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ABSTRACT
The usage of interactive public displays has increased including the
number of sensitive applications and, hence, the demand for user
authentication methods. In this context, gaze-based authentication
was shown to be effective and more secure, but significantly slower
than touch- or gesture-based methods. We implement a calibration-
free and fast authentication method for situated displays based on
saccadic eye movements. In a user study (𝑛 = 10), we compare
our new method with CueAuth from Khamis et al. (IMWUT’18), an
authentication method based on smooth pursuit eye movements.
The results show a significant improvement in accuracy from 82.94%
to 95.88%. At the same time, we found that the entry speed can be
increased enormously with our method, on average, 18.28𝑠 down
to 5.12𝑠 , which is comparable to touch-based input.

CCS CONCEPTS
• Human-centered computing → Human computer interaction
(HCI); Interaction techniques; Interaction design; • Security and
privacy→ Authentication;
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1 INTRODUCTION
An increasing amount of use cases require an authentication of
users prior to interaction with a public display. Typical situations
include making purchases, retrieving sensitive information, or for
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identification purposes. A common class of authentication meth-
ods are knowledge-based approaches, e.g., PIN, password or pat-
terns are entered via touch-input on the public screen or via an
external keyboard. However, these methods are prone residues- or
observation-based attacks. Smudges [Aviv et al. 2010] or thermal
residues [Abdelrahman et al. 2017] can be used to retrieve partial
to full information of an entered PIN or password. Also, attackers
might observe the input by shoulder surfing attacks [Brudy et al.
2014] or more sophisticated attacks involving a camera-based setup
[Ye et al. 2017]. An alternative to knowledge-based approaches
are biometric authentication methods such as fingerprint and iris
scans. However, in this work we concentrate on knowledge-based
and gaze-based authentication in the context of mobile gaze-based
interaction [Barz et al. 2018] and pervasive attentive user interfaces
[Bulling 2016]. Prior works propose authentication mechanisms
based on different modalities to be more robust against attackers.
For example, Kim et al. [2010] use the pressure-signal of touch-
based input to overcome shoulder surfing. Other works introduce
gaze-based methods that track the user’s gaze with cameras or
specialized eye tracking sensors. These methods were shown to
be more secure than, e.g., touch-based input [De Luca et al. 2008;
Khamis et al. 2018]. In addition, gaze-based input allows hands-free
authentication and interaction which is more hygienic. This is an
important factor, due to the high contamination of public displays
[Gerba et al. 2016]. A major drawback of many gaze-based authen-
tication methods is a mandatory calibration [Best and Duchowski
2016; Kumar et al. 2007]. These approaches are not suited for public
displays, because calibration takes time and is perceived as cum-
bersome [Majaranta and Bulling 2014]. But interaction methods for
public displays shall be designed for immediate usability [Khamis
et al. 2015]. Calibration-free methods exist, but tend to be slow
[Cymek et al. 2014; De Luca et al. 2007; Khamis et al. 2018; Rajanna
et al. 2017] or suffer from low success rates [De Luca et al. 2009;
Khamis et al. 2018].

In this work, we implement a novel gaze-based and calibration-
free authentication method, EyeLogin, that addresses the limitations
of prior approaches (see Figure 1b). Our system uses the direction
of saccadic eye movements in a radial interaction design, similar to
[Best and Duchowski 2016], that facilitates accurate and fast PIN
entry. We use a low-cost remote eye tracking sensor that allows
broad integration into public displays and spontaneous user inter-
action. Other than the approach described in [Best and Duchowski
2016], our method is calibration-free. In addition, we implement the
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(a) Interface of CueAuth (b) Interface of EyeLogin (c) The setup of the study

Figure 1: We compare two gaze-based authentication methods. CueAuth (a) is based on a dial pad layout and smooth pursuit
eye movements. EyeLogin (b) uses a radial digit pattern and saccadic eye movements for PIN entry. The setup of our study is
shown in (c).

state-of-the-art method CueAuth1, that is described in [Khamis et al.
2018], as a baseline system. In a user study (𝑛 = 10), we compare
both authentication methods in terms of PIN entering accuracy, the
PIN entry time, the usability and the perceived workload.

