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Abstract: Processing visual stimuli in a scene is essential for the human brain to make situation-
aware decisions. These stimuli, which are prevalent subjects of diagnostic eye tracking studies, are
commonly encoded as rectangular areas of interest (AOIs) per frame. Because it is a tedious manual
annotation task, the automatic detection and annotation of visual attention to AOIs can accelerate
and objectify eye tracking research, in particular for mobile eye tracking with egocentric video feeds.
In this work, we implement two methods to automatically detect visual attention to AOIs using
pre-trained deep learning models for image classification and object detection. Furthermore, we
develop an evaluation framework based on the VISUS dataset and well-known performance metrics
from the field of activity recognition. We systematically evaluate our methods within this framework,
discuss potentials and limitations, and propose ways to improve the performance of future automatic
visual attention detection methods.

Keywords: eye tracking; visual attention; eye tracking data analysis; area of interest; computer vision

1. Introduction

Eye tracking studies in many fields use Areas of Interest (AOIs) and visual attention
to these AOIs as a common analytical helper tool. The resulting metrics are built to
include events like AOI hits, dwells and transitions, which are based on raw gaze data or
fixations with respect to a number of pre-defined AOIs. AOIs are tightly coupled to the
hypotheses of a study because the corresponding metrics are used to argue for confirming
or rejecting a hypothesis about visual stimuli. Hence, AOIs are very important, but incorrect
placement of AOIs, and also inaccurate or imprecise mapping of gaze events to AOIs can
heavily undermine the validity of a research study [1]. This adds the requirement of high
robustness, accuracy, and precision for gaze estimation and gaze to AOI mapping methods.
An AOI is usually defined as a spatial region with respect to the visual stimuli shown in a
study, e.g., by defining a rectangular mask. For remote eye tracking with a static stimulus,
it can be defined once and reused for every participant. The complexity increases if the
stimulus is a video with dynamic AOIs, for example if they are linked to a dynamically
moving object in the video. In this case, an AOI must be annotated for each video frame.
This can be done frame-by-frame or, more efficiently, by defining bounding boxes for
keyframes and interpolating intermediate frames [2]. Annotations can be reused if the
video is the same for all participants: the participants’ individual gaze or fixation points
can be mapped to these AOI regions automatically. In mobile eye tracking studies, each
recording comes with an individual video. Hence, AOI definitions using frame-wise and
keyframe-based annotation approaches cannot be reused which makes them inefficient.
An alternative is the fixation-wise annotation: per fixation, an annotator has to decide
whether an AOI is hit or not based on the visual stimulus around the fixation point [1].
A typical fixation lasts around 200–400 ms, which reduces the annotation effort compared
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to a frame-wise annotation. However, fixation-wise annotation does not remedy the need
to annotate AOIs in every recording of every participant. A solution can be found in
attaching fiducial markers to, e.g., a target stimulus in 2D [3] and 3D [4], an interactive
area [5], or tangible objects [6]. In this research, we aim at circumventing the requirement
to instrument the environment with obtrusive markers.

Previous methods tackled the automatic analysis of head-mounted eye tracking data in
uninstrumented environments [7–16]. Drawbacks of these methods include, e.g., a missing
support for real-time applications, and the restriction to a limited number of classes
(≤12). Further, not all papers report quantitative evaluation results [7,8,14] or do not
properly describe their evaluation metrics [9,10], or use inadequate metrics that ignore
temporal aspects [12]. Some commercial tools offer automatic mapping of the gaze signal
in world video coordinates to a reference frame that defines AOIs (For example, see
the https://www.tobiipro.com/learn-and-support/learn/steps-in-an-eye-tracking-study/
data/manual-and-assisted-mapping/, accessed on 15 June 2021). However, this is only
possible for a limited number of reference frames.

In this work, we implement two methods for automating the detection of attention to
task-related objects or AOIs in real-time. This can help in analyzing complex interaction
behavior of humans: it bears the potential to facilitate novel real-time adaptive human-
computer interaction [7,17], and to boost the efficiency in research based on eye tracking by
automating the time-consuming and expensive data annotation process [12]. We contribute
by (i) implementing two methods for detecting visual attention using eye tracking data
and pre-trained deep learning models for image classification and object detection; and (ii)
evaluating the performance of our methods using the VISUS dataset [2] and fine-grained
activity recognition metrics in a systematic way [18]. The proposed evaluation framework
and our results should serve as a reference for upcoming methods in automatic gaze to
AOI mapping. Further, we discuss the performance of our methods and how interactive
transfer learning can be used to break the limitations of pre-trained models.

2. Related Work

Our work aims at accelerating and objectifying research on visual attention with mo-
bile eye tracking using technologies from the field of computer vision. In human perception,
“selective visual attention is the allocation of limited attentional resources to certain infor-
mation in the visual field, while ignoring other information” [1] (p. 26). It can be guided by
salient bottom-up factors and task-related top-down factors in a scene [19]. When humans
perform a task, the number of fixations to irrelevant but salient objects drop, while the
fixations to task-relevant objects, i.e., top-down factors, increase [1,20–23]. In the follow-
ing, we summarize related work that used human gaze for intelligent human-computer
interaction, and we describe related approaches that addressed the problem of automatic
or semi-automatic gaze-to-AOI mapping in non-instrumented environments. Further, we
provide a brief overview on the state-of-the-art in computer vision in this regard.

2.1. Eye Gaze in Human-Computer Interaction

Human gaze, which can be seen as a proxy for human visual attention, can be ben-
eficial when applied in intelligent human-machine interaction [24–26]. It can be used as
an active or passive input modality [27]. For instance, a user can influence a system via
explicit eye movements (active) and a system can implicitly derive information about the
user, its state, and intentions by observing the eye movement behavior (passive). In this
paper, we focus on eye gaze as an implicit source of context information. Related works
in this field investigated and applied eye gaze in the context of conversational interfaces,
information retrieval systems, and situation-aware human-machine interaction, in general.

