
Incremental Improvement of a Question
Answering System by Re-ranking Answer
Candidates using Machine Learning

Michael Barz and Daniel Sonntag

Abstract We implement a method for re-ranking top-10 results of a state-of-the-art
question answering (QA) system. The goal of our re-ranking approach is to improve
the answer selection given the user question and the top-10 candidates. We focus on
improving deployed QA systems that do not allow re-training or when re-training
comes at a high cost. Our re-ranking approach learns a similarity function using n-
gram based features using the query, the answer and the initial system confidence as
input. Our contributions are: (1) we generate a QA training corpus starting from 877
answers from the customer care domain of T-Mobile Austria, (2) we implement a
state-of-the-art QA pipeline using neural sentence embeddings that encode queries
in the same space than the answer index, and (3) we evaluate the QA pipeline and
our re-ranking approach using a separately provided test set. The test set can be
considered to be available after deployment of the system, e.g., based on feedback of
users. Our results show that the system performance, in terms of top-n accuracy and
the mean reciprocal rank, benefits from re-ranking using gradient boosted regression
trees. On average, the mean reciprocal rank improves by 9.15%.

1 Introduction

In this work, we examine the problem of incrementally improving deployed QA
systems in an industrial setting. We consider the domain of customer care of a wire-
less network provider and focus on answering frequent questions (focussing on the

Michael Barz
German Research Center for Artificial Intelligence, Saarland Informatics Campus, D3 2, 66123
Saarbrücken, Germany e-mail: michael.barz@dfki.de
Saarbrücken Graduade School of Computer Science

Daniel Sonntag
German Research Center for Artificial Intelligence, Saarland Informatics Campus, D3 2, 66123
Saarbrücken, Germany e-mail: daniel.sonntag@dfki.de

1

ar
X

iv
:1

90
8.

10
14

9v
1

 [
cs

.L
G

]
 2

7
A

ug
 2

01
9

michael.barz@dfki.de
daniel.sonntag@dfki.de

2 Michael Barz and Daniel Sonntag

long tail of the question distribution [2]). In this setting, the most frequent topics
are covered by a separate industry-standard chatbot based on hand-crafted rules by
dialogue engineers. Our proposed process is based on the augmented cross-industry
standard process for data mining [23] (augmented CRISP data mining cycle). In
particular, we are interested in methods for improving a model after its deployment
through re-ranking of the initial ranking results. In advance, we follow the steps of
the CRISP cycle towards deployment for generating a state-of-the-art baseline QA
model. First, we examine existing data (data understanding) and prepare a corpus
for training (data preparation). Second, we implement and train a QA pipeline using
state-of-the-art open source components (modelling). We perform an evaluation us-
ing different amounts of data and different pipeline configurations (evaluation), also
to understand the nature of the data and the application (business understanding).
Third, we investigate the effectiveness and efficiency of re-ranking in improving our
QA pipeline after the deployment phase of CRISP. Adaptivity after deployment is
modelled as (automatic) operationalisation step with external reflection based on,
e.g., user feedback. This could be replaced by introspective meta-models that al-
low the system to enhance itself by metacognition [23]. The QA system and the
re-ranking approach are evaluated using a separate test set that maps actual user
queries from a chat-log to answers of the QA corpus. Sample queries from the eval-
uation set with one correct and one incorrect sample are shown in Table 1.

With this work, we want to answer the question whether a deployed QA system
that is difficult to adapt and that provides a top-10 ranking of answer candidates,
can be improved by an additional re-ranking step that corresponds to the opera-
tionalisation step of the augmented CRISP cycle. It is also important to know the
potential gain and the limitations of such a method that works on top of an exist-
ing system. We hypothesise that our proposed re-ranking approach can effectively
improve ranking-based QA systems.

2 Related Work

The broad field of QA includes research ranging from retrieval-based [29, 8, 15, 9]
to generative [21, 20], as well as, from closed-domain [10, 16] to open-domain QA
[20, 13, 18, 7]. We focus on the notion of improving an already deployed system.

For QA dialogues based on structured knowledge representations, this can be
achieved by maintaining and adapting the knowledgebase [26, 24, 25]. In addition,
[23] proposes metacognition models for building self-reflective and adaptive AI sys-
tems, e.g., dialogue systems, that improve by introspection. Buck et al. present a
method for reformulating user questions: their method automatically adapts user
queries with the goal to improve the answer selection of an existing QA model [5].

