
Safety First

About the Detection of Arithmetic Overflows in Hardware
Design Specifications?

Fritjof Bornebusch1, Christoph Lüth1,3, Robert Wille1,2, and Rolf Drechsler1,3

1 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
2 Integrated Circuit and System Design, Johannes Kepler University Linz, 4040 Linz,

Austria
3 Mathematics and Computer Science, University of Bremen, 28359 Bremen,

Germany
{fritjof.bornebusch,christoph.lueth}@dfki.de, robert.wille@jku.at,

drechsler@uni-bremen.de

Abstract This work proposes an alternative hardware design approach
that allows the detection of arithmetic overflows at the specification level.
The established hardware design approach describes infinite integer types
at that level while the model describes finite types. This opens a seman-
tic gap between both levels, which means that arithmetic overflows can-
not be detected at the specification level. To address this problem the
CompCert integer library is utilized that describes finite integer types
as dependent types using the proof assistant Coq. Properties that argue
about these finite types can be specified and verified at the specifica-
tion level. This closes the semantic gap the established hardware design
approach suffers from.

Keywords: Hardware Designs, Arithmetic Integer Overflows, Proof Assistants,
Functional HDLs, Hardware Synthesis

1 Introduction

Circuits are an integral part of our lives. Their area of application extends from
airplanes, to medicine, to toothbrushes. These areas of application lead to an
increasing number of complexity in circuits. As complexity increases, so does the
number of potential errors. For this reason, the increasing complexity needs to
be considered in the development phase of hardware designs from the beginning.

To address the increasing complexity, hardware designs are described at dif-
ferent levels. The established hardware design approach starts with a formal
specification, e.g. in SysML/OCL [22, 21, 27]. This specification describes the
functional behavior of the hardware design and allows the verification of prop-
erties that argue about that design [8, 9, 24]. After specifying and verifying the
design it is translated to a SystemC model, which is the de facto standard for

? Research supported by BMBF grant SELFIE, grant no. 01IW16001.

2 Fritjof Bornebusch et al.

high-level synthesis (HLS) [2, 25]. This translation step is manually as OCL con-
straints cannot be translated automatically into executable SystemC code. The
final step is the translation of the model to an implementation in a low-level
hardware description language (HDL), e.g. Verilog. As SystemC only supports
a restricted synthesizeable subset, this translation step is also manually [1].

The established hardware design approach reveals a semantic gap between
the specification and the model respectively the implementation. The specifica-
tion describes infinite integer types, while the model and the implementation
describe finite integer types. This semantic gap lead to properties that hold for
the specification, but not for the model, e.g. the absence of arithmetic overflows.
Finite integer types describe a wrap-around or overflow behavior, as they imple-
ment a quotient ring [15, 13, 14, 11]. As arithmetic integer operations for finite
types are not semantically equivalent to arithmetic integer operations for infinite
types, these operations might lead to unintended behavior, which again lead to
serious problems in the final hardware design implementation. Through the lack
of tool support for automatically detecting arithmetic overflows in the model,
the engineer has to detect them manually.

To address the problem of the semantic gap of the established hardware
design approach an alternative hardware design approach is proposed. This ap-
proach describes finite integer types at the specification level using dependent
types [7, 17]. These types allow the definition of operations, which detect arith-
metic integer overflows at the specification level. Properties that argue about
these operations can be verified to ensure the reliable detection of these over-
flows. After the verification process a model in the functional hardware descrip-
tion language (HDL) CλaSH can be extracted automatically [6], which again can
be synthesized to an implementation on the Register-Transfer-Level (RTL) [3].
The proposed alternative hardware design approach closes the semantic gap the
established approach has, by describing finite integer types at the specification
level.

To achieve this, we start with a specification for the proof assistant Coq [4,
10]. Analog to the established hardware design approach this specification al-
lows the verification of properties. The finite integer types are described by the
CompCert integer library [19]. This library implements finite types as dependent
types [17, 7] and allows the implementation of both signed and unsigned finite
types of arbitrary sizes.

Note that this work extends the work [5] already published by the authors.
For this reason, some figures and listings are borrowed from that work as can
be seen in the captions. The extensions in this work include that, in particular,
there may be no overflow in an arithmetic operation implementing the proposed
function type, because of specified bounds. It is shown how an operation is spec-
ified in this case using the proposed overflow detecting function type. A generic
property that has to be proven to show the absence of the overflow is specified. It
is also shown why the overflow detecting operation cannot be changed automat-
ically to its corresponding basic arithmetic operation if there is a proof of the
absence of the overflow. Furthermore, the closure of functions that implement

Safety First 3

the function type for the proposed overflow detection pattern is specified and
proven. This enables the cascading of overflow detecting operations, analog to
their corresponding basic arithmetic integer operations. An evaluation regard-
ing the impact of the speed and space for a synthesized hardware design that
implements the overflow detection pattern is provided. This evaluation com-
pares a hardware design using the basic arithmetic integer operations with their
corresponding overflow detecting operations and shows the applicability of the
proposed overflow detection pattern.

We present our work as follows: First, we explain the established hardware
design approach and describe the problem we address in this work. Section 3
discusses the related work and why it is not suitable to address the problem of
the established hardware design approach properly. In Section 4 and Section 5 the
proposed hardware design approach is described, how the considered problem
is addressed and how the CλaSH model is generated. Section 6 describes the
proposed generalizable integer overflow detection pattern. Section 7 evaluates
the proposed approach by comparing basic arithmetic integer operations with
their corresponding operations, which detect overflows, regarding the speed and
consumed space in the final hardware implementations. The Section 8 discusses
the result of the evaluation and the applicability of the approach proposed in
this work, while Section 9 concludes this work.

2 Motivation

In this section, we briefly review the established hardware design approach which
is the motivation of this work. The established approach relies on a SysML/OCL
specification that is later translated to a SystemC model manually. We show why
the combination of SysML/OCL and SystemC is a problem for the detection of
arithmetic integer overflows.

A traffic light controller serves as a running example to illustrate the estab-
lished hardware design approach as well as the approach proposed in this work.
This controller is inspired by [23].

2.1 The Established Hardware Design Approach

The established hardware design approach starts with a SysML/OCL [22, 21,
27] specification, which can later be used for the verification of properties [8,
9, 24]. The structure of the design is described by SysML class diagrams, while
the functional behavior is described by OCL constraints. These constraints are
specified as preconditions and postconditions as well as invariants.

Example 1. Figure 1 shows the SysML class diagram for the traffic light con-
troller that serves as a running example in this work. The controller connects
three different traffic lights: for the trams, cars and pedestrians. The basis of this
controller are two finite state machines (FSMs), implemented by the switch and
the tick function. The OCL constraints for these state machines can be seen in
Listing 1.1.

4 Fritjof Bornebusch et al.

trafficLightController
+
+
+
-
-

delay: Integer
counter: Integer
cycleTime: Integer
tick(): void
switch() : void

carsTrafficLight
+ value: enum<trafficLight>

pedestriansTrafficLight
+ value: enum<trafficLight>

tramsTrafficLight
+ value: enum<trafficLight>

1

carsLight

1pedestriansLight

1

tramsLight

Figure 1. SysML class diagram of the traffic light controller [5]. This controller serves
as a running example in this work.