Ishii et al. [28] proposed a system for estimating the user’s conversational engagement
using eye tracking data from a Wizard-of-Oz study. In a subsequent work, they modelled
turn-taking behavior in human-human dialogues based on eye gaze features [29]. A similar
approach was presented by Jokinen et al. [30]. Prasov and Chai [31] developed a system that
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combines speech and eye gaze to enhance reference resolution in conversational interfaces.
Xu et al. [32] investigated the role of mutual gaze in a human-robot collaboration setting
and found that maintaining eye contact leads to improved multimodal interaction behavior
of users, i.e., more synchronized and coordinated. Baur et al. [33] implemented NovA,
a system for analyzing and interpreting social signals in multi-modal interactions with
a conversational agent, which integrates eye tracking technology. Thomason et al. [34]
developed a gaze-based dialog system that enables grounding of word meanings in multi-
modal robot perception.

In the domain of information retrieval, Buscher et al. [35] investigated the relation
between reading behavior and document relevance. The authors introduced the concept of
attentive documents that keep track of the perceived relevance based on eye movements.
Other works investigated the utility of eye tracking in multimedia retrieval settings. Several
algorithms were proposed for estimating the search target of an ongoing visual search on a
screen [36–39]. Barz et al. [40] introduced an algorithm for estimating the target segment of
a visual search in more natural settings.

Eye tracking was also used to facilitate situation-aware human-machine interaction
in general. Bulling et al. [41] presented an approach for inferring high level contextual
cues from eye movements to facilitate behavioral monitoring and life-logging. Similarly,
Steil and Bulling [42] used topic modeling to detect everyday activities from eye move-
ments in an unsupervised fashion. In a later work, the authors presented an approach for
visual attention forecasting in mobile interaction settings which takes the visual scene and
device usage data as additional inputs [43]. Also, other works combine visual features
of a scene with gaze information for recognizing recent actions [44–47]. In the context of
human-robot interaction, Ramirez-Amaro et al. [48] showed that human behavior inference
benefits from incorporating mobile eye tracking data with third person videos. Recently,
Kurzhals et al. [49] described an interactive approach for annotating and interpreting ego-
centric eye tracking data for activity and behavior analysis. They implement an iterative
time sequence search based on eye movements and visual features. Steichen et al. [50] in-
vestigates the effectiveness of eye tracking for predicting user characteristics like cognitive
abilities and the utility of such a model in adaptive information visualization. A compari-
son of uni-modal and multi-modal methods for user modeling in the context of real-time
adaptive data visualization can be found in [51]. These works aim at segmenting eye
tracking recordings into phases of different activities. Our goal is to identify phases of
attention to objects in a scene that can serve as AOI.

2.2. Gaze-to-AOI Mapping

A few works address the problem of mapping human gaze to objects or areas of
interest in non-instrumented environments. Pontillo et al. [10] presented SemantiCode,
an interactive tool for post-hoc fixation-based annotation of egocentric eye tracking videos.
It supports semi-automatic labelling using a distance function over color histograms of
manually annotated fixations. Brône et al. [14] proposed to use object recognition with
mobile eye tracking to enhance the analysis of customer journeys. In follow-up works,
they compared different feature extraction methods [52] and evaluated their approach in a
museum setting [15]. Evans et al. [53] reviewed methods for mobile eye tracking in outdoor
scenes ranging from pupil detection and calibration to data analysis. They presented an
early overview of methods for automating the process of analyzing mobile eye tracking
data. Fong et al. [54] presented a semi-automatic data annotation approach using on the
human-in-the-loop principle. The annotator can label individual frames based on the visual
appearance and the gaze position. As the annotation process advances, the system learns
the appearance of AOIs based on examples and to automatically classify clearly similar
cases. Panetta et al. [12] presented an annotation method based on bag-of-visual-words as
features and a support vector classification model (SVC) that is trained before the analysis
takes place. In a follow-up work, the authors present a system that automatically segments
objects of interest using two state-of-the-art neural segmentation models [55]. They use
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pre-trained models to showcase and evaluate new data visualization methods, but they did
not assess the performance of their automatic annotation approach. Kurzhals et al. [8] used
bag-of-SIFT features and color histograms with unsupervised clustering to sort fixation-
based image patches by their appearance. They offer an interactive visualization for manual
corrections. Venuprasad et al. [13] use clustering with gaze and object locations from an
object detection model to detect visual attention to an object or a face. Sümer et al. [56]
investigated the problem of automatic attention detection in a teaching scenario. They
extract image patches for all student faces in the egocentric video feed and cluster them
using activations from a ResNet-50 [57] model trained on VGGFace2 data [58]. They assign
student IDs to each cluster which allows them to map the teacher’s gaze to individual
students. Callemein et al. [59] presented a system for detecting when the participant’s
gaze focuses the head or hands of another person without the possibility to differentiate
between interlocutors. Other works also focused on real-time applications. For example,
Toyama et al. [11] implemented the Museum Guide that uses SIFT (scale-invariant feature
transform) features [60] with the nearest neighbor algorithm and a threshold-based event
detection to recognize user attention to one of 12 exhibits. They extended their approach
to detect read texts and fixated faces with the goal to build artificial episodic memories to
support dementia patients [61]. Barz and Sonntag [7] presented a similar approach using a
GoogLeNet model [62] pre-trained with ImageNet [63] data. Wolf et al. [16] implemented
the computational Gaze-Object Mapping algorithm that maps fixations to object-based
AOIs using the Mask R-CNN object detection model [64]. They conducted a controlled
lab study to record data in a healthcare setting with two AOIs, a bottle and five syringes.
An evaluation has shown that, using 72 training images with 264 annotated object masks,
their system can closely approximate the AOI-based metrics in comparison to manual
fixation-wise annotations as a baseline. Batliner et al. [65] presented a similar system for
simplifying usability research with mobile eye trackers for medical screen-based devices.
Machado et al. [9] matched fixations with bounding boxes of another object detection
algorithm to detect user attention. They used a sliding-window approach with a MobileNet
model [66], pre-trained on ImageNet data, to detect objects in an image.

