occupancy in the middle position 1s
Alanine GCT, GCC, GCA, GCG greater than 1.2 than it is categorized as a positive class,
Glycine GGT, GGC, GGA, GGG and if less than 0.8 than it is classified a negative class,
Proline CCT, CCC, CCA, CCG . . .
Threonies ACT ACC ACA ACG otherwise nothu.lg.. Eurthermore, .we include the benc.hmark
Serine TCT, TCC, TCA, TCG, AGT, AGC nucleosome positioning datasets in genome, and specifically
Tyrosine TAT, TAC in Homo sapiens (humans), Drosiphila melanogaster (species
Tryptophan TGG of fly), and Caenorhabditis elegans (transparent nematode, e.g.
Glutamine CAA, CAG ) Th DNA dataset 1 bel to t
Asparagine AAT, AAC worms). ?SC s.e.quence al as.e S also belong to two
Histdine CAT, CAC classes classified as positive and negative. In these nucleosome
Glutamic acid GAA, GAG positioning datasets, positive DNA segments represent the
ASpf;iliisC‘d Sﬁl’ i/ZCG formation of nuclosome, while negative represents the inhibit-
Arginine CGT, CGC, CGA, CGG, AGA, AGG ing nucleosome with 147-bp length. We also include broken
Stop codons TAA, TAG, TGA off the double strand of DNA named as DBS DNA, SNP

TABLE II: 64 DNA codons which represents to twenty amino
acids and stop codons [32]. Different amino acids are repre-
sented by different number of codons.

H3k4mel, H3k4me2 and H3k4me3, H3K36me3, H3K79me3
respectively. Enzymes category lysine methyltransferases per-
formed these modifications. Methylation modification does not
affect the interaction of proteins with DNA, as the charge
remain same on histones and it protects the transcription
process. Acetyl PTMs are catalysed by specific enzyme lysine
acetyltransferases. The interaction between histone and DNA
is hampered by this modification. Here we have used 2 acetyls
PTM of H3 H3K9ac and H3kl4ac with the modification of
9" and 14" amino acid. These two acetyl histones with
H3K4me3 have large significance as they are the benchmark
for the activation of gene promoters.

H4 is 11.3 kDa size protein with 102 amino acids. It
has 116 variants in all organisms while humans have no
variant except H4 but it has many modifiers by writing or
erasing the acetyl, phosphate or methyl group. The impor-
tance of these H4 PTMs have been well depicted in diverse
biological processes such as transcriptional activation, DNA
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for nuclutide positioning dataset and replication initiation in
genome ORI dataset. Details of all used datasets is summarised
in Table I.