2 RELATEDWORK
Prior gaze-based authentication methods can be classified into
"dwell-based" and "gesture-based" methods. In dwell-based systems,
the user makes selections by fixating elements for a pre-defined
time threshold. Gesture-based systems use eye movement patterns
that can be recognized automatically, e.g., combinations of fixations,
saccades and smooth pursuit eye movements. Kumar et al. [2007] in-
troduced "EyePassword," a dwell-based authentication method that
displays a virtual keyboard or number pad for entering a password
or a PIN. Their system achieves low error rates that are comparable
to interaction with a physical keyboard, but the entry time is higher
and the method requires prior calibration of the eye tracker. Best
and Duchowski [2016] introduced a PIN entry method that relies
on a spatial interaction design: they show digits in a circular design
that imitates a rotary dial phone. A digit is entered by moving the
gaze from the center of the screen to a digit-specific area and back.
The average entry time is smaller than five seconds (M = 4.62).
However, the system suffers from major drawbacks: it has a low
accuracy (M=71.16%), does not support real-time authentication,
and requires user calibration prior to each authentication. We adopt
the circular design, because it enabled faster input times compared
to the numpad design in [Best and Duchowski 2016]. However, our
implementation is calibration-free and allows more accurate digit
selection. Calibration-free eye tracking methods address the prob-
lem of time-consuming and tedious calibration procedures, which is
important for spontaneous interaction with public displays [Khamis
et al. 2015]. One approach to calibration-free gaze-based interaction
is to use gaze gestures. De Luca et al. [2007] proposed EyePIN for
gesture-based PIN entry via eye movements. The error rate is low
(< 10%), but the patterns need to be memorized and, with 54𝑠 the

1In CueAuth [Khamis et al. 2018], three authentication methods are described based on
touch, gesture and gaze input, respectively. We refer to the gaze-based version unless
stated otherwise.

average input time is very high. The authors presented the exten-
sion EyePassShapes using shape-based gestures, similar to unlock
patterns which are easier to remember [De Luca et al. 2009]. The
entry time improved to 12.52𝑠 , but the error rate slightly increased.
Another approach to facilitate calibration-free gaze input is based
on smooth pursuit eye movements: eye movements are correlated
with trajectories of elements in a dynamic user interface. Rajanna
et al. [2017] proposed a system in which users have to follow three
pre-defined moving shapes out of 36 to authenticate. They achieve
a high accuracy of 96%, but the user can select from 12 shapes only
which yields a smaller password space compared to a four-digit
PIN. Each digit entry takes 5 seconds and a PIN entry takes at least
15 seconds. Liu et al. [2015] introduced a method for smartphones:
the system uses the front-facing camera to track the eyes. Four
randomly sorted objects, each assigned with a unique number be-
tween 1-4, are placed in the middle of the screen. To enter a PIN,
the user follows the digit trajectory to each edge of the screen. The
input time is low (9.6s), but also the accuracy (77.1%). With 1024
possibles PINs, the password space is 10x smaller compared to a
four-digit PIN. Cymek et al. [2014] implemented another PIN entry
method based on smooth pursuits. Each digit is shown as a button
and follows a simple trajectory of three straight movements (combi-
nations of up, down, left, right). They achieve a high detection rate
of 91.55%, but the minimum entry time is high (25𝑠). More recently,
Khamis et al. [2018] introduced CueAuth which is based on a num-
ber pad layout. They implement a gaze-based version that, instead
of moving buttons, includes a small moving circles in a button. The
movements of the digits are either linear, circular, or zigzag. On
average, the entry time is 26.35𝑠 with minimal entry times around
18𝑠 . We implement CueAuth as a baseline system and compare the
performance in terms of accuracy and entry time with our novel
authentication method. Both interfaces are shown in Figure 1.

These gaze-based authentication methods were shown to be
more secure than traditional PIN entry systems. However, all sys-
tems suffer from one or more disadvantages including low accuracy
in recognizing the entered PIN, high entry times, or the need of
prior calibration. We implement a novel calibration-free authentica-
tion system that addresses these flaws: our goal is to enable secure
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and fast gaze-based authentication on public displays with high
accuracy.