2.3. Computer Vision

Computer vision is the algorithmic equivalent to human visual perception and sub-
sumes image classification and object detection methods. Image classification refers to
the assignment of a single label to an image, object detection refers to the localization and
classification of multiple objects in a single image [63]. Recent methods experienced a
performance boost with the advance of deep learning technology and the availability of
large datasets for model training. Popular examples are the ImageNet dataset for image
classification [63] and the MS COCO dataset for object detection [67]. A recent overview
of object detection with deep learning can be found in [68]. We apply residual network
models introduced in [69], pre-trained on ImageNet, and the Mask R-CNN model for
object detection [64], pre-trained on MS COCO. Related works also include methods for
egocentric activity recognition without gaze data. For example, Ma et al. [70] use hand
segmentations, object localizations and the optical flow from first-person videos to infer
ongoing activities. Another example is EgoNet by Bertasius et al. [71] which determines
the action-object in egocentric videos.

3. Method

We implement two methods for an automatic detection of visual attention to a visual
stimulus in a scene. Both take the video feed and the corresponding gaze or fixation
signal as input and predict, if the participant paid attention to an AOI for each frame
(see Figure 1). The first method, IC, aggregates classifications of image patches, cropped
around the gaze signal, using a pre-trained image classification model similar to the gaze-
guided object classification system by [7]. The second method, OD, matches fixation
events with the result of a pre-trained object detection model similar to Wolf et al. [16]
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and Machado et al. [9]. In this work, we concentrate on pre-trained computer vision
models, similar to Barz and Sonntag [7] and Machado et al. [9], to explore when models
without a training overhead can be applied effectively and when they reach their limits.
We leave fine-tuning of the models as a task for future-work, because it is outside the
scope of this paper. Both methods are implemented in Python using the multisensor-
lpipeline (https://github.com/DFKI-Interactive-Machine-Learning/multisensor-pipeline,
accessed on 15 June 2021) package for flexible streaming and processing of signals from
one or multiple sources. It allows to easily set up real-time applications using source
modules for connecting sensor input, processor modules for manipulating or aggregating
incoming data streams and events, and sink modules for, e.g., storing and visualizing
the output. In the following, we describe the implementation of both methods and their
adjustable parameters.

Eye Tracking Dataset video
gaze

Visual 
Attention 
Events

car: 85.47%

car: 76.47 %

car: 72.55%

car: 55.37%

car: 82.71%

Object Detection Fixation Matching

car
car

car car

Image Cropping Image Classification Attention Aggregation

𝑡 …
 

car

video
fixations

IC

OD

Figure 1. Processing workflow of the two proposed methods for automatic attention detection: IC is based of image
classification and gaze samples, OD uses object detection and fixation events. Both methods support visual attention
detection in real-time.

3.1. Detect Attention Using Gaze-Guided Image Classification (IC)

Our method based on image classification includes four subsequent steps. First we
re-sample the gaze signal to 5 Hz and crop an image patch of 200× 200 pixels from the
egocentric video feed (1920× 1080) per remaining sample. We use this crop size, because
it turned out to perform well in real-time applications (see [7,72]) and the size fits well
to the AOIs in the VISUS dataset (manual inspection). Second, each patch is classified
using a pre-trained version of the ResNet image classification model [69] which is trained
on the ImageNet dataset with 1001 object classes [63]. The prediction result includes
the top-5 class candidates and their probability. In a third step, we aggregate same or
similar class labels by accumulating their probabilities. We merge similar object classes
based on a manually defined lookup table. For example, if the top-5 output includes the
ImageNet classes passenger car, streetcar and limousine, we replace the probability of
passenger car by the sum of all three probabilities and remove the remaining class labels
from the output. In the last step, we implement a working memory- and threshold-based
attention detection algorithm similar to Barz and Sonntag [7] and Toyama et al. [11] using
the top-1 predictions of the previous step as continuous input:

An update routine is called for each incoming prediction, i.e., a tuple including
a unique class label and the corresponding probability output of the model: (c, p(c)).
If p(c) exceeds the minimum probability Tp, we increase the duration counter Cdur at
the index c by the amount of milliseconds that passed since the last run of the update
loop (circa 200 ms). For all other classes with a non-zero duration count, we increase
the noise counter Cnoise by the same amount of time. If the aggregated duration Cdur[c]
exceeds the duration threshold Tdur, we send an attention started event including c, p(c)
and the timestamp of the latest prediction. In addition, we store c as the currently at-

https://github.com/DFKI-Interactive-Machine-Learning/multisensor-pipeline
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tended class cactive and reset both counters for it: we set Cdur[c] and Cnoise[c] to zero.
If cactive is not empty and not equal to c, we consider the prior attention event to be over
and send an attention ended event. We send an attention confirmed event is c is equal to
cactive. Finally, we check for all remaining classes whether the aggregated noise dura-
tion in Cnoise exceeds the noise threshold Tnoise. In this case, we reset both counters for
this class and, if this class is equal to cactive, we send an attention ended event. We sub-
tract Tdur from the event timestamp to better match the actual start and end times of the
attention events. We offer a parameter for setting the image classification model: we in-
clude the ResNet-50 and ResNet-152 models via Tensorflow Hub. The pre-trained models
can be found at https://tfhub.dev/google/imagenet/resnet_v2_50/classification/4 and
https://tfhub.dev/google/imagenet/resnet_v2_152/classification/4, respectively (each
accessed on 2 May 2021). Any other model from this platform, that was trained using
ImageNet, can be used as well by providing a corresponding link. The default setting is
Tdur = Tnoise = 300 ms, Tp = 40%, and the model is set to ResNet-152. We refer to this
setting as IC-152-300-40 (in general: IC-model-Tdur/noise-Tp).