VI. K-MER EMBEDDING EVALUATION

K-mer embeddings, real-valued representations of words or
k-mers produced by distributional semantic models (DSMs)
have been an active area of research. However, their limitations
about semantic knowledge extraction are still not well under-
stood. One of the most important questions in the studies of
distributional semantics is how to evaluate the quality of gener-
ated embeddings. There is still no consensus in the scientific
community about which evaluation method should be used:
NLP engineers are more interested in performing downstream
tasks for the evaluation of pre-trained neural word embeddings,
while computational linguistics are used to explore the quality
of pre-train neural word embeddings through visualisation
or by measuring similarity across different vectors using
cosine similarity measure. In the process of evaluation through
visualization or cosine similarity measure, pre-train neural
word embeddings are considered better if similar words have
more similarity among their word vectors as compared to their
similarity with other dissimilar word vectors. For example, as
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2*Amino Acid 2*DNA codons Top 6 Most Similar word vectors
DNA2vec Protien2vec Fast_text
Isoleucine ATT, ATC, ATA TTT, TTA, ATC, TAT, AAT, TTG TTT, TAT, AAT, TTA, TAA, ATA TTT, ATC, ATA, ATG, GTT, CTT
Leucine CTT, CTC, CTA, CTG, TTA, TTG TTT, CCC, CCT, CTC, CGC, TCT CCT, CTC, TCC, CCC, TTC, ATC, CTC, CTG, CTA, TTT, ATT, GTT
Valine GTT, GTC, GTA, GTG TTT, GTC, GTG, GGT, TGT, GTA TAT, GAT, TTT, TTG, ATG, ATT GTC, GTA, GTG, TTT, ATT, CTT
Phenylalanine TTT, TTC ATT, CTT, GTT, TTG, TTC, TAT TAT, TTA, ATT, TGT, TTC, AAT CTT, TTC, ATT, GTT, TTA, TTG
Methionine ATG GTG, ATC, TGG, GCG, GGG, GGT AAG, GTA, TAG, TAA, AAT, AGA TTG, GTG, CTG, ATT, ATA, ATC
Cysteine TGT, TGC TGG, GTG, CGT, GGT, GGG, CCG GTG, TAT, TTT, TGA, TCT, GAA AGT, GGT, CGT, TGG, TGA, TGC
Alanine GCT, GCC, GCA, GCG GCC, CCT, GGG, GGC, GCG, CCC GCA, CCA, TGT, CTT, TGC, TCG GCA, GCC, GCG, TCT, CCT, ACT
Glycine GGT, GGC, GGA, GGG GGG, AGG, GTG, GCG, TGG, GGC | GGA, AGG, AGA, TAA, TTG, GCA | GGA, GGC, TGT, GGG, AGT, CGT
Proline CCT, CCC, CCA, CCG CCC, GCC, TCC, CTC, ACC, CCG CTC, CCC, TCC, CCG, CTT, CAC CCA, CCG, TCT, CCC, ACT, GCT,
Threonine ACT, ACC, ACA, ACG ACC, CTC, CCC, ACG, CCT, CGC CCG, CCC, CGA, CCT, CAG, TCC ACA, ACC, TCT, CCT, GCT, ACG
Serine TCT, TCC, TCA, TCG, AGT, AGC | CTC, CCT, CCC, GCT, TCC, GTC CTC, CCC, CGC, CCT, TCC, CCG CCT, TCA, TCC, ACT, GCT, TTT
Tyrosine TAT, TAC TTT, TTA, ATA, TGT, CAT, ATT TTT, GTT, TTA, ATT, TGT, TAA TAA, TAC, TAG, AAT, CAT, GAT
Tryptophan TGG GGG, GCG, GGC, GGA, CGG, CCG | AGG, TAG, GAG, GTA, AGT, AGA AGG, CGG, GGG, TGT, TGA, TGC
Glutamine CAA, CAG AAA, CAG, ACA, AAG, CCA, CGG | CTA, CAG, ACG, TAC, CGA, ATC CAG, CAT, CAC, AAA, TAA, GAA
Asparagine AAT, AAC AAA, TAA, ATA, AAC, CAA, AGC AAA, TAA, AAG, TTA, AGA, CAA AAA, GAT, TAT, CAT, AAG, AAC
Histidine CAT, CAC CAC, CGC, CCC, CAG, GGC, CCT CCC, CGA, CCG, CTC, TAC, ATC CAA, CAC, CAG, AAT, TAT, GAT
Glutamic acid GAA, GAG AAA, AGC, GGA, GAG, AGA,AAG AAG, AAA, GGA, AGG, AAT, AGA | GAG, GAT, AAA, GAC, TAA, CAA
Aspartic acid GAT, GAC GGG, CGA, GAC, GGC, GGA, GCG | GTT, AAG, AGT, AAT, CGA, GAA GAA, GAC, GAG, AAT, TAT, CAT
Lysine AAA, AAG CAA, TAA, GAA, ATA, AAG, ACA AAG, TAA, AAT, AGA, AGG, GAA | GAA, AAG, AAT, TAA, CAA, AAC
Arginine CGT, CGC, CGA, CGG, AGA, AGG | CCG, GCG, ACG, GGT, GTG, CGG CGA, TCG, CCG, CTC, TCC, CGG | CGA, CGG, CGC, TGT, AGT, GGT
Stop codons TAA, TAG, TGA AAA, AAT, TAC, TAG, ATA, CCA AAA, AAT, AAG, ATG, TTA, TAT TAT, TAG, TAC, AAA, AGG, CAA

TABLE III: Cosine similarity based top 6 ranked codons for 3 different pre-trained neural k-mer embeddings
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Fig. 1: Embedding
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(c) FastText

space representation of 3 different pre-trained Neural k-mer Embeddings
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words like good and better are semantically quite close to each
other, hence their word vectors shall be more similar to each
other and less similar to opposite words such as bad.