3 GAZE-BASED AUTHENTICATION
In the following, we describe the design and implementation of the
gaze-based CueAuth method [Khamis et al. 2018] and our novel
authentication method that is based on saccadic eye movements.
We implement CueAuth as baseline system, because it is calibration-
free, implements the same knowledge-based authentication method
(four-digit PIN entry) and it is one of the most recent and compre-
hensive works that explores authentication on public displays.

3.1 CueAuth
We implement CueAuth as described in [Khamis et al. 2018]. The
central concept of CueAuth is matching smooth pursuit eye move-
ments of a user with the trajectory of moving digits (0-9) in the
interface (see Figure 1a). The interface renders a virtual number
pad. Each digit is presented in a small circle that moves with a pre-
defined unique trajectory. The trajectories are either linear, circular
or zigzag shaped as proposed in [Vidal et al. 2013]. To authenticate,
the user needs to follow the movement of four digits in a row that
form a PIN. For each iteration and match, the interface provides
visual feedback in a separate text view by adding an asterisk symbol.
Addressing the known limitations of CueAuth, we add a one second
break after the trajectory-based animation ends to allow the user
to re-focus and to provide feedback when the matching process
begins and ends. The actual matching begins after the animations
of the digits stop . We compare the trajectories of the interface
controls with the relative eye movements of the same time-frame.
We calculate the Pearson correlation for two axes (x and y) and
average the correlation coefficients in the Correlate function. If
the mean correlation 𝑐 ≥ 0.8, the digit is stored and the user re-
ceives immediate feedback of the match (asterisk). If more than
one trajectory reaches the threshold detection threshold of 0.8, we
choose the digit with the higher correlation. We call Correlate
with two different time-windows: [2s-4s] and [1.5s-4s] that start
2𝑠 or 2.5𝑠 before the animation stops. The digit with the highest
correlation coefficient is appended to the stored PIN.

3.2 EyeLogin
We propose a novel algorithm for calibration-free authentication
which is based on saccadic eye movements. EyeLogin shows the dig-
its 0 to 9 in a radial design (see 1b), similar to [Best and Duchowski
2016]. At the center, we present feedback on the progress (one as-
terisk per entered digit appears) and show miniaturized digits as
direction cues for the user to prevent errors. A dashed line connects
the inner and outer digits to guide the user’s gaze. The user starts
the authentication process by pressing the space bar while fixating
the center area. This trigger is required to overcome Midas’ touch
problem inherent in gaze-based interaction and could be replaced
by any trigger in the future, e.g., presence detection in combination
with a long fixation or speech-based hotwords known from digital
assistants. When the authentication process is started (trigger), the
initial gaze position is stored as reference point 𝑔𝑎𝑧𝑒_𝑐 and pro-
vided as input to EyeLogin . The user enters a digit by fixating it and
returning the focus to the center position. We leverage the quick

saccadic eye movement between two fixations to determine the
relative direction of the eye movement and to detect the digit of
choice: we determine the farthest point𝑚𝑎𝑥_𝑝 from the reference
point 𝑔𝑎𝑧𝑒_𝑐 and calculate the direction vector 𝑑𝑖𝑟_𝑛 with 𝑔𝑎𝑧𝑒_𝑐
as origin and𝑚𝑎𝑥_𝑝 as destination point. The angle between the
y-axis and the direction vector allows to infer the fixated digit : each
digit is assigned to a certain angular sector. Upon detection, the
system gives feedback by displaying an additional asterisk in the
center area. Showing the feedback at the center region ensures that
the user returns its focus to this point as expected by the algorithm.
This process is repeated four times to complete the PIN entry. One
limitation is, that users might turn their gaze to the next digit before
returning to the center area. This would cause an erroneous input.
However, this error type occurred rarely in our study.

