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Figure 1: Visualization of the two orthogonal criteria for successful use of haptic proxies in VR: sufficient similarity and
complete co-location. Haptic proxies are highlighted with blue and virtual objects with orange.

ABSTRACT

In this position paper we discuss three criteria for successful use of
haptic proxies in virtual reality, present a taxonomy of techniques
using haptic proxies, and argue that it is only a subset of these
techniques that are useful when relying on everyday items as haptic
proxies.
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1 INTRODUCTION

Physical props serving as proxies for virtual objects (haptic proxies)
offer a cheap, convenient, and compelling way of delivering kines-
thetic, proprioceptive, and cutaneous feedback to users immersed in
virtual reality (VR). In this position paper, we discuss three criteria
for successful use of haptic proxies in VR, we present a taxonomy
of techniques relying on haptic proxies, and we discuss the utility
of these techniques when it comes to relying on everyday objects
as haptic proxies.

2 SUCCESS CRITERIA FOR HAPTIC PROXIES
IN VR

Most benefits of using haptic proxies as a source of touch in VR can
be attributed to the fact that users interact with physical objects.
Physical objects eliminate the need for simulating material and
geometric properties, such as texture, hardness, weight, shape, and
size. However, the limitations of haptic proxies are also imposed by
the use of physical objects. The utility of haptic proxies decreases
in proportion to the complexity of the virtual environment (VE).
As VEs grow more complex, a larger number of haptic proxies with
different material and geometric properties is needed. As we have
argued elsewhere [18], these constraints make it useful to consider
at least three high-level criteria for successfully deploying haptic
proxies in VR:

(1) Sufficient similarity: All haptic proxies touched by the
user should be sufficiently similar to their virtual counter-
parts with respect to their haptic properties (e.g., shape, size,
and weight).

(2) Complete co-location: When the user touches a virtual
object, it should be co-located with a haptic proxy (i.e., the
real and virtual transformations should be aligned).

(3) Compelling contact forces: If the user touches a virtual
object affected by contact forces originating in the VE, then
compelling stimuli should be provided (e.g., stimuli repre-
senting forces produced by impacts or resistance).

Notably, the criteria of sufficient similarity and complete co-
location are orthogonal, as it is possible to satisfy one without
satisfying the other. For example, a subset of the virtual objects may
be co-located with perfect physical replicas, or all virtual objects
may be represented by physical props that are not sufficiently
similar to their virtual counterparts (see Figure 1). Contrarily, the
criterion of compelling contact forces is not independent of the
other criteria. If both sufficient similarity and complete co-location
are perfectly satisfied (e.g., if the VE and the physical environment
are perfect copies), then all interactions between a grasped virtual
object and the VE, will be accompanied by contact forces resulting
from the interaction between the corresponding physical objects.
However, it is usually only possible to achieve perfect similarity
and co-location in relation to very simple VEs offering limited
interactions. Thus, it is relevant to treat compelling contact forces
as a separate criterion in relation to many virtual scenarios.

Finally, the degree to which the three criteria need to be satisfied
is likely to vary depending on the type of VR application. For ex-
ample, some VR training applications may demand perfect realism
to ensure skill transfer, whereas the requirements may be relaxed
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somewhat in relation to some entertainment applications, espe-
cially if the virtual scenario does not abide by the rules of physical
reality [16].

3 TAXONOMY AND RELATED WORK

The taxonomy divides techniques relying on haptic proxies into
four broad categories based on how they address one or more of the
three criteria outlined in the previous section. The categorization
is based on two dichotomous categories pertaining to two orthog-
onal dimensions. First, we distinguish between techniques based
on what reality is being manipulated. Is the physical or virtual
environment being manipulated? Second, we distinguish between
techniques based on when the manipulation occurs. Is the manipu-
lation performed offline before the user is exposed to the VE or real
time during exposure? Figure 2 visualizes the taxonomy, which we
describe in more detail throughout the following.