3.2. Detect Attention Using Object Detection (OD)

Our second method is based on an object detection model which can detect multiple
object instances in an image from a set of candidate classes. To detect visual attention,
we match the position of fixation events from the eye tracker with detected object regions.
For each fixation, we extract an image frame from the video feed that is closest to the
start of the fixation event. The object detection takes longer per image than the image
classification algorithm. However, this method can still be applied in real-time, because it
is applied once per fixation. During a fixation the eye is relatively still and, hence, should
point to the same location in the world space. But, fixation detection is not perfect, e.g.,
in presence of smooth pursuit movements, which makes this method dependent on the
quality of the applied fixation detection algorithm. Next, we detect all object instances in
the current image frame: we use a Mask R-CNN model [57] that is pre-trained on the MS
COCO dataset [67] with the Detectron2 framework [73]. The model weights can be down-
loaded from https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/
mask_rcnn_R_101_FPN_3x/138205316/model_final_a3ec72.pkl (accessed on 2 May 2021).
For each instance, it provides a class label with a probability value, as well as a rectangular
bounding box and a pixel-wise segmentation mask depicting the object area. Finally, we
check whether the fixation position lies within the object area, either using the bounding
boxes (bbox), similar to Machado et al. [9], or the more fine-grained segmentation masks
(mask), similar to Wolf et al. [16], as reference. This can be configured via the object mask
parameter that defaults to bbox. If a hit is detected, we send an attention started event using
the start time of the fixation and an attention ended event using its end time. If two object
areas are hit, we choose the one with higher probability. We refer to the two possible
settings as OD-bbox (default) and OD-mask.

4. Evaluation

We evaluate the performance of the two methods described above in terms of their
ability to detect time intervals in which a participant fixates a certain AOI. Our evaluation
procedure utilizes the VISUS dataset [2] including eye tracking data from 25 participants
for 11 scenarios, and manual AOI annotations which we use for ground truth extrac-
tion. To measure the performance, we use a set of frame- and event-based metrics by
Ward et al. [18] from the field of activity recognition which allow a more fine-grained anal-
ysis. We report the metrics per scenario and for each of the 34 AOIs to identify effective
applications and limitations.

https://tfhub.dev/google/imagenet/resnet_v2_50/classification/4
https://tfhub.dev/google/imagenet/resnet_v2_152/classification/4
https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/model_final_a3ec72.pkl
https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/model_final_a3ec72.pkl
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4.1. Dataset

We use the VISUS dataset for our evaluation [2] which can be downloaded from
https://www.visus.uni-stuttgart.de/publikationen/benchmark-eyetracking (accessed on
12 April 2021). It contains eye tracking data from 25 participants for 11 video stimuli,
totaling to 275 sessions. The gaze data was recorded using a Tobii T60 XL remote eye
tracker at 60 Hz. The authors did not report the spatial accuracy and precision as measured
during their recordings. The video stimuli have a resolution of 1920 × 1080 pixels at
25 frames per second and have an average length of 75.55 s (SD = 59). Each video is
manually annotated with axis aligned rectangular bounding boxes from two annotators for
1 to 6 AOIs per video (see Table 1). Bounding boxes were set at key frames and interpolated
for intermediate frames. The main purpose of the dataset is to serve as a benchmark for
visualization and analysis techniques in the field of eye tracking. We use the dataset as a
benchmark dataset for automatic detection of visual attention to dynamic AOIs. We treat
the fixation events reported in the dataset that hit the manually defined bounding boxes as
ground truth attention events to the respective AOIs. If two AOIs in a single frame are hit,
we select the AOI that yields the longer event. While the VISUS dataset is acquired with a
remote tracking device, we use it to approximate mobile eye tracking recordings: we do
not leverage that the videos are the same for each participant. In the following, we describe
the ground truth extraction, the scenarios (video stimuli) and AOIs, and we describe the
related challenges for gaze to AOI mapping.

Table 1. Overview of scenarios and AOIs in the VISUS dataset and the corresponding mappings of class labels to AOIs.
Class labels originate from ImageNet in case of IC methods and from MS COCO in case of OD methods.

Scenario AOI ImageNet Labels MS COCO Labels

01-car pursuit (25 s) red car streetcar, sports car, minivan, cab, minibus, limousine, car mirror, racer, passenger car car
white car – –

02-turning car (28 s) red car streetcar, sports car, minivan, cab, minibus, limousine, car mirror, racer, passenger car car

03-dialog (19 s)
left face ear person
right face – –
shirt sweatshirt –

04-thimblerig (30 s)
cup1 cocktail shaker, coffee mug, cup cup
cup2 – bowl
cup3 – –

05-memory (148 s) cards desk dining table

06-UNO (121 s)

left hand – person
right hand – –
stack covered desk dining table
stack uncovered – –

07-kite (97 s) person lab coat, poncho, cardigan, cloak, sweatshirt, trench coat person
kite balloon, kite, parachute kite

08-case exchange (27 s)

persons sombrero, cowboy hat person
textbox – –
case mailbag, packet, plastic bag, shopping basket, backpack, bucket, crate handbag, suitcase
suspects lab coat, poncho, cardigan, cloak, sweatshirt, trench coat –

09-ball game (31 s)

ball baseball, basketball, rugby ball, tennis ball, volleyball, soccer ball sports ball
player white ballplayer person
player red1 – –
player red2 – –
player red3 – –