Other works suggest humans-in-the-loop for improving QA systems. Savenkov
and Agichtein use crowdsourcing for re-ranking retrieved answer candidates in a
real-time QA framework [19]. In Guardian, crowdworkers prepare a dialogue sys-
tem based on a certain web API and, after deployment, manage actual conversa-

Incremental Improvement of a Question Answering System by Re-ranking 3

Table 1 Sample queries with a correct and an incorrect answer option according to our test set.
We report the answers’ rank of the baseline model that we used for our re-ranking experiments.

User Query Correct Answer Incorrect Answer
Bekomme ich bei Ver-
tragsverlängerung ein neues
Handy? (Do I get a new
phone when extending my
contract?)

Ab wann Sie Ihre Rufnum-
mern verlängern können und
welche Angebote bei einer Ver-
tragsverlängerung auf Sie warten,
sehen Sie in Ihrem persönlichen
Kundenportal Mein T-Mobile [...]
(In your online customer area
of T-Mobile, you can see when
you can continue your telephone
numbers and which offers await
you after extending your contract
[...]) (rank 1)

Suchen Sie ein neues Gerät,
das genau Ihre Bedürfnisse
und Anforderungen erfüllt?
Sie wollen rechtzeitig über
Neuerungen informiert wer-
den? [...] (You are looking for
a new device that satisfies all
your requirements? You want
to get recent news? [...]) (rank
5)

tarife ohne bimdung (plans
without bimding contract) –
misspelled

Wenn Sie bereits ein Handy
besitzen und nur eine Simkarte
benötigen, haben wir genau das
Richtige für Sie: die Klax-SIM.
[...] (If you own a new phone and
all you need is a SIM card, we
got exactly the right offer: the
Klax-SIM. [...]) (rank 3)

Eine Übersicht über unsere ak-
tuellen My Mobile Handytarife
inklusive aller wichtigen De-
tails finden Sie auf der Tarif-
seite. [...] (An overview of our
current service plans with all
important details can be found
on our website. [...]) (rank 1)

Kosten für vertragübernahme
(costs for a contract transfer)

Sie können Verträge an andere Per-
sonen übergeben, zusammenlegen
oder trennen. Die Kosten belaufen
sich auf [...] Ausführliche Informa-
tionen zum Thema finden Sie in den
FAQ. (You can transfer, join and
split contracts from and to other
persons. The costs are [...] More de-
tailed information can be found in
our FAQ.) (rank 10)

Ein Zukauf von Freiminuten ist
nicht möglich und bei unseren
aktuellen Tarifen auch nicht
notwendig, da Freiminuten hier
unlimitiert sind. (You cannot
buy additional minutes. How-
ever, that’s not required with
our plans, because minutes are
unlimited.) (rank 1)

Kreditkarte (credit card) Eine Zahlung mittels Kreditkarte ist
selbstverständlich bei uns möglich.
Sollten Sie Ihre Zahlungsart auf
Kreditkarte ändern oder Ihre Daten
aktualisieren wollen, können Sie
dies direkt über unseren LiveChat
veranlassen. [...] (Of course, you
can pay with your credit card. If you
want to change your payment set-
tings to credit card or if you want
to update your data, you can do so
using our LiveChat. [...]) (rank 7)

Die Änderung Ihrer Kreditkar-
tendaten ist zu Ihrer Sicher-
heit nur telefonisch bei der Ser-
viceline unter [...] (For security
reasons, you can change your
credit card data via phone us-
ing our service hotline at [...]
only) (rank 1)

Hallo, ich möchte ein iPhone
7 kaufen (Ratenzahlung).
Ich hab schon ein Vertrag
(bis 09.2017)..wenn ich das
verlängern möchte muss ich
die Raten von meine altes
Handy weiter zahlen? Lg
(Hello, I’d like to buy an
iPhone 7 (paying by instal-
ments). I have a contract
(till 09/2017)..if I want to
extend it, do I need to pay the
remaining rates for my old
phone? Kind regards)

Ratenzahlungen oder Stundungen
bei offenen Rechnungsbeträgen bi-
etet T-Mobile NICHT an [...] (T-
Mobile does NOT offer payment by
instalments or deferred payments
for outstanding bill amounts.) (not
in top-10)

Mit der Umstellung auf
LTE hat sich nichts am
Geschwindigkeitsprofil inklu-
sive der erreichbaren Maxi-
malgeschwindigkeiten Ihres
aktuellen Tarifes geändert. [...]
(The transition to LTE (4G)
does not affect the maximum
data transfer rate of your
present service plan.) (rank 1)

4 Michael Barz and Daniel Sonntag

tions with users [12]. EVORUS learns to select answers from multiple chatbots via
crowdsourcing [11]. The result is a chatbot ensemble excels the performance of each
individual chatbot. Williams et al. present a dialogue architecture that continuously
learns from user interaction and feedback [27].