1 context t r a f f i c L i g h tCon t r o l l e r : : t i c k ()
2 pre p r e i n c r c oun t e r : s e l f . counter < (s e l f . de lay −1) ∗ s e l f . cycleTime
3 post i n c r c oun t e r : s e l f . counter = s e l f . counter@pre +s e l f . cycleTime and
4 s e l f . de lay = s e l f . delay@pre and
5 s e l f . cycleTime = s e l f . cycleTime@pre
6
7 context t r a f f i c L i g h tCon t r o l l e r : : t i c k ()
8 pre p r e r e s e t c oun t e r : s e l f . counter >= (s e l f . de lay −1) ∗ s e l f . cycleTime
9 post r e s e t c oun t e r : s e l f . counter = 0 and

10 s e l f . de lay = s e l f . delay@pre and
11 s e l f . cycleTime = s e l f . cycleTime@pre
12
13 context t r a f f i c L i g h tCon t r o l l e r : : switch ()
14 pre pre sw i t ch : s e l f . counter >= (s e l f . de lay −1) ∗ s e l f . cycleTime and
15 s e l f . tramsLight . value = Red and
16 s e l f . p ede s t r i an sL ight . value = Red and
17 s e l f . ca r sL ight . value = Green
18 post pos t sw i t ch : s e l f . tramsLight . value = Red and
19 s e l f . p ede s t r i an sL ight . value = Red and
20 s e l f . ca r sL ight . value = Yellow
21
22 inv : s e l f . counter > −1
23 inv : s e l f . de lay > 0
24 inv : s e l f . cycleTime > 0

Listing 1.1. OCL constraints for the tick function and the switch function introduced
in Figure 1. Additionally, the range for the variables, counter, delay and cylcleTime is
restricted by invariants.

The tick function represents the clock in the SysML/OCL specification. As
seen in Listing 1.1, it increases a counter and resets it back to 0 if an upper
bound is reached (pre reset counter). This counter is used to count the amount
of nanoseconds until the switch function is called. The controller considers traf-
fic situations, such as rush hour. For this reason, the delay can be configured
at runtime, which allows the configuration of a dynamic transition time. The
transition time is the time the counter takes to reach its upper bound. Until
that bound is not reached, the counter is increased by the cycleTime as the
OCL constraints pre incr counter and incr counter states. If the upper bound
is reached, the counter is reset to 0 as state by reset counter. In this case, the
FSM implemented by the switch function moves into a new state where the traf-
fic light for the cars is no longer green, but yellow as stated by the constraints
pre switch and post switch. The cycleTime is constant and indicates the cycle
time of the hardware in nanoseconds (nsec). For example, if the transition time

Safety First 5

is 30 seconds the delay has to be set to 1.500.000.000 with a cycleTime of 20
nsec.

The switch function implements the state transitions for the traffic lights.
This state machine determines whether a traffic light is switched on or off in
order to avoid situations such as the lights for cars and pedestrians are both
green at the same time. The different states for the lights, are encoded as Green,
Yellow and RedYellow and Red. An exemplary state transition is stated by the
pre switch and the post switch constraints as seen in Listing 1.1. Note that the
delay might not always be necessary for the state transition, e.g. the pedestrians
might have a constant transition time while the transition time for the cars rely
on the delay (rush hour). Since this work considers arithmetic integer overflows,
the state machine is not described in detail, as no arithmetic operations are
involved in the state transitions.

After specifying and verifying the behavior of the traffic light controller in
SysML/OCL, a model in SystemC is described. This step is manually as in-
deed the SysML structure can be translated automatically in the form of C++
classes4. However, the behavior specified by OCL constraints cannot automati-
cally be translated to executable SystemC code.

Example 2. Listing 1.2 shows the implementation of the tick function in the
SystemC model.

1 sc u in t <32> counter , delay , cycleTime ;
2 State s s t a t e s ;
3
4 void t i c k () {
5 i f (counter < (delay −1) ∗ cycleTime)
6 counter = counter + cycleTime ;
7 else
8 counter = 0 ;
9 sw i tch () ;

10 }

Listing 1.2. Implementation of the tick function, introduced in Listing 1.1, of the
SystemC model.

As specified by the OCL constraints in Listing 1.1, the SystemC model in-
creases the counter by the cycleTime until the upper bound is reached, as seen
in Line 5 of Listing 1.2. Otherwise, the counter is reset to 0.

2.2 Considered Problem

To illustrate the problem that motivates this work, we take a look at the safety
property that can be derived from the specification, seen in Listing 1.1. This
safety property holds for the specification, but not for the model and in this
section we show why not.

Example 3. Listing 1.3 shows the safety property that is derived from the SysML/OCL
specification. This property is specified as an OCL invariant.

4 Note that SystemC is a collection of C++ class libraries designed to describe hard-
ware designs.

6 Fritjof Bornebusch et al.

1 context t r a f f i c L i g h tCon t r o l l e r
2 inv : s e l f . counter < s e l f . de lay ∗ s e l f . cycleTime

Listing 1.3. Safety property derived from the OCL constraints introduced in
Listing 1.1.

This invariant determines that the counter is less than the multiplication of
the delay and the cycleTime. As the SysML data type Integer is infinite, the
property holds for the specification.

To prove that the safety property holds we show that, if the precondition,
invariants and safety property hold in the pre state and the postcondition holds
in the post state, then the safety property holds in post state as well.

This proof consists of a case analysis of the OCL constraints for the tick
function, seen in Listing 1.1. The notation x’ is used to denote the value of the
variable x in the post state. The self prefix seen in the OCL constraints is also
omitted.

Example 4. In order to show that the safety property, seen in Listing 1.3, holds in
the above specification, we take a look at some assumptions that can be derived
from the specification, seen in Listing 1.1. We assume that the preconditions and
the safety property hold in the pre states and that the postconditions hold in
the post states.

Using these assumptions, we want to prove that if we are in a pre state in
which both the precondition and the safety property hold, and we move to the
post state in which the postcondition holds, then the safety property also holds.

We prove this property by case analysis. The first case is the precondition
pre reset counter and the postcondition reset counter. The second case is the
precondition pre incr counter and the postcondition incr counter. In the first
case the counter is reset to 0 in the postcondition. The invariants state that the
delay and the cycleTime are both greater than 0, so the safety property holds
in the post state. To prove the safety property for the second case, we take a
look at the precondition pre incr counter. Since the monotonicity of the addition
holds in Z, we add cycleTime to both sides of the precondition. This gives us
the postcondition incr counter on the left side. If we dissolve the right side, we
see that the safety property holds in the post state.

counter + cycleTime′ < ((delay′ − 1) ∗ cycleTime′) + cycleTime′

= counter + cycleTime′ < (delay′ ∗ cycleTime′ − cycleTime′) + cycleTime′

= counter + cycleTime′ < delay′ ∗ cycleTime′

Now that we have proven that the safety property holds in the post states
of the SysML/OCL specification, why does it not hold in the SystemC model?
If we consider the case analysis of the proof for the SystemC model, we see that
for the first case the proof holds. However, for the second case the monotonicity
of the addition does not hold. The SystemC model describes the quotient ring
Z>−1/32Z>−1. This ring describes an integer type of limited size and that is

Safety First 7

precisely the reason why the safety property does not hold in the SystemC
model, as the monotonicity of the addition does not hold for quotient rings.