4 EVALUATION
We conduct a user study (n=10) to compare our novel authentica-
tion method EyeLogin to the existing eye-tracking based method
CueAuth. We investigate the effectiveness, efficiency, usability and
perceived workload of both methods in a public display setting.
We adopt the experimental design from Khamis et al. [2018] to
ensure comparability with their results. Hence, we face the same
problem that a consecutive PIN entry is no realistic scenario and
might negatively impact our results. However, this should not cause
problems due to our within-subjects design: the study is designed
as a repeated measures experiment and is conducted with the in-
dependent variable authentication method as the within-subject
factor. We recruited 10 students (two females and eight males) with
normal or corrected to normal vision aged between 25 and 31. One
participant with weak vision refrained from wearing eye correction,
but did not report any problems. Two of the participants had prior
experience with eye tracking.

4.1 Conditions & Metrics
We investigate the performance and usability of the authentication
methods EyeLogin and CueAuth. For each method, we ask partici-
pants to enter 11 PINs in a training phase and 17 PINs in a main
phase, totalling to 28 PINs per method and user. The instructor
vocalizes the randomly selected four-digit PIN before the partici-
pant starts the authentication procedure by pressing the space-key.
They receive automatic feedback about the progress as described
above, but not whether a digit or the complete PIN was recognized
correctly. To measure the performance of both methods, we use
the following metrics: the PIN entry time, the accuracy in entering
a PIN, the System Usability Scale (SUS) as usability measure, and
the NASA TLX score as measure for the perceived workload. The
PIN entry time is measured as the time between the recognition
of the trigger (pressing the space bar) and the recognition of the
fourth digit. The PIN accuracy is the average number of correct PIN
entries (all digits are entered correctly). A false entry is counted in
one or more digits are incorrect.

4.2 Procedure
After participants signed a informed consent form, the instruc-
tor explains the study. The instructor presents an authentication
method (counterbalanced order) by demonstrating the interface and
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Figure 2: Results from our user study (𝑛 = 10) including a box-plot for the accuracy of PIN entry (a) and for the PIN entry time
(b), and a bar chart diagram visualizing the NASA TLX results: mean ± SD (c). All charts show the results for the main phase
of EyeLogin (blue) and CueAuth (yellow, dotted).

by explaining how a digit or password is entered. In the training
phase (11 PINs), the participant can familiarise with each method by
entering three simple PINs, followed by eight random PINs. If the
instructor detects major problems, the user is corrected. In the main
phase, the participant enters 17 PINs. Afterwards, the participant
fills in a NASA TLX [Hart and Staveland 1988] form to asses the
perceived workload. This procedure is repeated with the remaining
authentication method. After all tasks are completed, the partici-
pant fills in a questionnaire including demographic questions and
items of the System Usability Scale (SUS) [Brooke 1996] as well as
open-ended questions for each authentication method. The order
of the input methods is counterbalanced to avoid ordering effects.

4.3 Apparatus
A 27-inch widescreen monitor with a resolution of 1920x1080 pixels
is used to display the authentication interfaces. We use the binocu-
lar Tobii 4C remote eye tracker [Tobii Gaming 2019] with a 60Hz
sampling rate, which is attached below the screen (see Figure 1c).
Prior to all sessions, the eye tracker is calibrated once by the study
instructor: we use the same calibration for all participants. Partic-
ipants are seated approximately 60cm in front of the display. A
keyboard is provided to start the authentication trials. For analysis,
we store the participant ID, the timestamped eye movements, and
synchronized movements of all smooth pursuits stimuli (CueAuth
only) for every PIN entry attempt. Further, we store the recognized
PIN, the correct PIN, and the answers to the questionnaire and the
NASA TLX items.

4.4 Hypotheses
We hypothesize that users are more accurate in entering PINs with
EyeLogin compared to CueAuth, because directed saccadic move-
ments are seemingly less error-prone than more complex smooth
pursuits (H1). In addition, we expect that authentication is faster us-
ing our saccade-based method EyeLogin than using CueAuth which
is bound to long animation times (H2). Further, we expect that

the gains in effectiveness (accuracy) and efficiency (time) have no
negative impact on the usability and the perceived workload (H3).

4.5 Results
For both methods, we observe the accuracy, the entry time, the
NASA TLX and the SUS score for entering PINs. We report the
results of the main phase (17 PINs), because we found no significant
differences to the results of the training phase. To test for statistical
significance, we use the paired samples t-test2. The Shapiro-Wilk
test is used to check whether the differences of the paired samples
are from a normal distribution and, hence, no assumption of the
dependent t-test is violated. We also checked whether the order of
methods has an effect on our dependent variables, but found no
significant differences using an independent t-test and the order as
a between groups factor (𝑝 > .05).