We propose a re-ranking algorithm similar to [19]: we train a similarity model
using n-gram based features of QA pairs for improving the answer selection of a
retrieval-based QA system.

3 Question Answering System

We implement our question answering system using state-of-the-art open source
components. Our pipeline is based on the Rasa natural language understanding
(NLU) framework [4] which offers two standard pipelines for text classification:
spacy sklearn and tensorflow embedding. The main difference is that spacy sklearn
uses Spacy1 for feature extraction with pre-trained word embedding models and
Scikit-learn [17] for text classification. In contrast, the tensorflow embedding pipeline
trains custom word embeddings for text similarity estimation using TensorFlow
[1] as machine learning backend. Figure 1 shows the general structure of both
pipelines. We train QA models using both pipelines with the pre-defined set of
hyper-parameters. For tensorflow embedding, we additionally monitor changes in
system performance using different epoch configurations2. Further, we compare the
performances of pipelines with or without a spellchecker and investigate whether
model training benefits from additional user examples by training models with the
three different versions of our training corpus including no additional samples (kw),
samples from 1 user (kw+1u) or samples from 2 users (kw+2u) (see section Cor-
pora). All training conditions are summarized in Table 2. Next, we describe the
implementation details of our QA system as shown in Figure 1: the spellchecker
module, the subsequent pre-processing and feature encoding, and the text classifi-
cation. We include descriptions for both pipelines.

Table 2 Considered configurations for QA pipeline training.

spacy sklearn tensorflow embedding
parameters default default with epochs ∈

{10,50,100,300,600}
spellchecking yes, no

training corpus kw, kw+1u, kw+2u

Spellchecker We address the problem of frequent spelling mistakes in user queries
by implementing an automated spell-checking and correction module. It is based

1 https://spacy.io/
2 https://rasa.com/docs/nlu/components/#intent-classifier-tensorflow-embedding

https://spacy.io/
https://rasa.com/docs/nlu/components/#intent-classifier-tensorflow-embedding

Incremental Improvement of a Question Answering System by Re-ranking 5

Fig. 1 The basic configura-
tion of the QA pipeline, which
is a part of our complete QA
system architecture with the
re-ranking algorithm.

pre-processing

text classification

spellchecker

feature encoding

Top-10 Answer Ranking

Question

Q
A

 S
ys

te
m

on a Python port3 of the SymSpell algorithm4 initialized with word frequencies for
German5. We apply the spellchecker as first component in our pipeline.

Pre-Processing and Feature Encoding. The spacy sklearn pipeline uses Spacy
for pre-processing and feature encoding. Pre-processing includes the generation of a
Spacy document and tokenization using their German language model
de core news sm (v2.0.0). The feature encoding is obtained via the vector
function of the Spacy document that returns the mean word embedding of all tokens
in a query. For German, Spacy provides only a simple dense encoding of queries
(no proper word embedding model).

The pre-processing step of the tensorflow embedding pipeline uses a simple
whitespace tokenizer for token extraction. The tokens are used for the feature en-
coding step that is based on Scikit-learn’s CountVectorizer. It returns a bag of
words histogram with words being the tokens (1-grams).

Text Classification. The spacy sklearn pipeline relies on Scikit-learn for text clas-
sification using a support vector classifier (SVC). The model confidences are used
for ranking all answer candidates; the top-10 results are returned.

Text classification for tensorflow embedding is done using TensorFlow with an
implementation of the StarSpace algorithm [28]. This component learns (and later
applies) one embedding model for user queries and one for the answer id. It min-
imizes the distance between embeddings of QA training samples. The distances
between a query and all answer ids are used for ranking.

3 https://github.com/mammothb/symspellpy
4 https://github.com/wolfgarbe/SymSpell
5 German 50k: https://github.com/hermitdave/FrequencyWords

https://github.com/mammothb/symspellpy
https://github.com/wolfgarbe/SymSpell
https://github.com/hermitdave/FrequencyWords

6 Michael Barz and Daniel Sonntag

3.1 Corpora

In this work, we include two corpora: one for training the baseline system and an-
other for evaluating the performance of the QA pipeline and our re-ranking ap-
proach. In the following, we describe the creation of the training corpus and the
structure of the test corpus. Both corpora have been anonymised.