In other words, the multiplication operation in the SysML/OCL specification
is not semantic equivalent to the one in the SystemC model, as in SystemC
all integer types describe a quotient ring: Z/mZ,m ∈ N (signed integer) or
Z>−1/mZ>−1,m ∈ N (unsigned integers). The semantic gap between SysMLs
infinite integer type and SystemCs finite integer types motivates this work and
results in the proposal of an alternative hardware design approach that allows
the description of finite integer types at the specification level.

Example 5. Let us consider again the translation step of the OCL constraints
seen in Listing 1.1 for the SystemC model seen in Listing 1.2. The model assumes
that the implementation of the unsigned integer multiplication operation is the
same as in the specification. This assumption is understandable at first glance,
since the same behavior is apparently described. However, as we have seen above
this is not the case, as the integer type in the specification is infinite, while the
one in the model is finite. As a result, the SystemC model violates the safety
property, shown in Listing 1.3.

This violation bears a direct impact on the change of the configurable delay
at runtime and thus on the transition time of the state machine, which con-
siders traffic situations such as rush hour. For instance, a changed delay might
lead to unintended behavior as the multiplication operation on the quotient
ring sc uint<32> implements a wrap-around behavior. In this case, instead of
increasing the transition time it is decreased which is a serious problem.

A look in the C++ standard5 reveals two different behaviors of integer arith-
metic regarding overflows.

Unsigned integer arithmetic defines total functions and does not overflow.
A result that cannot be interpreted by the resulting data type is reduced by
2n, n ∈ N, where n is the number of bits in the value representation, e.g.
sc uint<32>. Through the modulo operation, arithmetic operations on these
data types implements a wrap-around behavior. So in the case of unsigned arith-
metic the operation might lead to unintended behavior.

Signed integer arithmetic does overflow and defines either total functions or
partial functions, depending on the underlying hardware platform. The functions
are total, if the platform represents the values in the 2’s complement. In this
case, the same wrap-around behavior is implemented as for the unsigned integer
arithmetic. If the platform uses traps6 to indicate an overflow the arithmetic
function becomes partial, as in this case the function does not define a return
value for a pair of input values. As the behavior of signed integer arithmetic is
platform dependent, it is undefined in general.

5 The current standard for the C++ programming language is specified in ISO/IEC
14882:2017.

6 A trap is a software interrupt that is triggered due to an instruction execution, e.g.
division-by-zero, by the processor.

8 Fritjof Bornebusch et al.

The term arithmetic integer overflow often refers to both unsigned integer
and signed integer arithmetic [15, 13]. For this reason, we use that term in the
rest of this work to address both behaviors.

The basic problem of the semantic gap between SysMLs infinite integer types
and SystemCs finite types motivates our work. To address this problem a se-
mantic equivalent finite type is needed at the specification level as hardware
descriptions are finite by design and, therefore, rely on these types. Having such
types at the specification level enables the clear distinction between the correct
result of an arithmetic integer operation and the occurred overflow. We call this
distinction the detection of overflows. As overflows are inevitable on finite inte-
ger types this work proposes an overflow detection pattern by a total function
that makes the distinction between the result of an arithmetic integer operation
and the overflow explicitly.

In the next section, we evaluate the related work and discuss why it is not
suitable to address the problem described above properly. This discussion leads
eventually to the alternative hardware design approach.

3 Related Work

In this section we evaluate and discuss the related work to show why a specifi-
cation in SysML/OCL and a model in SystemC is not suitable to detect integer
overflows properly.

To detect integer overflows in the SysML specification the possibility to define
finite integer types of arbitrary sizes need to be implemented, but this is not the
case in the current standard [22]. Of course, invariants can be used to restrict
SysMLs Integer type by describing a lower and upper bound. But, these bounds
are independent of the integer type used in the SystemC model. For instance,
after the automatic generation of the SystemC class structure from SysML: what
should the equivalent type to SysMLs Integer type be in SystemC? Either a
standard type, like Integer is always represented as sc uint<32>, but in this case
the bounds can never change, or the extracted type of the model is dependent
from the bounds chosen in the specification. Such a restriction can be described
by OCL invariants, but it is not possible to extract these invariants in executable
SystemC code automatically. If these bounds are translated manually to the
SystemC model, they might change during the development phase of the model.
For example, it was discovered that a different type, e.g. sc uint<31>, is needed
which again invalidates the bounds from the specification. The basic problem
is that a SysML/OCL specification describes infinite integer types while the
SystemC model describes finite ones.

To detect integer overflows directly in the SystemC model, the automatic
overflow detection of C++ programs need to be considered. The detection of
overflows by a C++ compiler is quite challenging, because of the low level nature
of C++. The standard allows bit manipulations, which are very common [15].
This makes it very challenging to detect overflows by the compiler reliably, as
it is not always clear whether such a manipulation is intended by the engineer

Safety First 9

or not. Furthermore, the standard defines undefined behavior semantics that
allow optimizations by the compiler [15]. For this reason, C++ compiler can
only detect arithmetic overflows in constant-expression evaluation, but not in
general. As a result, C++ compilers are not suitable to detect arithmetic integer
overflows automatically.

Since there is no support by the compilers static code analysis tools, such as
Astrée [13] or Frama-C [14], should to be considered.

Astrée relies on abstract interpretation [12, 16] and aims to prove the absence
of runtime errors, such as integer overflows, in C programs. Abstract interpre-
tation is used to derive a computational abstract semantic interpretation from
a behavior expressed in a programming language. The resulting interpretation
does not contain the actual values, but focuses on dedicated parts of the program.
The scope of the static analysis is determined by these parts and define what
kinds of errors are detected. The limit of abstract interpretation is the analysis
of loops, as loops define an infinite number of paths in the interpretation tree.
SystemC models are C++ programs, which is not the input language of Astrée.
Astrée could, of course, be extended to support C++ programs, but SystemC
describes hardware designs. Such designs rely on parallel execution and run in
infinite loops. As mentioned above, loops create an infinite number of paths in
the interpretation tree. For this reason, Astrée is not suitable to detect integer
overflows in hardware designs.

Frama-C is another static code analysis tool which relies on C Intermediate
Language (CIL) [20] and supports annotations written in ANSI/ISO C Spec-
ification Language (ACSL) [14]. Frama-C enables the application of different
static analysis techniques, such as deductive verification of annotated C pro-
grams by automatic provers, e.g. Z3 [14]. The detection of integer overflows is
supported by the Runtime Error Annotation Generation (RTE) plugin which
includes the generation of annotations by syntactic constant folding in the form
of assertions. RTE seeds these annotations into other plugins, e.g. for generat-
ing weakest-preconditions with proof obligations. Similar to Astrée the input
language for Frama-C is a C program, which could , of course, be extended to
support C++ programs. But the static analysis of the infinite loops hardware
designs rely on is quite challenging. For this reason, Frama-C is not suitable to
detect integer overflows in SystemC models.

As discussed in this section a SysML/OCL specification and a SystemC model
are not suitable to detect integer overflows. The specification describes infinite
types and lacks the definition of finite integer types of arbitrary sizes. The model
describes finite integer types and does not get support by compilers or static
analysis tools for detecting integer overflows. As a result, the engineer need to
detect overflows pro-active and explicitly at the model level.

The problem discussed above in combination with the related work leads to
the following question: Can arithmetic integer overflows in hardware designs be
detected at the specification level?

10 Fritjof Bornebusch et al.

4 Proposal of the Alternative Design Approach

In this section, we propose an alternative design approach that addresses the
problem of the semantic gap of the established hardware design approach, de-
scribed in Section 2.