4.5.1 Accuracy. Using our implementation of CueAuth, the users
achieve a mean accuracy of 82.94% (𝑆𝐷 = 11.58). This is close
to the results from Khamis et al. [2018] which reported 82.72%
(𝑆𝐷 = 38.53). For our proposed method EyeLogin, we observe an
accuracy of 95.88% (𝑆𝐷 = 6.23), which is 12.94% better than the
CueAuth-baseline (see Figure 2a). This difference is statistically
significant with 𝑡 (9) = 3.18, 𝑝 = .012. In addition, our gaze-based
method performs better than the best method of Khamis et al. [2018]
that is based on touch interaction (𝑀 = 93.38%, 𝑆𝐷 = 26.05).

4.5.2 Entry Time. On average, we measure entry times of 23.41𝑠
(𝑆𝐷 = 2.28) for CueAuth, which is similar to the result of 26.35𝑠 re-
ported in the literature [Khamis et al. 2018]. Their reported standard
deviation of 22.09 is much higher compared to our implementation.

Using EyeLogin, we observe average pin entry times of 5.12𝑠
(𝑆𝐷 = 1.09). The time saving of 18.28𝑠 compared to the baseline
(see Figure 2b) is statistically significant (𝑡 (9) = 24.063, 𝑝 < .001).
The touch-based method in [Khamis et al. 2018] is reported to be
the fastest and is, with an average of 3.73𝑠 (𝑆𝐷 = 1.07𝑠) only slightly
faster than our proposed gaze-based approach.
2We use the 2-tailed paired samples t-test in SPSS with an alpha-level of 5%
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(a) Incorrect PIN (expected: 1628; detected: 1629) (b) Correct PIN (expected: 2487) (c) Incorrect PIN (expected: 2487; detected: 2485)

Figure 3: Visualizations of the raw gaze signal of individual participants from our study including three trials using EyeLogin.
Trials a) and c) result in a wrong PIN entry, b) shows the sequence of a successful trial. The colors indicate the input order
(green, orange, yellow, pink), the dot size relates to the order of gaze samples (increasing radius corresponds to increasing
timestamps) and the red dot marks the point𝑚𝑎𝑥𝑝 from our algorithm.

4.5.3 Perceived Workload and Usability. We use the NASA TLX
questionnaire to evaluate the perceived workload as suggested in
Khamis et al. [2018]. The mean scores for all dimensions of the test
are reported in Figure 2c. None of the differences are significant as
determined by a paired samples t-test per dimension (𝑑 𝑓 = 9;𝑝 >

.05). Also, we ask the participants to fill in a SUS questionnaire,
which results in a subjective usability score, for both methods. We
receive an average score of 66.5 (𝑆𝐷 = 18.72) for CueAuth and 75.75
(𝑆𝐷 = 15.28) for EyeLogin (higher is better). However, the difference
of 9.25 points is not significant (𝑡 (9) = −1.075, 𝑝 = .31).

4.5.4 Qualitative Feedback. We collect qualitative feedback via
open-ended questions asking participants to note pros and cons
for each method and to provide suggestions for improvements.
Analysing the answers, we find that EyeLogin is perceived as fast
(7/10) and easy to use (7/10). Three participants criticize that blinks
are likely to cause errors during pin entry. For CueAuth, participants
state as advantages that the layout is familiar (4/10) and easy to use
(2/10). The participants perceive CueAuth as slow (7/10) and tiring
(4/10). Two participants criticize that the system was not sensitive
enough in recognizing their input.