Training Corpus. The customer care department provides 877 answers to common
user questions. Each answer is tagged with a variable amount of keywords or key-
phrases (M = 3.81, SD = 5.92), 3338 in total. We asked students to augment the
training corpus with, in total, two additional natural example queries. This process
can be scaled by crowdsourcing for an application in productive systems that might
include more answers or that requires more sample question per answer or both. The
full dataset contains, on average, 5.81 sample queries per answer totalling in 5092
queries overall. For model training, all questions (including keywords) are used as
input with the corresponding answer as output. We generated three versions of the
training corpus: keywords only (kw, n = 3338), keywords with samples from 1 user
(kw+1u, n = 4215) and keywords with samples from 2 users (kw+2u, n = 5092).

Evaluation Corpus. The performance of the implemented QA system and of our
re-ranking approach is assessed using a separate test corpus. It includes 3084 real
user requests from a chat-log of T-Mobile Austria, which are assigned to suitable
answers from the training corpus (at most three). The assignment was performed
manually by domain experts of the wireless network provider. We use this corpus
for estimating the baseline performance of the QA pipeline using different pipeline
configurations and different versions of the training corpus. In addition, we use the
corpus for evaluating our re-ranking approach per cross-validation: we regard the
expert annotations as offline human feedback. The queries in this corpus contain a
lot of spelling mistakes. We address this in our QA pipeline generation by imple-
menting a custom spell-checking component.

4 Baseline Performance Evaluation

We evaluate the baseline model using all training configurations in Table 2 to find
a well-performing baseline for our re-ranking experiment. We use the evaluation
corpus as reference data and report the top-1 to top-10 accuracies and the mean
reciprocal rank for the top-10 results (MRR@10) as performance metrics. For com-
puting the top-n accuracy, we count all queries for which the QA pipeline contains
a correct answer on rank 1 to n and divide the result by the number of test queries.
The MRR is computed as the mean of reciprocal ranks over all test queries. The
reciprocal rank for one query is defined as RR = 1

rank : The RR is 1 if the correct
answer is ranked first, 0.5 if it is at the second rank and so on. We set RR to zero, if
the answer is not contained in the top-10 results.

Incremental Improvement of a Question Answering System by Re-ranking 7

Fig. 2 Performance metrics
in terms of top-1 to top-10 ac-
curacy and MRR@10 of both
QA pipelines for different
pipeline configurations and
training corpora.

1 2 3 4 5 6 7 8 9 10

kw 0.073 0.129 0.169 0.199 0.225 0.250 0.270 0.288 0.305 0.317 0.139

kw+1u 0.095 0.156 0.194 0.223 0.246 0.265 0.287 0.304 0.317 0.332 0.161

kw+2u 0.099 0.158 0.202 0.226 0.253 0.274 0.290 0.304 0.320 0.330 0.165

kw 0.095 0.150 0.205 0.238 0.265 0.286 0.304 0.322 0.342 0.356 0.167

kw+1u 0.117 0.186 0.241 0.280 0.313 0.333 0.355 0.368 0.387 0.404 0.198

kw+2u 0.127 0.203 0.250 0.295 0.327 0.354 0.375 0.393 0.412 0.428 0.212

kw 0.125 0.192 0.240 0.279 0.308 0.332 0.345 0.351 0.360 0.364 0.198

kw+1u 0.156 0.227 0.277 0.318 0.347 0.365 0.381 0.394 0.404 0.413 0.233

kw+2u 0.195 0.273 0.328 0.360 0.383 0.404 0.418 0.434 0.443 0.454 0.274

kw 0.194 0.276 0.326 0.363 0.390 0.412 0.424 0.435 0.445 0.456 0.275

kw+1u 0.190 0.277 0.330 0.366 0.401 0.419 0.432 0.442 0.454 0.464 0.276

kw+2u 0.180 0.274 0.332 0.375 0.408 0.435 0.451 0.463 0.478 0.492 0.275

yes

corpus

Accuracy (top-n) MRR

@10

sp
a
cy
-s
kl
ea

rn no

yes

te
n
so
rf
lo
w

em
b
ed

d
in
g

(3
0

0
 e

p
o

ch
s)

no

pipeline

spell

check

Fig. 3 Performance metrics
in terms of top-1 to top-10
accuracy and MRR@10 for
the tensorflow embedding
pipeline with spell-checking
for different training corpora
and a different number of
training epochs.