The alternative approach uses the proof assistant Coq [4, 10] to specify and
verify the functional behavior of hardware designs. Coq describes functional be-
havior in a specification language, called Gallina, which is based on the Calculus
of Inductive Constructions (CiC). This calculus combines a higher-order logic
with a richly-typed functional programming language. As higher-order logic is
too expressive for automatic reasoning, a separate tactic language is used that
provides proof methods, but let the user define his own ones as well. Therefore,
proof assistants are also known as interactive theorem provers.

As discussed in Section 2.2 the problem of the established approach is the
semantic gap between the infinite integer types in SysML and the finite inte-
ger types in SystemC. To address this problem we use dependent types [17, 7]
to implement finite integer types in Coq. These types are used to functionally
describe the limited size bit vectors for the inputs and outputs of hardware de-
signs. The idea to describe hardware designs using dependent types is not new
and started back in the 1990s. These types allow a type definition that relies
on an additional value. For instance, the type An defines a vector of the length
n, n ∈ N with elements of the arbitrary type A. We say that A depends on n
that is where the name dependent type comes from. Proof Assistants, like Coq,
allow the definition of dependent types by the user which gives us the opportu-
nity to describe hardware designs with finite integer types at the specification
level. In order to describe such types, we utilized the CompCert integer library
to describe both signed and unsigned integer types of arbitrary sizes [19].

In contrast to the established approach, we use the proof assistant Coq at
the specification level to specify and verify hardware design. Furthermore, we
describe finite integer types using dependent types, which enables the detection of
integer overflows at the specification level. We describe below how the detection
is specified and verified and how a final hardware implementation is generated
automatically from a specification written in Gallina.

4.1 Detection of Integer Overflows

As described in Section 2.2, we need an explicit distinction between the correct
result of an arithmetic integer operation, e.g. multiplication, and the occurred
overflow. Therefore, we use a dedicated type which either contains the result of
an operation or indicates an occurred overflow. This data type is called option,
as seen in Listing 1.4, and has two constructors: None and Some which takes an
arbitrary type (A) as parameter.

1 Induct ive opt ion (A : Type) : Type :=
2 | Some : A −> opt ion A
3 | None : opt ion A.

Listing 1.4. Definition of the option type in Gallina provided by the Coq standard
library (Coq.Init.Datatypes) [5].

Safety First 11

The constructor Some contains the result, while the constructor None indi-
cates the overflow. Consider again the running example introduced in Section 2.1.
This example uses a multiplication operation of the type:

n ∈ N⇒ Unsignedn → Unsignedn → Unsignedn

, where an overflow cannot be distinguished from the actual result. We use
the term basic arithmetic operation for arithmetic integer operations that have
the above type. Using the option type, we create an alternative multiplication
operation, called safe mult seen in Listing 1.5, which has the type:

n ∈ N⇒ Unsignedn → Unsignedn → option Unsignedn

The safe mult operation returns None in the case of an integer overflow
and Some(A) otherwise. Now, the question is: How are both cases explicitly
distinguished? We take a look at the case where an overflow occurs to answer this
question. Note that both a and b are of the type Unsignedn and x 7→ y donates:
x is transformed to y. The function max returns the maximum representable
value of a given data type.

a ∗ b > max(a) 7→ b 6= 0 ∧ a > max(a)/b

The condition on the left side (x) indicates the intuitive check of an overflow.
If the result of a multiplication is larger than the maximum value of the integer
type of the operand (max(a)) than, obviously, an overflow occurred in the mul-
tiplication. But, if we implement this using finite integer types this condition
always evaluates to true, as by definition there is no larger value of a type than
its maximum. For this reason, we need to transform the left side to the right
side (y). The condition on the right side evaluates only to true in the case of
an integer overflow in the multiplication. If the condition evaluates to false both
operands can be multiplied safely. In order to avoid a division-by-zero error, we
first ensure that b is not equal to zero.

By using the alternative option type definition, described above, and the
transformed condition, we are able to implement a multiplication operation that
detects an occurred overflow, as seen in Listing 1.5.

1
2 De f i n i t i o n sa f e mul t (a b : Unsigned32 . i n t) : opt ion Unsigned32 . i n t :=
3 i f (b >? 0%unsigned32) && (a >? (Unsigned32 . max unsigned / b))
4 then None
5 else Some (a∗b)
6 .

Listing 1.5. Definition of the safe mult function in Gallina that detects a
multiplication overflow for 32-bit unsigned values [5].

Like in the SystemC example, illustrated in Listing 1.2, our multiplication
is defined for 32-bit unsigned values (Unsigned32.int). This type definition was
implemented using the CompCert integer library. As seen in Listing 1.4, our
function implementation returns Some(a*b) in the case no overflow occurs and
None otherwise.

12 Fritjof Bornebusch et al.

After the definition of the safe mult function in Coq, a proof is needed that
verifies that the definition satisfies its specification. This specification is formu-
lated as theorems in Coq. Two theorems are formulated in order to proof the
safe mult definition: the detection of the occurred overflow and the returning of
the result of the unsigned 32-bit multiplication operation if no overflow occurs.
To verify this, we show that the multiplication defined for 32-bit unsigned values
maps the multiplication for integer values (Z) which is a subset of it, but detects
the occurred overflow. Both theorems are shown Listing 1.6.

1 Theorem de t e c t ove r f l ow :
2 f o r a l l a b : Z ,
3 a <= Unsigned32 . max unsigned /\
4 b <= Unsigned32 . max unsigned /\
5 a ∗ b > Unsigned32 . max unsigned <−>
6 sa f e mul t (Unsigned32 . repr a) (Unsigned32 . repr b) = None .
7
8 Theorem no over f low :
9 f o r a l l a b : Z ,

10 a <= Unsigned32 . max unsigned /\
11 b <= Unsigned32 . max unsigned /\
12 a ∗ b <= Unsigned32 . max unsigned <−>
13 sa f e mul t (Unsigned32 . repr a) (Unsigned32 . repr b) =
14 Some ((Unsigned32 . repr a) ∗ (Unsigned32 . repr b)) .

Listing 1.6. Theorems specified Coq to verify that the safe mult function detects the
overflow correct and returns the result of the multiplication otherwise [5].

The theorem detect overflow states: if the two values a and b of type Z are
less than or equal to the maximum value of the unsigned 32-bit integer type
(Unsigned32.max unsigned) and their multiplication is greater than this value,
None is returned. The function Unsigned32.repr comes from the CompCert In-
teger library and converts a value of type Z into a value of type Unsigned32.int.
The theorem no overflow states: if two values a and b of type Z are less than or
equal to the maximum value and their multiplication is also less than or equal to
the maximum value, Some(A) is returned. The arbitrary type A is in this case
the type Unsigned32.int.

After specifying and verifying a safe multiplication integer operation, the tick
function, described in Listing 1.1 has to be specified in Gallina. This specified
function has also been changed to use the safe mult function, specified above, as
seen in Listing 1.7. Like for the SystemC model, seen in Listing 1.2, we specified
an unsigned 32-bit integer value (Unsigned32.int), which was described using
the CompCert integer library [19]. The specification of the tick function can be
seen in Listing 1.7.