10-bag search (133 s)

red bag plastic bag handbag
yellow bag – –
blue bag – –
red-white bag – –
brown bag mailbag –
persons lab coat, poncho, cardigan, cloak, sweatshirt, trench coat person

11-person search (172 s)
hooded lab coat, poncho, cardigan, cloak, sweatshirt, trench coat person
red shirt and hat sombrero, cowboy hat –
persons – –

https://www.visus.uni-stuttgart.de/publikationen/benchmark-eyetracking
https://www.visus.uni-stuttgart.de/publikationen/benchmark-eyetracking
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4.1.1. Scenarios & Challenges

The dataset includes 11 scenarios each with a different kind and number of AOIs. They
pose multiple challenges to attention detection methods. In the simplest case, a method
has to map gaze to AOIs that represent distinct concepts (challenge I). This applies to, e.g.,
01-turning car in which a single AOI, a “red car”, is shown, and to 07-kite with two
distinct AOIs: a “person” flies a “kite”. The difficulty increases, if two AOIs in a scenario
refer to the same concept (challenge II). For instance, the scenario 01-car pursuit shows
a “red car” driving through a turning area, with a “white car” on the opposing lane and
multiple parking cars in the background. The challenge is not only to detect that a car is
fixated, but to differentiate between the two prominent cars (AOIs) and the background
cars which are multiple instances of the same concept. Similarly, the scenarios 03, 08, 09,
and 11 require the ability to differentiate between multiple instances of the concept person,
for instance, a “hooded” person, a person wearing a “red shirt and hat”, and several
distractor “persons” in scenario 11-person search. The problem complicates, if two AOIs
not only share a concept, but also their appearance (challenge III). An example can be
found in scenario 04-thimblerig which includes three cups with identical appearance.
Distinguishing them requires object tracking for multiple instances and, hence, an initial
assignment of each instance to an AOI by hand. The scenario 05-memory is not covered by
the aforementioned cases. It shows a memory game: in the beginning, all 16 “cards” look
the same, while, until the end of the game, we see 8 pairs of cards with different visual
appearance per pair. Yet, all “cards” count toward the same AOI. The challenge is, if the
appearance of an AOI changes over time (challenge IV).

4.1.2. Mapping Class Labels to AOIs

Our methods aim at solving the aforementioned challenges using pre-trained com-
puter vision models. For this, AOIs need to be mapped to class labels of ImageNet for the
IC method and of MS COCO for the OD method. We assume that the performance per
scenario depends on the type of AOIs and whether they are represented in the training
data of the model. If there is no matching class label for an AOI, none of the methods can
detect respective attention events. If a class label matches multiple AOIs of a scenario, i.e.,
if they share a concept, we can only assign the label to one of them. This probably leads to
an increase in false positives. The performance might also suffer from inadequate matches.
For this experiment, we use a separate mapping from class labels to AOIs for each method
and scenario, as shown in Table 1. For IC methods, we identified ImageNet labels for 19
AOIs including adequate matches like passenger car for the AOI “red car”, but also weak
matches like sweatshirt as a proxy for the AOI “person”. Similarly, we found MS COCO
labels for 17 AOIs for the OD methods. For instance, car is an adequate match for the AOI
“red car”, while dining table is a weak match for the “stack covered” in 06-UNO (the stack is
located on a table).

4.2. Metrics

To quantify the performance of our methods, we need evaluation metrics that depict
how well our detected attention events match the ground truth events. We reviewed
the metrics proposed in closely related works, but none of them was fully satisfactory:
Panetta et al. [12] compared their system to manual ground truth annotations by calculating
the distance between two histograms that aggregate the duration of fixations from predicted
or ground truth AOI regions, respectively. However, their metric does not punish if detected
AOI fixations are shifted in time or if they occur in the wrong order, which puts the validity
of their metric into question. For instance, the histogram would be equal, if the predicted
events were reported reversely. Machado et al. [9] reported accuracy and precision, but it
is unclear whether they compute the metrics frame-wise or event-based. Toyama et al. [11]
reported event-based precision and recall for each method: precision reflects how many of
the detected attention events were classified correctly, recall indicates the proportion of
detected attention events to all attention events. Similarly, De Beugher et al. [15] reported
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precision and recall, but at the frame-level. Wolf et al. [16] and Batliner et al. [65] reported
the recall (true positive rate) and the specificity (true negative rate) at the frame-level,
including one frame per fixation for the analysis. The specificity reflects the ratio of frames
that are correctly classified as not showing human attention to an AOI (negative class) in
relation to all frames with a negative class label. Sümer et al. [56] compared the absolute
number of predictions for each class, i.e., four individual students, to the ground truth
count. In addition, they use a confusion matrix to show the performance of their face
recognition system that is used to assign fixations to students’ faces. Callemein et al. [59]
used measures for inter-rater agreement like Cohen’s κ to show the performance of their
gaze-to-face and gaze-to-hand mapping. Venuprasad et al. [13] reported precision, recall,
and accuracy for frames, and event metrics based on detection events: first looks, extra
looks (i.e., revisits), false positive and false negative events are counted. Other works
reported qualitative results only or did not evaluate their method. In this work, we report
fine-grained frame- and event metrics per AOI from the field of activity recognition [18].
They were shown to be effective for evaluating event detection methods in the field of
mobile eye tracking [18,74]. The metrics are based on a segmentation of the ground truth
and prediction signal at the frame level per AOI (see Figure 2). A segment ends, if the
ground truth or the prediction changes, i.e., both signals are constant within a segment.
Each segment can now be rated as one of true positive, true negative, false positive, or false
negative. The event and frame metrics are derived from these segments. Prior to feature
computation, we remove events with a duration smaller than the frame time and merge
adjacent events.