1 2 3 4 5 6 7 8 9 10

10 0.193 0.261 0.298 0.321 0.334 0.349 0.361 0.371 0.378 0.387 0.255

50 0.196 0.263 0.302 0.324 0.342 0.354 0.366 0.377 0.387 0.396 0.258

100 0.181 0.265 0.312 0.345 0.365 0.380 0.396 0.405 0.416 0.425 0.259

300 0.194 0.276 0.326 0.363 0.390 0.412 0.424 0.435 0.445 0.456 0.275

600 0.145 0.220 0.284 0.326 0.362 0.387 0.400 0.415 0.430 0.439 0.232

10 0.189 0.253 0.294 0.320 0.334 0.350 0.364 0.376 0.386 0.396 0.252

50 0.204 0.292 0.336 0.364 0.384 0.400 0.413 0.421 0.431 0.441 0.281

100 0.235 0.318 0.369 0.401 0.428 0.445 0.459 0.474 0.485 0.493 0.316

300 0.190 0.277 0.330 0.366 0.401 0.419 0.432 0.442 0.454 0.464 0.276

600 0.183 0.276 0.333 0.373 0.400 0.425 0.442 0.459 0.472 0.485 0.275

10 0.189 0.268 0.311 0.337 0.359 0.377 0.389 0.400 0.413 0.425 0.263

50 0.213 0.287 0.331 0.363 0.387 0.405 0.424 0.440 0.451 0.463 0.288

100 0.208 0.299 0.353 0.391 0.417 0.438 0.454 0.466 0.478 0.494 0.296

300 0.180 0.274 0.332 0.375 0.408 0.435 0.451 0.463 0.478 0.492 0.275

600 0.196 0.300 0.356 0.393 0.421 0.438 0.455 0.470 0.486 0.498 0.292

Accuracy (top-n) MRR

@10

kw
kw

+1
u

kw
+2
u

corpus epochs

Results. Figure 2 shows the accuracy and MRR values for all conditions. We only
restrict tensorflow embedding to the default number of epochs which is 300. At
the corpus level, we can observe that the accuracy and the MRR increase when train-
ing with additional user annotations for all pipeline configurations. For example, the
spacy sklearn pipeline without spell-checking achieves a top-10 accuracy of 0.317
and a MRR of 0.139 when using the kw training corpus with keywords only. Both
measures increase to 0.33 and 0.165, respectively, when adding two natural queries
for training. In some cases, adding only 1 user query results in slightly better scores.
However, the overall trend is that more user annotations yield better results.

In addition, we observe performance improvements for pipelines that use our
spell-checking component when compared to the default pipelines that do not make
use of it: The spacy sklearn kw+2u condition performs 9.8% better, the tensor-
flow embedding kw+2u condition performs 3.8% better, in terms of top-10 accu-
racy. We can observe similar improvements for the majority of included metrics.
Similar to the differentiation by corpus, we can find cases where spell-checking
reduces the performance for a particular measure, against the overall trend.

Overall, the tensorflow embedding pipelines perform considerably better than
the spacy sklearn pipeline irrespective of the remaining parameter configuration:
the best performing methods are achieved by the tensorflow embedding pipeline
with spell-checking. Figure 3 sheds more light on this particular setting. It provides
performance measures for all corpora and for different number of epochs used for
model training. Pipelines that use 300 epochs for training range among the best

8 Michael Barz and Daniel Sonntag

for all corpora. When adding more natural user annotations, using 100 epochs
achieves similar or better scores, in particular concerning the top-10 accuracy and
the MRR. Re-ranking the top-10 results can only improve the performance in QA,
if the correct answer is among the top-10 results. Therefore, we use the tensor-
flow embedding pipeline with spellchecking, 100 epochs and the full training cor-
pus as baseline for evaluating the re-ranking approach.

5 Re-Ranking Approach

Answer p

𝐴ℎ 0.75

𝐴𝑖 0.73

𝐴𝑗 0.70

𝐴𝑙 0.55

… …

𝐴𝑚 0.39

QA System

Question

Which answer is most suitable?
o 𝐴ℎ
o 𝐴𝑖
 𝐴𝑗
o …
o 𝐴𝑚

human
annotator

Question
Re-ranking

Model
input

output

top-10 answers

Answer

supervised rankinghuman feedback (offline)

Answer p

𝐴ℎ 0

𝐴𝑖 0

𝐴𝑗 1

𝐴𝑙 0

… …

𝐴𝑚 0

Fig. 4 Complete QA system architecture including the re-ranking model. The re-ranking model
is trained using manually annotated data for generating a supervised/ideal ranking result for the
top-10 answers from the QA system. Features are extracted from the user question and a particular
answer candidate. At inference time, the re-ranking model is used to improve the initial top-10
ranking.

Our re-ranking approach compares a user query with the top-10 results of the
baseline QA system. In contrast to the initial ranking, our re-ranking takes the con-
tent of the answer candidates into account instead of encoding the user query only.
Our algorithm compares the text of the recent user query to each result. We include
the answer text and the confidence value of the baseline system for computing a
similarity estimate. Finally, we re-rank the results by their similarity to the query
(see Algorithm 1).