1 De f i n i t i o n switch (s : State) : State .
2
3 De f i n i t i o n t i c k (input : Unsigned32 . i n t ∗Unsigned32 . i n t ∗Unsigned32 . i n t ∗ State s)
4 : opt ion Unsigned32 . i n t ∗ State :=
5 match input with
6 | (counter , delay , cycleTime , s t a t e) =>
7 match sa f e mul t (delay −1%unsigned32) cycleTime with
8 | Some re s => i f counter <? r e s
9 then (Some(counter + cycleTime) , s t a t e)

10 else (Some(1%unsigned32) , switch s t a t e)
11 | => (None , s t a t e)
12 end
13 end .

Listing 1.7. Specification of the tick function in Gallina, which used the safe mult
function introduced in Listing 1.5.

Safety First 13

Note that the switch function, seen in Figure 1, has a different type in the
Coq specification, shown below. Pure functional languages, such as Gallina, do
not allow internal states, in contrast to a SysML specification. For this reason,
the type of the switch function had to be changed. As this work considers the
detection of arithmetic overflows and there are no arithmetic overflows involved
in the state transitions of that function, we omit the function implementation.

Since the unsigned multiplication operation has semantically changed the
question is: How to handle the case where an overflow occurred? The handling
highly depends on the environment the traffic light controller runs in, e.g. return
to a safe state or ignore the new configured delay. As this would be out of scope
for this work, the tick function just returns an instance of the tuple option
Unsigned32.int*State. The first value of the tuple contains an instance of the
type option Unsigned32.int, while the second value of the tuple is the new state.
This state can either be the same as the old one or be changed by the switch
function. The overflow is not handled by this function directly, but is propagated
to the calling function instead. The state remains unchanged in this case.

After defining the tick function in Gallina, the verification of the property
is needed that the definition still satisfies the safety property, shown in List-
ing 1.3. This property had to be translated to Coq first. This transformation
results in the definition of two theorems, which is shown in Listing 1.8. Theorem
safety property no overflow describes the case no overflow occurs and Theorem
safety property overflow describes the case an overflow occurs. The verification
of those theorems proves that the tick function either changes the counter or
propagates the detected overflow.

1 Theorem sa f e t y p r ope r t y no ove r f l ow :
2 f o r a l l counter counter ’ de lay cycleTime r e s : Unsigned32 . int ,
3 f o r a l l s s ’ : State ,
4 Some(r e s) = sa f e mul t delay cycleTime <−>
5 t i c k (counter , delay , cycleTime , s) = (Some (counter ’) , s ’) /\
6 counter ’ = (delay −1) ∗ cycleTime /\ counter ’ < r e s .
7
8 Theorem sa f e t y p r op e r t y ov e r f l ow :
9 f o r a l l counter delay cycleTime : Unsigned32 . int ,

10 f o r a l l s : State ,
11 None = sa f e mul t (delay −1) cycleTime <−>
12 t i c k (counter , delay , cycleTime , s) = (None , s) .

Listing 1.8. Theorem in Coq that represents the OCL safety property adapted to
finite integer types.

The first theorem states: if no overflow occurred in the multiplication of delay
and cycleTime, the tick function returns the new counter (counter’) and the new
state (s’). Note that the new state might be the old state as it depends on a
condition whether the state is changed or not, as seen in Listing 1.7. The new
counter (counter’) is the result of the multiplication of delay -1 and cylceTime
and is less than res, which is essentially the safety property, shown in Listing 1.3.

The second theorem states: if the result of the safe multiplication of delay -1
and cycleTime is None than the tick function returns None as well. The state
remains unchanged in this case, as described above.

In this section, we illustrated how to specify a safe multiplication operation
using dependent types in order to detect an overflow for the 32-bit unsigned
values. This was the problem, we described in Section 2.2. The specification of

14 Fritjof Bornebusch et al.

the tick function, shown in Listing 1.1, was transformed into a Coq specification
manually and it was verified that the safety property, shown in Listing 1.3 satis-
fies our specification, as seen in Listing 1.8. This shows that we have successfully
addressed the problem of missing finite integer types at the specification level,
as described in Section 2.

5 Extraction of the CλaSH Model

In this section, we describe how the specification in Gallina, described above, is
translated to a CλaSH model and finally to an RTL implementation that can be
synthesized on an FPGA.

To illustrate the extraction process from a specification to a model in the
functional hardware description language CλaSH [3, 18], we take a look at Coq’s
extended extraction process, proposed in this work [6]. The process allows the
extraction of a specification in Gallina into an executable CλaSH model. The
extraction is done by syntactical replacement, since Gallina is a functional spec-
ification language and follows the same semantic rules as functional program-
ming languages, e.g. Haskell or OCaml. The extraction process has two different
modes. The first mode is that it extracts everything that is related to the func-
tion that should be extracted, such as other called function or data types. The
second mode is the replacement of functions and data types by their semantic
equivalent representations in the target language. This mode is used to intrin-
sic functions or to replace constant functions that have a different syntax. For
instance, the constant function Unsigned32.max unsigned used in Listing 1.6 is
replaced by (232) − 1 in the CλaSH model, as seen in Listing 1.9. The specifi-
cation and verification of a behavior by a proof assistant and the extraction of
this behavior afterwards to executable code is called certified programming [10].

1 switch : : State −> State
2
3 sa f e mul t : : (Unsigned 32) −> (Unsigned 32) −> CLaSH. Prelude .Maybe
4 (Unsigned 32)
5 sa f e mul t a b =
6 case (CLaSH. Prelude .&&) ((CLaSH. Prelude .>) (b) (0))
7 ((CLaSH. Prelude .>) (a) (((CLaSH. Prelude . div) ((2ˆ32) −1) b))) of {
8 CLaSH. Prelude .True −> CLaSH. Prelude .Nothing ;
9 CLaSH. Prelude . False −> CLaSH. Prelude . Just ((CLaSH. Prelude . ∗) a b)}

10
11 t i c k : : ((,) ((,) ((,) (Unsigned 32) (Unsigned 32)) (Unsigned 32)) State) −>
12 (,) (CLaSH. Prelude .Maybe (Unsigned 32)) State
13 t i c k input =
14 case input of {
15 (,) p s t a t e s −>
16 case p of {
17 (,) p0 cycleTime −>
18 case p0 of {
19 (,) counter delay −>
20 case sa f e mul t ((CLaSH. Prelude .−) delay 1) cycleTime of {
21 CLaSH. Prelude . Just r e s −>
22 case (CLaSH. Prelude .<) counter r e s of {
23 CLaSH. Prelude .True −> (,) (CLaSH. Prelude . Just
24 ((CLaSH. Prelude .+) counter 1)) s t a t e s ;
25 CLaSH. Prelude . False −> (,) (CLaSH. Prelude . Just 1) (switch s t a t e s) } ;
26 CLaSH. Prelude .Nothing −> (,)CLaSH. Prelude .Nothing s t a t e s }}}}

Listing 1.9. Extracted CλaSH model of the safe mult and tick function introduced in
Section 1.5.

CλaSH borrows its syntax and semantics from the functional programming
language Haskell. Combinational circuits are described as recursive functions

Safety First 15

and synchronous sequential ones as a combination of these functions with a fi-
nite state machine, either as a Mealy machine or a Moore machine [3]. After the
CλaSH model was extracted the final RTL (Register-Transfer-Level) implemen-
tation, e.g. in VHDL or Verilog, it can be synthesized automatically. The unique
representation of hardware model and the structured communication between
the components, ensured by the type system of CλaSH, allows the automatic
analysis of models and the final synthesis into a low-level RTL implementation,
e.g. VHDL or Verilog.