3.1 Offline Physical Manipulation

Haptic proxies can be deliberately made to replicate virtual objects
or VEs. For example, Insko et al. [11] physically replicated a simple
interior VE using wooden boards and Styrofoam walls. One of our
previously studied systems incorporated physical props designed
so as to allow for the interaction with virtual objects inside a VR
application for immersive data exploration [29]. Work involving
physical replication is often limited to relatively simple tasks that
only require interaction with a single virtual object [8]. Moreover,
recent work has sought to automatize the design and construction
of proxies approximating the properties of virtual objects without
the need for near-perfect physical replicas [7, 9, 31].

3.2 Offline Virtual Manipulation

Offline virtual manipulation implies that virtual objects and VEs are
modelled to match the physical environment before the application
is run. This approach addresses the criteria of sufficient similarity
or complete co-location, at the expense of virtual variety and com-
plexity. Simeone et al. [16] proposed that for some applications it
is sufficient to virtually replicate the layout of the physical envi-
ronment without perfectly replicating all virtual objects (e.g., the
bridge of a space ship may be modelled to fit a living room and a
torch may serve as a proxy for a lightsaber). Such Substitutional
Realities give developers a larger degree of freedom since the cri-
terion of sufficient similarity is relaxed somewhat. Similarly, Sra
et al. [17] showed that the layout of physical environments can
serve as the basis for large procedural generated VEs, which can be
navigated on foot as long as the VEs include barriers that restrict
virtual movement.

3.3 Real-Time Physical Manipulation

Because head-mounted displays (HMDs) deprive users of visual
information about the physical environment, this environment can
be manipulated during runtime. Robotic arms can be used to en-
sure correct positioning of haptic proxies with varying textures
[1]; thus addressing both the criteria of sufficient similarity and
complete co-location. Drones have been used in a similar manner
to enable direct interaction with virtual objects [10] and to enable
compelling contact forces when interaction is performed indirectly
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Figure 2: Taxonomy for categorizing techniques using hap-
tic proxies in VR. The vertical axis subdivides the techniques
based on what reality is being manipulated (physical or vir-
tual), and the horizontal subdivides the techniques based on
when the manipulation is performed (offline or real-time).

[23]. Moreover, approaches such as the iTurk [5] subtlety force
users to reconfigure haptic proxies so they can serve as a proxies
for different virtual objects. Zenner and Kriiger [25] proposed Dy-
namic Passive Haptic Feedback which involves augmenting physical
props with mechanical actuators to modulate haptic perception.
For example, the Shifty [25] changes the prop’s internal weight
distribution to manipulate the inertia experienced when handling
different objects, and Drag:on [26] changes the haptic proxy’s sur-
face area to elicit the impression of interacting with objects with
varying scales, materials, and fill states. Moreover, physical props
augmented with vibrotactile actuators can be used to approximate
contact forces during virtual impacts [8, 22].

3.4 Real-Time Virtual Manipulation

Visual dominance makes it possible to subtly affect haptic percep-
tion by manipulating the VE or users’ virtual bodies when they
are wearing a HMD. Sufficient similarity can be addressed using
Redirected Touching [12] and Resized Grasping [4], which warps
the mapping between users’ real and virtual hand and finger move-
ments to enable virtual objects of different shape or size to be
mapped onto a single haptic proxy. To ensure complete co-location,
walking users can be repeatedly steered back to the same haptic
proxies through Redirected Walking, which manipulate either the
mapping between the users’ real and virtual movements [13] or
the virtual architecture [19]. Complete co-location of objects in
peripersonal space has been addressed in a similar manner by warp-
ing VEs, users’ virtual arms, or both using Haptic Retargeting [3].
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Moreover, change blindness can be leveraged to remap virtual ob-
jects onto haptic proxies behind users’ backs [14], and redirected
touching has been combined with two haptic proxies (a tool and a
surface) to provide compelling contact forces during tool-mediated
interaction in VR [18]. To support researchers and developers in
crafting solutions that employ haptic retargeting, we recently pro-
posed an open-source hand redirection toolkit [24]. Similar efforts
were taken by the redirected walking research community with the
publication of a toolkit for redirected walking [2].