𝐷𝑓𝑇𝑁𝑇𝑃 𝑇𝑁 𝑇𝑁 𝑇𝑁 𝑇𝑁 𝑇𝑁𝐼𝑓 𝐹𝑓𝑇𝑃 𝑇𝑃 𝑇𝑃 𝑇𝑃 𝑇𝑃 𝑇𝑃 𝑇𝑃 𝑇𝑃 𝑇𝑃𝑀𝑓 𝑀𝑓 𝑀𝑓 𝐹𝑓 𝑂𝑓
𝛼 𝑈𝑓

𝜔

ground
truth

predicted
𝑰′ 𝑭′𝑭′ 𝑭′𝑴′ 𝑭𝑴′

𝑭𝑫𝑪 𝑴 𝑴 𝑴𝑴 𝑭𝑴 𝑪

Figure 2. Example of segmented ground truth events and predicted events with annotations for event error and frame error
classes. The vertical bars depict the segment boundaries. The frame error classes are given per segment.

4.2.1. Event Metrics

Ward et al. [18] define a set of error classes for events which are meant to characterize
the performance of a single-class event detection method. For multi-class problems, each
class is handled separately. Error classes include the insertion (I′) and deletion (D) error
which are commonly used in event detection. An insertion error depicts that a detected
event is not present in the ground truth (false positive), and a deletion error indicates a
failure in detecting a ground truth event (false negative). Additional error classes include
fragmentation and merge errors: a ground truth event is fragmented (F), if multiple
fragmenting events (F′) are detected in the output. Similarly, multiple ground truth
events of the same class can be merged (M) by a single merging event (M′) in the output.
Both errors can appear together, e.g., if a ground truth event is fragmented by three
event detections of which the third is merging an additional ground truth event. In this
case, the first ground truth event is marked as fragmented and merged (FM), and the
third event detection is marked as fragmenting and merging (FM′). The apostrophe
indicates whether an error class is assigned to a ground truth event or a predicted event
in the output. If none of the error classes can be assigned, a detected event is counted
as correct (C), i.e., as a true positive. According to Ward et al. [18], we visualize the
metrics by means of an event analysis diagram (EAD). It shows the number and ratio of
error classes in relation to the number of reference events, i.e, to the number of ground
truth events |E| = D + F + FM + M + C, the number of predicted events (or returns)
|R| = M′ + FM′ + F′ + I′ + C, or both in case of correct predictions C. Also, we can
compute event-based precision and recall as a ratio between |R| or |E| and the error class
counts. We compute a conservative precision as Pr = C

|R| and recall as Re = C
|E| . Counting
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F, FM, M and M′, FM′, F′ as correct, similar to Toyama et al. [11], we calculate a more
progressive precision as Pr∗ = |R|−I′

|R| and recall as Re∗ = |E|−D
|E| .

4.2.2. Frame Metrics

For extracting the frame metrics, Ward et al. [18] project error classes to frames per
segment. Similar to event-based error classes, a frame can be rated as insertion (I f ),
deletion (D f ), merge (M f ), or fragmentation (Ff ). Merge errors are assigned to false
positive frames from merging events and fragmentation errors are assigned to false negative
frames between fragmenting events. Further, if a neighboring segment is classified as true
positive, frames of a false positive segment are marked as overfill (O f ) and frames of a
false negative segment are marked as underfill (U f ). In other words, an overfill occurs,
if a detected event starts early or ends late, and an underfill occurs, if a detected event
starts late or ends early. A superscript indicates whether an underfill or overfill occurs
at the start (α) or end (ω) of an event. Frames of true positive (TP) and true negative
(TN) segments are classified likewise. Ward et al. [18] define the frame metrics as ratios
of the error class counts and the total positive frames P or negative frames N in the
ground truth, with P = D f + Ff + Uα

f + Uω
f + TP and N = I f + M f + Oα

f + Oω
f + TN.

The resulting ratios (lowercase equivalents to error classes) can be used to express the
false positive rate as f pr = ir + mr + oα + oω, and one minus the true positive rate as
(1− tpr) = dr + f r + uα + uω . We use a set of two stacked bar charts to visualize the frame
metrics (compared to pie charts in [18]).

4.3. Experiment Conditions & Procedure

We compare two methods for visual attention detection: IC based on gaze-guided im-
age classification and a threshold-based event detection, and OD based on object detection
and fixation mapping. We generate predictions for the VISUS dataset using each method
and analyze their results. We start with default parameters to identify AOIs which are not
supported. We define cases with a recall of zero to be failing: this corresponds to a deletion
rate of dr = 100% (frame metrics), or if all ground truth events are marked as deletions D.
By design, we expect AOIs without a matching class label to fail (see dashes in Table 1).
For the remaining AOIs, we investigate the impact of different methods and parameters
on the performance metrics. We compare two IC methods using the classification models,
ResNet-50 and ResNet-152, and two OD methods using the object mask options bbox and
mask. The other parameters are set to their defaults, which results in the following set
of parameterized methods: IC-152-300-40, IC-50-300-40, OD-bbox, and OD-mask. For IC,
we additionally test different values for Tdur, Tnoise, and Tp using the ResNet-152 model,
with Tdur = Tnoise ∈ {100, 300, 500, 700} ms and Tp ∈ {20%, 40%, 60%}. Changing these
parameters might have an effect on the performance of the IC method. Per method, we
compute the frame and event metrics for each AOI and per participant. We sum the metrics
over participants, if we report the performance per AOI, and over participants and AOIs,
if we report the overall performance of a method. Summing the metrics corresponds to
concatenating the recordings of all participants per AOI, because the metrics are based
on absolute counts. Ratios are computed afterwards using the number of positive and
negative ground truth frames or events which we add up as well.