6 Overflow Detection Pattern

In this section, we propose a detection pattern that can be used to detect integer
overflows in different arithmetic operations. The pattern defines a total function
that distinguishes the result of the arithmetic operation from the overflow by the
option type described in Section 4.1. The proposed detection pattern is shown
in Listing 1.10.

The pattern requires two definitions. First, a data type that defines two
constructors: None and Some A, where A is an arbitrary finite integer type.
Second, a function of the type: A → A → option A. This function takes two
arguments of the integer type A and returns a value of the previous defined
option type. Where None indicates the overflow and Some a indicates the result
of the operation that was executed. This case analysis is made by a condition
(overflowDetected), e.g. by the one defined in Section 4.1 for the multiplication
of unsigned 32-bit values.

1 data opt ion A = None | Some A
2
3 f : A → A → opt ion A
4 f x y = i f <overf lowDetected> x y
5 then None
6 else Some(x <operat ion> y)

Listing 1.10. Proposed overflow detection pattern [5].

The specified function f is used to replace the basic arithmetic operation,
e.g. unsigned multiplication, that is not able to distinguish an overflow from the
correct result. In order to verify that function f distinguishes the overflow from
the correct result, two theorems have to be proven. A proof of the first theorem,
as can be seen in Theorem 1, verifies that for all inputs which cause an overflow
for the performed arithmetic operation None is returned.

Theorem 1 (Detect overflow in integer arithmetic operation). ∀x, y ∈
A, where A is an arbitrary finite integer type.

<overflowDetected> x y ⇐⇒ f x y = None

A proof of the second theorem, as can be seen in Theorem 2, verifies that for
all inputs that do not cause an overflow for the performed arithmetic operation
the result of this operation is returned.

16 Fritjof Bornebusch et al.

Theorem 2 (No overflow in arithmetic integer operation). ∀x, y ∈ A,
where A is an arbitrary finite integer type.

not (<overflowDetected> x y) ⇐⇒ f x y = Some (x <operation> y)

Now, that we have defined the overflow detection pattern, one question re-
mains: Is this pattern always necessary?

In the following, we answer this question and explain in which cases it is
necessary and in which one it is not. If we look at the general behavior of
arithmetic integer operations, an overflow might always occur. The result of
an arithmetic operation can potentially be larger than its finite integer type is
able to represent. This might lead to an unintended wrap-around behavior, as
explained in Section 2.2. So in general, the overflow detection pattern, described
above, should be applied.

However, there are cases where this pattern can be avoided. First, it has to
be verified that the arithmetic operation that is applied on both operands never
causes an overflow. The theorem that has to be proven can be seen in Theorem 3.

Theorem 3. ∀x, y ∈ A′, where A′ ⊂ A and A is an arbitrary finite integer type.

f x y = Some(x <operation> y)

If and only if this theorem holds, then there is no need to replace the basic
arithmetic operation with the one defined by f. The general steps for the proposed
pattern are the following: first, define the function f for the desired integer type
and operation, second, prove the above theorem, to verify that the chosen subset
of values is never too large to cause an overflow. As described above, this is not
the case in general, but might be in particular.

Now, that we have the proof, that the arithmetic operation defined by func-
tion f never returns an overflow, the question is: Can this proof be used to replace
function f in a specification by its corresponding basic arithmetic operation au-
tomatically?

To answer this question, we take a look again at the extraction feature of
Coq. As mentioned above, Coq provides the specification language Gallina and
a tactic language for property proving. The extraction process only extracts the
functional behavior of a specification written in Gallina to an executable target
language. Theorems and Lemmas, which state propositions, are ignored during
this process, as they do not have a semantic equivalent representation in the
target language.

Thus, it is not possible to automatically replace the defined function f by
its corresponding basic integer operation using a proof without changing Coq’s
entire extraction process. Furthermore, as both functions are semantically not
equivalent such a replacement would effect the entire specification recursively.

As discussed above, the automation process is quite challenging as the type
of function f would change from A → A → option A to A → A → A what
recursively effects the entire specification. A more suitable way is to propagate

Safety First 17

the value Some A of function f through the specification. This avoids the recur-
sive changing of all functions depending on f manually as the type of function f
remains the same.

In summary, if and only if Theorem 3 holds, we have a proof that the speci-
fication of function f can be changed to just return Some(x <operation> y) as
no overflow occurs.

6.1 Closure of Functions

As we propose an overflow detection pattern in this work that has the function
type A → A → option A, functions that implement this pattern are no longer
closed. A set is called closed under an operation if an operation performed on
members of a set always produce a member of that set. For this reason, it is
not possible to cascade these functions, e.g. safe mult (safe mult 3 4) 5. In order
to address this problem we implement the option monad in Coq. Monads come
from the mathematical field of category theory and model computations [26]. It
is used as a design pattern in functional languages and represents a specific form
of computation. Analog to the implementations of monads in other functional
languages, e.g. Ocaml, two functions were implemented, seen in Listing 1.11.

Since the cascading of these functions might not always be wanted, we pro-
pose this monad instead of changing the proposed pattern, seen in Listing 1.10.
This allows a greater flexibility between both use cases.

1 De f i n i t i o n r e t {A : Type} (x : A) : opt ion A := Some x .
2
3 De f i n i t i o n bind {A : Type} (f : A −> A −> opt ion A) (x y : opt ion A)
4 : opt ion A :=
5 match (x , y) with
6 | (Some x ’ , Some y ’) => f x ’ y ’
7 | (,) => None
8 end .

Listing 1.11. Definition of the option monad operations.

The option monad contains two functions: ret and bind. The ret function
takes an argument of type a and transforms it into a value of the type option
A. The bind function takes a function of the proposed pattern type (f) and two
arguments of the type option A (x and y). If both arguments contain a value
of the type A, the function f is called with these values. Otherwise, None is
returned.

The option monad applies to all functions that require two arguments and
return the option type. Since it is not restricted to one dedicated type, it can be
used for all functions that implement the proposed overflow detection pattern,
seen in Listing 1.10. To verify the correct behavior of the bind function, two
theorems were proved.

1 Theorem fIfSome :
2 f o r a l l (A : Type) ,
3 f o r a l l f : (A −> A −> opt ion A) ,
4 f o r a l l x y : opt ion A,
5 f o r a l l x ’ y ’ : A,
6 x = Some (x ’) /\ y = Some (y ’) −> bind f x y = f x ’ y ’ .

Listing 1.12. Theorem that verifies that the function f is only called by the bind
function if both arguments are of type A.

18 Fritjof Bornebusch et al.

The first theorem, seen in Listing 1.12, verifies that if both arguments x and
y contain values of type A (x’ and y’) then the bind function calls the function
f with these two values, as seen in Listing 1.12. This theorem verifies that only
in the case were both arguments for f contain values this function is called.

The second theorem, seen in Listing 1.13, verifies that if either the first
argument of the function f (x) or the second (y) is None the bind function
returns None, as seen in Listing 1.13. This theorem verifies that the function f
is not called with invalid values (None).

1 Theorem noneIfNone :
2 f o r a l l (A : Type) ,
3 f o r a l l f : (A −> A −> opt ion A) ,
4 f o r a l l x y : opt ion A,
5 x = None \/ y = None −> bind f x y = None .

Listing 1.13. Theorem that verifies that in the case of invalid arguments for function
f None is returned by the bind function.