We consider a data-driven similarity function that compares linguistic features
of the user query and answer candidates and also takes into account the confidence
of the baseline QA system. This similarity estimate shall enhance the baseline by
using an extended data and feature space, but without neglecting the learned patterns
of the baseline system. The possible improvement in top-1 accuracy is limited by
the top-10 accuracy of the baseline system (49.4%), because our re-ranking cannot
choose from the remaining answers. Figure 4 shows how the re-ranking model is

Incremental Improvement of a Question Answering System by Re-ranking 9

Algorithm 1: Re-Ranking Algorithm
Input: a user query q; the corresponding list of top-10 results R including an answer a and

the baseline confidence c;
Output: an updated ranking R′

begin
R′←− [];
foreach (c,a) ∈ R do

c′←− similarity(q,a,c);
R′.append((c′,a));

// sort R’ by confidences c’, descending
sort(R′);
return R′

connected to the deployed QA system: it requires access to its in- and outputs for
the additional ranking step.

We consider the gradient boosted regression tree for learning a similarity function
for re-ranking similar to [19]. The features for model training are extracted from pre-
processed query-answer pairs. Pre-processing includes tokenization and stemming
of query and answer and the extraction of uni-, bi- and tri-grams from both token
sequences6. We include three distance metrics as feature: the Jaccard distance, the
cosine similarity7, and the plain number of n-gram matches between n-grams of a
query and an answer.

6 Re-Ranking Performance Evaluation

We compare our data-driven QA system with a version that re-ranks resulting top-
10 candidates using the additional ranking model. We want to answer the question
whether our re-ranking approach can improve the performance of the baseline QA
pipeline after deployment. For that, we use the evaluation corpus (n = 3084) for
training and evaluating our re-ranking method using 10-fold cross-validation, i.e.,
90% of the data is used for training and 10% for testing with 10 different train-test
splits.

The training and testing procedure per data split of the cross-validation is shown
in Algorithm 2. For each sample query q in the train set Ctrain, we include the correct
answer a+ and one randomly selected negative answer candidate a− for a balanced
model training. We skip a sample, if the correct answer is not contained in the top-
10 results: we include 49.4% of the data (see top-10 accuracy of the baseline QA
model in Figure 3). The baseline QA model r and the trained re-ranking method r′

are applied to all sample queries in the test set Ctest . Considered performance metrics

6 We use default word tokenizer, Snowball stemmer and n-gram extraction of the nltk toolkit [3]
7 We use the implementation for Jaccard distance and cosine similarity as found in the following
Github gist: gaulinmp/similarity example.ipynb

https://gist.github.com/gaulinmp/da5825de975ed0ea6a24186434c24fe4

10 Michael Barz and Daniel Sonntag

Algorithm 2: Evaluation Procedure (per Data Split)
Input: a train- and test split of the evaluation corpus Ctrain,Ctest , each including QA-pairs as

tuples (q,a+); the pre-trained baseline QA model for initial ranking r and the
untrained re-ranking model r′.

Output: evaluation metrics.

begin
// training of the re-ranking model
X ←− [];
y←− [];
foreach (q,a+) ∈Ctrain do

R←− r.rank(q) ; // R contains top-10 results
if a+ /∈ R) then

continue with next QA pair
else

// add positive sample
c+←− R[a+] ; // confidence for a+

X .append(f eatures f rom(q,a+,c+));
y.append(1);
// add negative sample
a−←− random a ∈ R\a+;
c−←− R[a−];
X .append(f eatures f rom(q,a−,c−));
y.append(0);

r′.train(X ,y);

// evaluation of the re-ranking model
results←− /0;
foreach (q,a+) ∈Ctest do

R←− r.rank(q) ; // top-10 baseline ranking
R′←− r′.rank(q,R) ; // apply re-ranking
results.append(R′);

return compute metrics(results)

are computed using the re-ranked top-10 results. We repeat the cross-validation 5
times to reduce effects introduced by the random selection of negative samples. We
report the average metrics from 10 cross-validation folds and the 5 repetitions of the
evaluation procedure.

Results. The averaged cross-validation results of our evaluation, in terms of top-n
accuracies and the MRR@10, are shown in Table 3: the top-1 to top-9 accuracies
improve consistently. The relative improvement decreases from 14.83% for the top-
1 accuracy to 1.68% for the top-9 accuracy. The top-10 accuracy stays constant,
because the re-ranking cannot choose from outside the top-10 candidates. The MRR
improves from 0.296 to 0.323 (9.15%).