In order to improve the performance of DNA and RNA
sequence analysis tasks, researchers have developed various
kinds of pre-trained k-mer embeddings. They have evaluated
the performance of pre-trained k-mer embeddings by perform-
ing a downstream classification task or by visualising sequence
vector space of different classes using classification data sets.
Up to date, no one has evaluated the performance of pre-
trained k-mer embeddings at k-mer level. The paper in hand,
for the very first time performs performance evaluation of
pre-trained neural embeddings at k-mer level. As in natural
language processing, we have greater understanding of similar
and dissimilar words, hence at word level, we can easily eval-
uate the performance of pre-trained neural word embeddings.
Contrarily, in k-mer neural embeddings, we do not know which
k-mers could be consider similar or dissimilar.

In this paper, K-mers similarity and dissimilarity informa-
tion is borrowed from biological domain where different amino
acids are represented by various codons which are made up of
three different neucelotides. Actually, in human body there
are twenty two amino acids where each amino acid is a
combination of three nucleotides known as “Codon”. There
are 64 possible combinations of nucleotides each one referring
to a particular amino acid.

As we have generated pre-trained neural embeddings with 3-
mers. so, finally we get 64 different pre-trained vectors of 200
length where each vector represents a unique combination of
three neucelotides known as 3-mer. Furthermore, we consider
64 possibly generated 3-mers are equal to 64 codons which
represents 22 different amino acids.

Table II adopted from [32], illustrates different amino acids
along with 64 possible codons which represent particular
amino acids. We consider different codons which represent
to same amino acid must have same physical and chemical
properties. So pre-trained neural 3-mer vectors of different
codons or 3-mers which has same physical and chemical
properties must be more similar as compare to 3-mer vectors
of codons which do not have same properties.

Rather than measuring and comparing similarity across all
3-mers of generated word vectors, we take only 5 different
3-mers vectors whose cosine similarity score with particular
selected codon is higher.

To achieve this, we randomly pick one codon from each
amino acid and find cosine similarity of this particular codon
pre-trained vector with other 63 pre-trained codon vectors.
Based on cosine similarity scores, we rank all 64 codons.
As we want to measure the similarity across all codons of
a particular amino acid and maximum number of codons in
any amino acid is only 6, so from ranked codons we only pick
top 6 codons for each case. We repeat same process for all
three kinds of pre-trained k-mer neural embeddings. For all
three pre-trained embeddings, top 6 codons for each case are
shown in Table III.
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From Table III it can be summarised that domain spe-
cific FastText pre-trained 3-mer embedding vectors are more
closely related to the concept of degeneracy of codons as com-
pared to two other 3-mer embedding vectors. For instance, four
codons GGT, GGC, GGA, and GGG represent Glycine amino
acid and we are assuming that based on cosine similarity
scores all four codons must have higher similarities and should
be present at 9" row of Table III. DNA2vec pre-trained neural
embeddings managed to have only two codons GGG and GGC
in top 6 most ranked codons and Protien2vec managed to
have only one codon GGT in top 6 ranked codons. Where
as FastText based pre-trained neural embeddings managed to
have 3 codons GGA, GGC, GGG in top 6 ones.

Heading towrds Arginine which is represented by six codons
CGT, CGC, CGA, CGG, AGA, and AGG. Among the six
most similar vectors computed for codon CGT, DNA2vec
pre-trained neural embeddings managed to have only one
codon CGG in top 6 most ranked codons and Protien2vec
managed to have only two codons CGA and CGG in top 6
ranked codons. Where as FastText based pre-trained neural
embeddings managed to have 3 codons CGA, CGG, CGC in
top 6 codons. For amino acid Proline, the behaviour of all
three pre-trained neural embeddings is exactly similar to their
behaviour for Arginine amino acid.

Overall, it can be concluded from all three pre-trained k-
mer neural embeddings, domain specific FastText pre-trained
k-mer neural embeddings have higher similarities of 3-mer
vectors across different codons which have same physical and
chemical properties.