The option monad closes the operations that implement the proposed over-
flow detection pattern, which allows the cascading of these functions. e.g. bind
safe mult (bind safe mult (ret 3) (ret 4)) (ret 5). The cascading of operations
enables the formulation of more complex operations based on the application
of the basic arithmetic operations. The bind function propagates an occurred
overflow through the cascaded operations. At the end of the calculation it can
be evaluated whether the result is correct or if there was an overflow in one of
the operations.

7 Evaluation

In this section, we evaluate the hardware design approach proposed in this work.
The foundation of this evaluation is a comparison of basic arithmetic integer op-
erations with their corresponding overflow detecting operations regarding their
impact of the speed and consumed space. To determine these values the oper-
ations were specified for both signed and unsigned integer operations and used
by the traffic light controller, seen in Section 4.1. The resulting specification was
synthesized on an FPGA using the synthesize process introduced in this work [6].

7.1 Integer Overflow Detection Implementations

This section introduces the different implementations of the overflow detecting
arithmetic integer operations used for the evaluation. All implementations follow
the pattern introduced in Section 6.

1 De f i n i t i o n sa f e add uns igned (a b : Unsigned32 . i n t) : opt ion Unsigned32 . i n t
:=

2 i f a >? (Unsigned32 . max unsigned − b)
3 then None
4 else Some (a+b) .

Listing 1.14. Definition of the safe add unsigned function in Gallina that detects an
overflow in the addition operation for unsigned 32-bit values.

Safety First 19

Listing 1.14 shows the implementation that detects an overflow in the addi-
tion operation of two unsigned 32-bit values. The condition that checks whether
an overflow occurs or not, follows the transformation pattern, introduced in Sec-
tion 4.1.

Listing 1.15 shows the implementation that detects an overflow for signed
32-bit values. To detect the overflow there are multiple conditions needed, to
cover all possible overflow cases. Since signed integer values are negative or pos-
itive the Signed32.min signed function determines the minimum representable
value of the Signed32 type and the Signed32.max signed function the maximum
representable value.

1 De f i n i t i o n sa f e mu l t s i gn ed (a b : Signed32 . i n t) : opt ion Signed32 . i n t :=
2 i f (a >? 0%signed32) &&
3 (b >? 0%signed32) &&
4 (a >? (Signed32 . max signed / b))
5 then None
6 else i f (a >? 0%signed32) &&
7 (b <? 0) &&
8 (a <? (s igned32 . min s igned / b))
9 then None

10 else i f (a <? 0%signed32) &&
11 (b >? 0%signed32) &&
12 (a <? (Signed32 . min s igned / b))
13 then None
14 else i f (a <? 0%signed32) &&
15 (b <? 0%signed32) &&
16 (a >? Signed32 . max signed / b)
17 then None
18 else Some(a∗b) .

Listing 1.15. Definition of the safe mult signed function in Coq that detects an
overflow in the multiplication operation for signed 32 bit values.

Listing 1.16 shows the implementation that detects an overflow in the addi-
tion of two signed 32-bit values. As seen in the previous overflow detection im-
plementations the Signed32.max signed function determines the maximum value
and the Signed32.min signed function the minimum value.

1 De f i n i t i o n sa f e add s i gned (a b : Signed32 . i n t) : opt ion Signed32 . i n t :=
2 i f (a >? 0%signed32) &&
3 (b >? 0%signed32) &&
4 (a >? (Signed32 . max signed − b))
5 then None
6 else i f (a <? 0%signed32) &&
7 (b <? 0%signed32) &&
8 (a <? (Signed32 . min s igned −b))
9 then None

10 else Some (a+b) .

Listing 1.16. Definition of the safe add signed function in Gallina that detects an
overflow on the multiplication operation for signed 32 bit values.

7.2 Comparison of Arithmetic Integer Operations

In this section, we compare the different arithmetic integer overflow detection
implementations proposed in this work regarding their consumed space in LUTs
and registers and maximum clock frequency. The foundation for this compari-
son is the implementation of the traffic light controller, shown in Section 4.1,
which was specified in Gallina and synthesized on an FPGA. The comparison is
between the specified controller with the basic arithmetic operations and their
corresponding overflow detecting operations, as seen in Table 1.

20 Fritjof Bornebusch et al.

Table 1. Evaluation by comparing the consumed space in LUTs and registers and
the maximum clock frequency (Fmax) for signed 32 and unsigned 32 integer operations
used by the traffic light controller, described in Section 4.1. The basic operation column
contains the values for the basic arithmetic operations, while the overflow detection
column contains the values for the arithmetic operations introduced in Section 4.1 and
Section 7.1.

basic operation overflow detection

arithmetic operation LUTs / Registers Fmax LUTs / Registers Fmax

unsigned multiplication 92 / 36 72.20 MHz 670 / 36 65.51 MHz
unsigned addition 81 / 36 111.76 MHz 112 / 36 109.57 MHz
signed multiplication 112 / 36 68.19 MHz 122 / 36 68.84 MHz
signed addition 81 / 36 119.82 MHz 148 / 36 109.24 MHz

Consumed space and maximum clock frequency synthesized for the Cyclone V family using the
Quartus Prime tool chain version 18.1.0.

The values in Table 1 cannot necessarily be seen as fixed values, but as a
relation between the synthesized traffic light controller specification that uses
the basic arithmetic integer operations and the one using the detecting overflow
operations. The concrete values highly depend on the FPGA a design is synthe-
sized for. FPGAs are often optimized for a certain purpose, e.g. speed or larger
space. As seen in the table above, the consumed space in the form of LUTs and
registers differs slightly, except for the unsigned multiplication operation, which
we discuss in a moment. The same goes for the maximum clock frequency that
has a maximum of 10 MHz for the signed addition operation.

The overflow detecting unsigned multiplication operation has a significantly
larger amount of LUTs, as during the synthesis process the lpm divide megafunc-
tion is used. Megafunctions are programmable logic devices (PLD) that describe
a certain functionality, e.g. integer multiplication. These functional blocks are
ready-made, pre-tested and augment hardware designs so the functionality has
not to be implemented again. For unsigned values Quartus Prime includes the
lpm divide block automatically while for signed integer division it does not. This
decision is based on the analysis of the RTL code. For this reason, the amount
of LUTs is significantly higher.

8 Discussion

In this section we discuss the proposed overflow detection pattern and the results
of the evaluation.

The detection pattern, shown in Section 6, leads to arithmetic functions that
are no longer closed, since the type of the input values is no longer the type
of the output values. This prevents the cascading of these operations, which is
possible with their corresponding basic arithmetic operations. We addressed this
issue by providing an option monad, as seen in Section 6.1. This monad closes

Safety First 21

the operations implementing the proposed arithmetic overflow detection pattern.
The closure of functions enables the cascading of those operations which results
in the description of more complex calculations similar to the cascading of basic
arithmetic operations.

According to the results of the evaluation, the impact on the speed and
consumed space by replacing the basic integer arithmetic operations with the
corresponding ones that detects the overflow depends on the used operation
and the integer type. The difference between the basic arithmetic operations
and their corresponding overflow detecting operations for unsigned addition and
signed multiplication is even negligible.