3.5 Combining Techniques of Different
Categories

The combination of techniques from different categories is not
excluded and bears great potential [28]. In recent research that
investigated the scenario of haptically conveying the weight dis-
tribution of a virtual object, we could demonstrate and validate
the benefits of combining real-time physical and real-time virtual
manipulation. In this scenario, a technique that combined a weight-
shifting proxy (i.e. real-time physical manipulation in the form
of dynamic passive haptics) and haptic retargeting (i.e. real-time
virtual manipulation in the form of hand redirection) was com-
pared to the individual techniques. The results highlight that the
combination of both concepts can better solve the challenges of
similarity and co-location than the individual techniques alone can
do [28, 30].

4 EVERYDAY HAPTIC PROXIES FOR VR

As evident from the previous section, recent years have seen in-
creasing interest in the use of haptic proxies as a means of delivering
virtual touch. Nevertheless, it is worth questioning the utility of
some of these techniques if everyday items are to be integrated
in virtual experiences. Everyday settings, such as homes, work-
places, or schools, impose additional restrictions and present novel
challenges.

Offline physical manipulation is tantamount to the creation of
haptic proxies based on the objects present in the VE. Because most
everyday items cannot be physically manipulated, the utility of
offline physical manipulation is limited. However, a small selection
of everyday items may be subject to offline physical manipulation.
For example, the HapTwist [31] makes it possible to use the same
reconfigurable toy (Rubik’s Twists) as a haptic proxy for multiple
virtual objects.

On the other hand, offline virtual manipulation, such as Sub-
stitutional Reality, may achieve acceptable levels of co-location
and similarity. However, the design space for Substitutional Re-
ality remains relatively unexplored [15]. Even though a growing
body work has explored the extent to which users will tolerate mis-
matches between real and virtual objects and how varying levels
of discrepancy affect behavior and performance [4, 6, 8, 16, 22, 27],
these effects are not fully understood, and it remains uncertain how
they vary across applications demanding different levels of realism.
It it is still difficult to dynamically generate VEs from physical en-
vironments, and it is not straightforward to differentiate between
objects that can be used for interaction and the background VE.
Finally, there is a need for authoring tools enabling creation of
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virtual content that can be meaningfully deployed across varying
physical environments.

Concerning real-time physical manipulation, the use of everyday
items is still constrained by the limited ability to modify and aug-
ment them with fragile mechanical parts. However, it is conceivable
that everyday items can be augmented relatively easily with simple
vibrotactile actuator modules, which can be used to manipulate per-
ception of haptic properties and approximate contact forces during
virtual interactions. Recent research also started to explore how
everyday robots could ensure co-location in proxy-based VR sce-
narios [20, 21]. Moreover, approaches relying on human actuation,
such as the iTurk [5], could be used to subtly repurpose everyday
haptic proxies.

The techniques belonging to the category real-time virtual ma-
nipulation are perhaps the most promising in relation to everyday
haptic proxies. Specifically, because the manipulation is entirely vir-
tual, there are no limits to what everyday items can be incorporated
into the VE. Furthermore, these approaches can be combined with
Substitutional Realities to enable incorporation of the entire every-
day setting while allowing for interaction with a larger number
of virtual objects with varying haptic properties. The availabil-
ity of open-source software toolkits for hand redirection [24] and
redirected walking [2] have potential to lower the barriers for de-
velopers and researchers to experiment with integrating everyday
proxies in VR. However, in an everyday setting, real-time virtual
manipulation also necessitates dynamic generation of virtual con-
tent from physical environments, and several of these approaches
are contingent upon information about what objects the user will
interact with next. This introduces the need for highly specific
scripted scenarios or the ability to reliably predict users’ behavior.

Finally, it is unlikely that any one approach will be able to simul-
taneously ensure sufficient similarity, complete co-location, and
compelling contact-forces. Thus, it is necessary for future work
to explore how different techniques can be combined dynamically
based on information about the state of physical and virtual envi-
ronments and the users’ current and future actions.
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