Incremental Improvement of a Question Answering System by Re-ranking 11

Table 3 Performance metrics of the baseline QA pipeline and our re-ranking method (n = 3084).

Method Relative
Metric Baseline QA Re-Ranking Improvement
top-1 accuracy 0.208 0.239 14.83%
top-2 accuracy 0.299 0.334 11.84%
top-3 accuracy 0.353 0.384 8.99%
top-4 accuracy 0.391 0.415 6.31%
top-5 accuracy 0.417 0.44 5.59%
top-6 accuracy 0.438 0.459 4.83%
top-7 accuracy 0.454 0.471 3.74%
top-8 accuracy 0.466 0.48 3.02%
top-9 accuracy 0.478 0.486 1.68%
top-10 accuracy 0.494 0.494 0.00%
MRR@10 0.296 0.323 9.15%

7 Discussion

Our results indicate that the accuracy of the described QA system benefits from our
re-ranking approach. Hence, it can be applied to improve the performance of already
deployed QA systems that provide a top-10 ranking with confidences as output.
However, the performance gain is small, which might have several reasons. For ex-
ample, we did not integrate spell-checking in our re-ranking method which proved
to be effective in our baseline evaluation. Further, the re-ranking model is based on
very simple features. It would be interesting to investigate the impact of more ad-
vanced features, or models, on the ranking performance (e.g., word embeddings [14]
and deep neural networks for learning similarity functions [8, 15]). Nevertheless, as
can be seen in examples 1, 2 and 4 in Table 1, high-ranked but incorrect answers are
often meaningful with respect to the query: the setting in our evaluation is overcriti-
cal, because we count incorrect, but meaningful answers as negative result. A major
limitation is that the re-ranking algorithm cannot choose answer candidates beyond
the top-10 results. It would be interesting to classify whether an answer is present in
the top-10 or not. If not, the algorithm could search outside the top-10 results. Such
a meta-model can also be used to estimate weaknesses of the QA model: it can de-
termine topics that regularly fail, for instance, to guide data labelling for a targeted
improvement of the model, also known as active learning [22], and in combination
with techniques from semi-supervised learning [9, 6].

Data labelling and incremental model improvement can be scaled by crowd-
sourcing. Examples include the parallel supervision of re-ranking results and tar-
geted model improvement as human oracles in an active learning setting. Results
from crowd-supervised re-ranking allows us to train improved re-ranking models
[19, 11], but also a meta-model that detects queries which are prone to error. The
logs of a deployed chatbot, that contain actual user queries, can be efficiently anal-
ysed using such a meta-model to guide the sample selection for costly human data
augmentation and creation. An example of a crowdsourcing approach that could be
applied to our QA system and data, with search logs can be found in [2].

12 Michael Barz and Daniel Sonntag

8 Conclusion

We implemented a simple re-ranking method and showed that it can effectively im-
prove the performance of QA systems after deployment. Our approach includes the
top-10 answer candidates and confidences of the initial ranking for selecting bet-
ter answers. Promising directions for future work include the investigation of more
advanced ranking approaches for increasing the performance gain and continuous
improvements through crowdsourcing and active learning.

References

1. Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software avail-
able from tensorflow.org.

2. Michael S. Bernstein, Jaime Teevan, Susan Dumais, Daniel Liebling, and Eric Horvitz. Direct
answers for search queries in the long tail. In Proceedings of the 2012 ACM annual conference
on Human Factors in Computing Systems - CHI ’12, page 237, New York, New York, USA,
2012. ACM Press.

3. Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python:
analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

4. Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and Alan Nichol. Rasa: Open Source Lan-
guage Understanding and Dialogue Management. 12 2017.

5. Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Andrea Gesmundo, Neil Houlsby,
Wojciech Gajewski, and Wei Wang. Ask the Right Questions: Active Question Reformulation
with Reinforcement Learning. CoRR, abs/1705.0, 2017.

6. Joseph Chee Chang, Aniket Kittur, and Nathan Hahn. Alloy: Clustering with Crowds and
Computation. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems - CHI ’16, pages 3180–3191, New York, New York, USA, 2016. ACM Press.

7. Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer
open-domain questions. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1870–1879. ACL, 2017.

8. Arpita Das, Harish Yenala, Manoj Chinnakotla, and Manish Shrivastava. Together we stand:
Siamese Networks for Similar Question Retrieval. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages
378–387, Stroudsburg, PA, USA, 2016. Association for Computational Linguistics.

9. Bhuwan Dhingra, Danish Danish, and Dheeraj Rajagopal. Simple and Effective Semi-
Supervised Question Answering. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 582–587. ACL, 2018.