In general, this opens a trade-off between safety oriented and performance
oriented hardware designs. The additional overflow checks clearly have an im-
pact either on the consumed space or on the maximum clock frequency. But, it
depends on the concrete hardware design whether the safety aspect is important
enough to except this impact or not. This might not always be the case and
the concrete values regarding the speed and consumed space highly depends on
the chosen FPGA. Note that in larger hardware designs the arithmetic integer
operations represent only a small part of the entire functionality. The impact of
the overflow detecting arithmetic operations compared with their corresponding
basic arithmetic operations become negligible.

In general, our discussion shows that the overflow detection pattern proposed
in this work is applicable. The maximum frequency and the consumed space for
the overflow detecting arithmetic operations are slightly slower or even negligible.
The only exception is the overflow detecting unsigned multiplication operation,
but the Quartus Prime synthesis tool chooses to use the lpm divide megafunc-
tion automatically during the synthesis process which was omitted for the other
operations. But, even in this case, the difference regarding the maximum clock
frequency is only slightly slower than in the other implementations used for the
evaluation.

9 Conclusion

In this work, the semantic gap between the infinite integer types of a SysML/OCL
specification and the finite integer types of SystemC was addressed. The issue
of this semantic gap might lead to arithmetic overflows in the SystemC model
which are unknown in the specification, as explained in Section 2.2. This gap mo-
tivates our work, and we addressed it by the proposal of an alternative approach
which extends the work [5] already published by the authors.

We use the proof assistant Coq [4, 10] in combination with the CompCert
integer library [19] to close this gap. The CompCert Integer library describes
both signed and unsigned finite integer types of arbitrary sizes as dependent
types [17, 7]. We utilized this library to describe finite integer types in Coq.
This description enables the specification of arithmetic integer operations that
verifiable detect overflows, as described in Section 4. These descriptions result in
a generalizable pattern for detecting overflows in arithmetic integer operations.

22 Fritjof Bornebusch et al.

Furthermore, we provide a method to close the functions that implements the
proposed detection pattern, as described in Section 6. This allows the cascading
of operations implementing the proposed overflow detection pattern, analog to
their corresponding basic arithmetic operations to describe more complex calcu-
lations.

We evaluated the proposed overflow detection pattern by comparing basic
arithmetic operations with their corresponding overflow detecting operations in
terms of their maximum clock frequency and consumed space. These values
were gathered from an FPGA synthesis process, explained in Section 7, which
uses the synthesize process introduced in this work [6]. This evaluation opens
a trade-off between safety oriented and performance oriented hardware designs,
as additional safety checks clearly have an impact on the consumed space and
maximum clock frequency, but the impact is sporadically negligible. For this
reason, we evaluated the proposed approach to address the semantic gap between
infinite and finite integer types as promising.

References

[1] Accellera. “Accellera Systems Initiative Inc SystemC Synthesizable Sub-
set.” In: Version 1.5.7 (2016).

[2] Guido Arnout. “SystemC standard.” In: Asia and South Pacific Design
Automation Conference (ASP-DAC). 2000, pp. 573–578.

[3] CλaSH: Structural Descriptions of Synchronous Hardware Using Haskell.
2010, pp. 714–721.

[4] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development - Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.

[5] Fritjof Bornebusch et al. “Integer Overflow Detection in Hardware Designs
at the Specification Level.” In: 8th International Conference on Model-
Driven Engineering and Software Development (MODELSWARD). 2020.

[6] Fritjof Bornebusch et al. “Towards Automatic Hardware Synthesis from
Formal Specification to Implementation.” In: Asia and South Pacific De-
sign Automation Conference (ASP-DAC). 2020.

[7] Edwin Brady, James McKinna, and Kevin Hammond. “Constructing Cor-
rect Circuits: Verification of Functional Aspects of Hardware Specifications
with Dependent Types.” In: Trends in Functional Programming (TFP).
2007, pp. 159–176.

[8] Achim D. Brucker and Burkhart Wolff. The HOL-OCL Book. USenglish.
Tech. rep. 525. ETH Zurich, 2006.

[9] Jordi Cabot, Robert Clarisó, and Daniel Riera. “Verification of UML/OCL
Class Diagrams using Constraint Programming.” In: First International
Conference on Software Testing Verification and Validation, ICST. 2008,
pp. 73–80.

[10] Adam Chlipala. Certified Programming with Dependent Types - A Prag-
matic Introduction to the Coq Proof Assistant. MIT Press, 2013.

Safety First 23

[11] Zack Coker and Munawar Hafiz. “Program transformations to fix C inte-
gers.” In: 35th International Conference on Software Engineering, ICSE
’13, San Francisco, CA, USA, May 18-26, 2013. 2013, pp. 792–801.

[12] Patrick Cousot. “Formal Verification by Abstract Interpretation.” In: NASA
Formal Methods - International Symposium, NFM. 2012, pp. 3–7.

[13] Patrick Cousot et al. “The ASTREÉ Analyzer.” In: European Symposium
on Programming. 2005, pp. 21–30.

[14] Pascal Cuoq et al. “Frama-C - A Software Analysis Perspective.” In: Inter-
national Conference on Software Engineering and Formal Methods. 2012,
pp. 233–247.

[15] Will Dietz et al. “Understanding Integer Overflow in C/C++.” In: ACM
Trans. Softw. Eng. Methodol. 25.1 (2015).

[16] Manuel Fähndrich and Francesco Logozzo. “Static Contract Checking with
Abstract Interpretation.” In: International Conference on Formal Verifi-
cation of Object-Oriented Software. 2010, pp. 10–30.

[17] F. K. Hanna and Neil Daeche. “Dependent types and formal synthesis.”
In: 1992.

[18] Jan Kuper, Christiaan Baaij, and Matthijs Kooijman. “Exercises in Ar-
chitecture Specification Using CλaSH.” In: Forum on Specification and
Design Languages (FDL). 2010.

[19] Xavier Leroy et al. “CompCert – A Formally Verified Optimizing Com-
piler.” In: Embedded Real Time Software and Systems (ERTS). 2016.

[20] George C. Necula et al. “CIL: Intermediate Language and Tools for Anal-
ysis and Transformation of C Programs.” In: European Joint Conferences
on Theorey and & Practice of Software. 2002, pp. 213–228.

[21] OMG. “Object Management Group Object Constraint Language (OCL).”
In: Version 2.4 (2014).

[22] OMG. “Open Management Group System Modeling Language (SysML).”
In: Version 1.6 (2019).

[23] Nils Przigoda, Robert Wille, and Rolf Drechsler. “Analyzing Inconsisten-
cies in UML/OCL Models.” In: Journal of Circuits, Systems, and Com-
puters 25.3 (2016).

[24] Mathias Soeken et al. “Verifying UML/OCL models using Boolean sat-
isfiability.” In: Design, Automation and Test in Europe (DATE). 2010,
pp. 1341–1344.

[25] Andrés Takach. “High-Level Synthesis: Status, Trends, and Future Direc-
tions.” In: IEEE Design & Test 33.3 (2016), pp. 116–124.

[26] Philip Wadler. “Monads for Functional Programming.” In: Advanced Func-
tional Programming, First International Spring School on Advanced Func-
tional Programming Techniques, B̊astad, Sweden, May 24-30, 1995, Tuto-
rial Text. Ed. by Johan Jeuring and Erik Meijer. Vol. 925. Lecture Notes
in Computer Science. 1995, pp. 24–52.

[27] Tim Weilkiens. Systems engineering with SysML / UML - modeling, anal-
ysis, design. Morgan Kaufmann, 2007.