5 DISCUSSION
The results of our evaluation show that our authentication method
EyeLogin is significantly more accurate than the baseline system
CueAuth. Users succeed in entering a PIN in 95.88% of all trials
which is 12.94% better than the baseline and confirms H1. In ad-
dition, our gaze-based method achieved a similar accuracy to the
touch-based version of CueAuth as reported in [Khamis et al. 2018].
Further, our method performs more accurately than the method
by Best and Duchowski [2016] with 71.16% accuracy, which is also
based on a circular design, but, nevertheless, requires user calibra-
tion. The PIN entry times for EyeLogin are tremendously lower than
for CueAuth (significant). On average, users need 5.12𝑠 to enter a
four-digit PIN which is 18.28𝑠 faster than measured for the baseline

CueAuth (confirms H2). We measured similar PIN entry times using
our implementation of CueAuth compared to the reported results
by Khamis et al. [2018], and our result is close to the PIN entry
times of their touch-based version (3.73𝑠). We do not know whether
EyeLogin achieves the same level of security than CueAuth (0.05%
of attacks were successful, if the eyes and the display content have
been visible). This evaluation is out of scope of this paper and will
be the target of future work.

We used the SUS and the NASA TLX questionnaires for measur-
ing the usability and the perceived workload of both authentication
methods. The results do not reveal any significant differences for
the two considered methods which suggests that we can confirm
H3. Further, we observe a higher average SUS for EyeLogin (75.75)
than for CueAuth (66.5). This might indicate that our authentica-
tion method has a better usability than the baseline system. For
comparison, other works using the SUS questionnaire achieve, on
average, a score of 69.5 (𝑛 = 273) [Bangor et al. 2009].

5.1 Limitations and Future Work
EyeLogin enables fast and reliable input for authentication on public
displays on the same level of performance than more common
touch-based methods. However, a few limitations remain including
a required start trigger to overcome the Midas touch problem, some
error types that cause avoidable authentication fails and potential
vulnerabilities to camera-based attacks. We address each of these
limitations and provide suggestions how they could be solved.

5.1.1 Midas Touch Problem. Our system requires users to press the
space bar to capture the reference gaze position 𝑔𝑎𝑧𝑒𝑐 and start the
authentication. Using an additional modality for disambiguating the
gaze-based input [Oviatt et al. 2017; Qvarfordt and Pernilla 2017]
is common practice. However, on public displays this trigger needs
to be replaced by more suitable alternatives like touching a button.
Other modalities include speech-based input: an instruction can be
shown at the central area of the user interface asking the user to
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start the authentication by vocalizing a trigger word. A pure gaze-
based method can be realized by using a dwell-time based trigger to
start the authentication. The presence of a user can be detected by
the presence or absence of gaze data from the eye tracking sensor.

5.1.2 Error Types. For EyeLogin, we observe two common error
types that cause a wrong PIN entry. Figure 3a) shows the raw
gaze signal of a user that moved its gaze to the wrong digit (9),
subsequently corrects the gaze position (8) and returns to the center.
However, EyeLogin detects 9 as input resulting in a wrong digit
sequence. Figure 3b shows a similar case, but the correction (for 4
and 8) is done earlier and EyeLogin detects the correct sequence.
Figure 3c shows a trial that failed due to a blink before fixating the
last digit: 7. The blink resulted in a noisy gaze signal with distant
samples, causing the algorithm to choose the wrong digit (5). A
further limitation is, that users might turn their gaze to the next
digit before returning to the center area, which is not supported.

5.1.3 Camera-based Attacks. EyeLogin is robust against traditional
shoulder-surfing attacks, because an attacker must observe the
display and the eyes of a user during PIN entry. More sophisticated
attackers might attach a camera to the public display and infer the
password from a video stream that captures the user’s face and
eye movements. We will use the collected video feeds and display
contents from our study to evaluate the vulnerability of our PIN
entry method similar to [Khamis et al. 2018]. We will also test a
randomized arrangement of digits for EyeLogin, in case that our
method suffers from an increased vulnerability. This was perceived
as more secure by all our participants. Better security through
randomly arranged digits probably needs to be traded off against
usability and entry time.

6 CONCLUSION
In this paper, we presented a calibration-free and gaze-based au-
thentication method for public displays. In a user study, we could
show that our method EyeLogin, that leverages saccadic eye move-
ments, performs significantly faster and significantly more accurate
than CueAuth, a state-of-the-art gaze-based authentication system
from the literature [Khamis et al. 2018]. With this work, we pre-
sented the first calibration-free authentication method using gaze
that is as effective and efficient than less secure input modalities
such as touch- and gesture-based input.
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