4.4. Results

Using default parameters, we observe a recall of zero for all AOIs without a matching
class label for a method, but also for other AOIs: for the IC method, this includes “left
face”, “cup1”, “cards”, “stack covered”, “case”, “player white”, “red bag”, “brown bag”,
and “hooded”. For the OD method, this includes “cup1”, “cup2”, “cards”, “stack covered”,
“case”, “red bag”, and “persons” (for 10-bag search only). We count one additional AOI
for OD (“ball”) and three AOIs for IC (“suspects”, “ball”, and “persons” in 10-bag search)
as failing, because they yield a recall close to zero (dr ≥ 90%). The remaining six AOIs
for IC and nine AOIs for OD are analyzed in detail (AOIs are listed in Section 4.4.2). The
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AOIs for IC include |E| = 2438 ground truth events that correspond to P = 71,911 positive
frames and N = 111,467 negative frames. The AOIs for OD include |E| = 4328 events with
P = 154,783 positive and N = 270,750 negative frames.

4.4.1. Overall Performance

We compare the metrics of two IC and two OD methods that vary in terms of the
model or object mask setting (see Section 4.3). The frame metrics for remaining AOIs are
summarized in Figure 3. It shows the ratios of false negative errors with respect to P in
Figure 3a, and of false positive errors with respect to N in Figure 3b. Concerning the false
negative errors, deletion is the most prominent class across all methods: they account
for 22.03% (OD-bbox) and 40.77% (OD-mask) of the errors for OD, and dr is 39.37% for
ResNet-152 and 37.86% for ResNet-50 for the IC methods. On average, the tpr does not
differ between OD (37.75%) and IC (37.05%). However, OD-bbox yields the best tpr with
46.44%, which is 9.39% better than the average of both IC methods and 17.39% better than
OD-mask. The remaining error classes account for 30.86% for OD and 24.33% for IC: on
average, IC faces 6.53% less false negatives through fragmenting events and underfills
than OD. Concerning the false positive errors (Figure 3b), insertions are most prevalent for
OD with ir = 24.71% for OD-bbox and ir = 13.93% for OD-mask. For IC, we observe less
insertions, averaging to 0.71%. Errors from merging event detections and overfills account
for 1.98% (IC) and 1.89% (OD). Hence, the f pr adds up to 2.69% for IC and to 21.21% for
OD, which means that the OD methods cause 18.53% more false positive errors at the frame
level, on average.

IC-152-300-40 IC-50-300-40 OD-bbox OD-mask

tpr 36.79% 37.32% 46.44% 29.05%

uω 7.72% 9.81% 8.77% 9.99%

uα 10.75% 9.03% 11.25% 11.35%

fr 5.37% 5.98% 11.51% 8.85%

dr 39.37% 37.86% 22.03% 40.77%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(a) false negative errors

IC-152-300-40 IC-50-300-40 OD-bbox OD-mask

1-fpr 97.38% 97.25% 72.75% 84.82%

oω 0.48% 0.56% 1.45% 0.83%

oα 0.49% 0.51% 0.85% 0.31%

mr 0.89% 1.04% 0.24% 0.10%

ir 0.77% 0.64% 24.71% 13.93%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(b) false positive errors

Figure 3. Frame metrics with respect to positive (a) and negative (b) ground truth frames across all AOIs.

Further, we report event metrics which are normalized by the number of ground truth
events |E| or the number of retrieved events |R| (see Figure 4). Both IC methods show
a similar distribution of error classes. For IC-152-300-40, we observe a high fraction of
deletions, D

|E| = 66.41%, and a low fraction of insertions, I′
|R| = 5.99%, which is consistent to

frame metrics. 371 predictions are correct which corresponds to Re = 15.22% (conservative
recall) of the ground truth and Pr = 46.32% (conservative precision) of all retrieved events.
The more progressive recall and precision is higher with Re∗ = 33.59% and Pr∗ = 94.01%.
The distribution of the remaining error classes shows, e.g., how many fragmenting events
F′ (206→ 25.72%) cause the fragmentations F (60→ 2.46%) in the ground truth.
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IC-50-300-40

F‘
26%
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52

C
14% | 43%
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F‘
22%
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D
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F
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C
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1769

I‘
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M
4%
162

|𝐸| = 4328
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OD-mask

F‘
22%
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2624

F
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C
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1173

I‘
57%
3452

|𝐸| = 4328

|𝑅| = 6009

Figure 4. EAD diagrams visualizing the event based error classes with respect to ground truth events |E| and returned
events |R|.

The two OD methods have a similar distribution of error classes for retrieved events:
the rate of fragmenting events is F′

|R| ≈ 22%, the rate of insertions is I′
|R| ≈ 56%, the

counts for M′ and FM′ are very low, and the conservative precision Pr is similar with
C
|R| ≈ 20%. However, OD-bbox predicts 2749 events more than OD-mask which results in a
higher absolute number of correct events for OD-bbox (C = 1769) compared to OD-mask
(C = 1173). With |E| being constant for both OD methods, Re = C

|E| is higher for OD-bbox
(40.88%) than for OD-mask (27.1%). Consequently, the fraction of deletions for OD-bbox
(38.94%) is lower than the fraction for OD-mask (60.63%) which is close to the level of
the IC methods. Further, the OD methods report a higher level of fragmented events F
than merged events M. We observe the opposite for IC. The progressive precision and
recall values are Pr∗ = 43.77% and Re∗ = 61.06% for OD-bbox, and Pr∗ = 42.55% and
Re∗ = 39.37% for OD-mask.