10. Mihail Eric and Christopher D Manning. Key-Value Retrieval Networks for Task-Oriented
Dialogue. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue,
pages 37–49, Saarbrücken, Germany, 8 2017. Association for Computational Linguistics.

11. Ting-Hao ’Kenneth’ Huang, Joseph Chee Chang, and Jeffrey P. Bigham. Evorus: A Crowd-
powered Conversational Assistant Built to Automate Itself Over Time. 1 2018.

Incremental Improvement of a Question Answering System by Re-ranking 13

12. Ting-Hao Kenneth Huang, Walter S. Lasecki, and Jeffrey P. Bigham. Guardian: A Crowd-
Powered Spoken Dialog System for Web APIs. In Third AAAI Conference on Human Com-
putation and Crowdsourcing, 2015.

13. Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. TriviaQA: A Large Scale
Distantly Supervised Challenge Dataset for Reading Comprehension. In Regina Barzilay
and Min-Yen Kan, editors, Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics, ACL 2017, Volume 1: Long Papers, pages 1601–1611. ACL, 2017.

14. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word
Representations in Vector Space. 1 2013.

15. Shervin Minaee and Zhu Liu. Automatic Question-Answering Using A Deep Similarity Neu-
ral Network. 8 2017.

16. Shereen Oraby, Pritam Gundecha, Jalal Mahmud, Mansurul Bhuiyan, and Rama Akkiraju.
”How May I Help You?”: Modeling Twitter Customer ServiceConversations Using Fine-
Grained Dialogue Acts. In Proceedings of the 22nd International Conference on Intelligent
User Interfaces - IUI ’17, pages 343–355, New York, New York, USA, 2017. ACM Press.

17. F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blondel, P Pret-
tenhofer, R Weiss, V Dubourg, J Vanderplas, A Passos, D Cournapeau, M Brucher, M Perrot,
and E Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

18. Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ ques-
tions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 2383–2392. ACL, 2016.

19. Denis Savenkov and Eugene Agichtein. CRQA: Crowd-Powered Real-Time Automatic Ques-
tion Answering System. Fourth AAAI Conference on Human Computation and Crowdsourc-
ing, 2016.

20. Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau.
Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Mod-
els. 7 2015.

21. Iulian Vlad Serban, Ryan Lowe, Peter Henderson, Laurent Charlin, and Joelle Pineau. A
Survey of Available Corpora for Building Data-Driven Dialogue Systems. 12 2015.

22. Burr Settles. Active learning literature survey. University of Wisconsin, Madison, 52(55-
66):11, 2010.

23. Daniel Sonntag. On Introspection, Metacognitive Control and Augmented Data Mining Live
Cycles. jul 2008.

24. Daniel Sonntag. Introspection and adaptable model integration for dialogue-based question
answering. In IJCAI, pages 1549–1554, 2009.

25. Daniel Sonntag. Ontologies and Adaptivity in Dialogue for Question Answering, volume 4 of
Studies on the Semantic Web. AKA and IOS Press, Heidelberg, first edition, 2010.

26. Daniel Sonntag, Ralf Engel, Gerd Herzog, Alexander Pfalzgraf, Norbert Pfleger, Massimo
Romanelli, and Norbert Reithinger. Smartweb handheld - multimodal interaction with on-
tological knowledge bases and semantic web services. In Artifical Intelligence for Human
Computing, ICMI 2006 and IJCAI 2007 International Workshops, Banff, Canada, November
3, 2006, Hyderabad, India, January 6, 2007, Revised Seleced and Invited Papers, pages 272–
295, 2007.

27. Jason D Williams, Kavosh Asadi, and Geoffrey Zweig. Hybrid Code Networks: practical and
efficient end-to-end dialog control with supervised and reinforcement learning. In Proceed-
ings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), volume 1, pages 665–677, Stroudsburg, PA, USA, 2017. Association for
Computational Linguistics.

28. Ledell Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, and Jason Weston.
Starspace: Embed all the things! CoRR, abs/1709.03856, 2017.

29. Xiaobing Xue, Jiwoon Jeon, and W. Bruce Croft. Retrieval models for question and answer
archives. In Proceedings of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval - SIGIR ’08, page 475, New York, New York, USA,
2008. ACM Press.

	Incremental Improvement of a Question Answering System by Re-ranking Answer Candidates using Machine Learning
	Michael Barz and Daniel Sonntag
	1 Introduction
	2 Related Work
	3 Question Answering System
	3.1 Corpora

	4 Baseline Performance Evaluation
	5 Re-Ranking Approach
	6 Re-Ranking Performance Evaluation
	7 Discussion
	8 Conclusion
	References