Visualization also provides an ease to understand the hidden
patterns and relations inside the data. PCA and t-SNE are
two most widely used approaches for the task of pre-trained
embeddings visualization.

In order to reap the benefits of both PCA and t-SNE
approaches, We first pass the embedding vectors to PCA which
reduced their dimensions from 200 to 50 dimensions. Then,
these low dimensional embedding vectors are passed to t-
SNE for further reduction and visualization in two dimen-
sional space. To evaluate the integrity of pre-trained k-mer
embeddings, we determine whether different codons or 3-mers
representing same amino acid are more closer to each other
as compared to other codons which represent different amino
acids.

Figure 1 shows the embedding space of 3 different pre-
trained k-mer embeddings. Overall from figure 1, it can
be inferred that FastText based domain specific pre-trained
embedding vectors are more accurate in terms of revealing
the concept of codon degeneracy. For example, from Table
IT we can see two codons TTT and TTC represent the same
amino acid Phenylalanine, so both these codons or 3-mers
must lies close to each other in the embedding space. Figure 1a
shows pretrain 3-mer embedding space of DNA2vec approach,
where both 3-mers TTT and TTC are very far from each other.
similarly Figure 1b which shows pretrain 3-mer embedding
space of Protien2vec, both 3-mers TTT and TTC are close
to each other as compaerd to there distance in DNA2vec
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embeddings space. Figure lc shows embedding space of
domain specific FastText k-mer embeddings, where both 3-
mers TTT and TTC are more close as compared to their dis-
tance between DNA2vec and Protien2vec embedding spaces.
Behaviour of different codons or 3-mers in 4 different amino
acids (Phenylalanine Asparagine, Glutamic acid, Aspartic acid,
Leucine) is similar to their behaviour in Phenylalanine.

In case of Glutamic acid the distance between there codons
GAA GAG for FastText and protien2vec embedding space is
nearly same but there is a large gap for DNA2vec embedding
space. similarly 3 k-mers TAA, TAG, and TGA represent to
k-mers in stop codons and these 3 k-mers are more close for
the embedding space of FastText as compare to their distance
between embedding spaces of other two approaches. Among
other two approaches, in prot2vec although TAG and TGA are
very close but TAA is far away while in DNA2vec not a single
vector is close to each other.

Turning towrads Leucine amino acid which could be repre-
sent by six different codons CTT, CTC, CTA, CTG, TTA, and
TTG. Figure shows that six different codons which represents
to Leucine amino acid, in FastText embedding space, CTT
and CTC are present in one cluster and CTA, CTG, TTA,
and TTG are present in another cluster. On the other hand
for Protien2vec embedding space, only two codons CTT and
CTC are close to each other and remaining 4 codons are
far from each other. similarly in DNA2vec embedding space
all six codons are far from each other as compare to their
distance between embedding space of other two approaches.
In a nutshell, it can be concluded that by precisely analysing
the embedding spaces of three different k-mer embedding
approaches, we can say that the performance of domain
specific FastText embeddings is better as compared to the
performance of Dna2vec and Protien2vec.

VII. CONCLUSION

This paper extensively investigates the behaviour of three
different pre-train k-mer embeddings by utilising the infor-
mation of 22 amino acids having different subset of codons.
We consider different codons which represent to same amino
acid must have their embedding vectors close to each other as
compared to embedding vectors of codons which represent to
different amino acids. We train k-mer embeddings for DNA
sequences by utilising FastText approach. To evaluate the
performance impact of domain specific pre-train k-mer embed-
dings, we compare FastText k-mer embeddings with two other
publicly available k-mer embedding approaches DNA2vec and
Protien2vec. Performance of all three approaches is evaluated
by measuring the similarity of different codon vectors using
cosine similarity measure and t-SNE based visualisation. Anal-
ysis based on both similarity measures, we conclude that for
FatText k-mer embeddings, different codons which represent
to same amino acid have more similar k-mer embeddings
as compared to their similarity among other two publicly
available k-mer embeddings. In future, we will utilise these
k-mer embeddings to perform Histon maker identification and
classification related tasks.
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