4.4.2. AOI Performance Breakdown

For IC-152-300-40 and OD-bbox, we report the event metrics per AOI in a table (see
Figure 5). For IC, we observe a difference between the two “red car” AOIs and the remaining
AOIs. On average, we see a lower level of deletions for “red car” with D

|E| = 42.34% and an

increased level of merged events with M
|E| = 31.65%, compared to the other AOIs which

average to 72.29% and 6.51%, respectively. Consequently, we observe the best progressive
recall for “red car” with Re∗ = 57.66% on average, compared to Re∗ = 27.71% for the
other AOIs. The conservative precision C

|R| = 30.07% is lower than the average of 67.99%
for the other AOIs. For “red car”, M is higher and C is lower for 01-car pursuit than
for 02-turning car. Hence, the conservative recall C

|E| = 12.91% for 01-car pursuit is
relatively lower by 38.47%, while the Re∗ is lower by 3.53% only. Further, we observe
the highest relative number of insertions with I′

|R| = 13.77% (others average to 4.92%).
The OD methods result in more diverse error class distributions. We observe a low level
of D in relation to ground truth events |E| for “red car” (02-turning car), “left face”,
“persons”, and “hooded”, averaging to 12.04%. The AOIs “kite” and “person” result in
the highest level for deletions D with 68.96% and 52.07%, respectively. For these AOIs,
the low and high levels for D coincide with the highest and lowest Re∗ values. Overall,
we see a high level of fragmented events F with highest values for “hooded” with 33.64%
and “red car” in 02-turning car with 36.33%, and lowest values for “person” in 07-kite
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with 2.07%. The AOI “left face” results in the best conservative recall, Re = 70.98%,
due to the low level of deletions D, with 7.77%. For insertions I′, we observe the lowest
levels for the AOIs in kite with an average of 2.01%, followed by “red car” with 9.57% in
02-turning car and 18.05% in 01-car pursuit. All other AOIs average to 58.13% with
a peak for “hooded” with 89.25%. These four AOIs with the lowest insertion rate I′

|R|
have the best progressive precision with, on average, Pr∗ = 92.09%. The remaining five
AOIs average to Pr∗ = 41.87% with the minimum for “hooded” with Pr∗ = 10.75%. The
highest levels of fragmenting events are observed for “red car” (53.9% and 71.14%) and
“kite” (55.62%). To compare the results of AOIs that remain for IC and OD methods, we
calculate an event-based f1 score as f1 = 2 · Pr∗ ·Re∗

Pr∗+Re∗ . For the AOIs “red car” (x2), “kite”,
and “persons” (08-case exchange), we receive f1 scores of 68.36%, 72.67%, 39.06%, 47.36%
for IC-152-300-40 and 71.34%, 87.4%, 47.15%, 67.78% for OD-bbox. For this selection of
AOIs, OD-bbox yields the respectively better performance.

Method AOI |E| D F FM M C M' FM' F' I' |R| Re* Pr*

IC
-1
5
2
-3
0
0
-4
0

01-car pursuit ➝ red car 302 43.38% 4.30% 4.64% 34.77% 12.91% 23.35% 20.36% 10.78% 31.74% 13.77% 167 56.62% 86.23%

02-turning car ➝ red car 305 41.31% 4.26% 4.92% 28.52% 20.98% 36.78% 13.79% 13.22% 31.61% 4.60% 174 58.69% 95.40%

03-dialog ➝ shirt 42 71.43% 0.00% 0.00% 4.76% 23.81% 83.33% 8.33% 0.00% 0.00% 8.33% 12 28.57% 91.67%

07-kite ➝ kite 1316 75.53% 1.75% 1.44% 8.89% 12.39% 52.75% 12.62% 7.44% 23.95% 3.24% 309 24.47% 96.76%

08-case exchange ➝ persons 201 68.66% 2.99% 0.50% 7.96% 19.90% 63.49% 11.11% 1.59% 20.63% 3.17% 63 31.34% 96.83%

11-person search ➝ red shirt and hat 272 73.53% 1.84% 0.00% 4.41% 20.22% 72.37% 7.89% 0.00% 14.47% 5.26% 76 26.47% 94.74%

O
D
-b
b
o
x

01-car pursuit ➝ red car 304 36.84% 18.42% 4.61% 7.89% 32.24% 23.90% 1.71% 2.44% 53.90% 18.05% 410 63.16% 81.95%

02-turning car ➝ red car 311 15.43% 36.33% 6.11% 7.40% 34.73% 16.67% 0.62% 2.01% 71.14% 9.57% 648 84.57% 90.43%

03-dialog ➝ left face 193 7.77% 16.06% 1.55% 3.63% 70.98% 35.13% 0.51% 0.77% 17.95% 45.64% 390 92.23% 54.36%

06-UNO ➝ left hand 1157 26.71% 15.56% 1.64% 2.16% 53.93% 31.23% 0.35% 0.55% 21.02% 46.85% 1998 73.29% 53.15%

07-kite ➝ kite 1321 68.96% 8.33% 0.45% 2.73% 19.53% 39.21% 2.28% 0.91% 55.62% 1.98% 658 31.04% 98.02%

07-kite ➝ person 290 52.07% 2.07% 0.00% 0.69% 45.17% 89.12% 0.68% 0.00% 8.16% 2.04% 147 47.93% 97.96%

08-case exchange ➝ persons 199 16.08% 20.60% 1.01% 4.02% 58.29% 29.44% 0.25% 1.52% 25.63% 43.15% 394 83.92% 56.85%

09-ball game ➝ player white 338 26.04% 8.28% 1.18% 8.88% 55.62% 24.29% 1.68% 0.26% 8.01% 65.76% 774 73.96% 34.24%

11-person search ➝ hooded 214 8.88% 33.64% 3.27% 3.27% 50.93% 3.26% 0.03% 0.15% 7.31% 89.25% 3339 91.12% 10.75%

Figure 5. EAD table for AOIs with a non-zero recall (dr < 90%; D
|E| � 100%) for IC-152-300-40 and OD-bbox.

4.4.3. Impact of IC Parameters on Performance

The IC method offers multiple parameters for tuning the outcome, besides the classi-
fication model. We investigate the impact of Tdur & Tnoise and Tp on the frame and event
metrics. With varying Tp, we observe no changes in the distribution of event error classes
(see Figure 6). In addition, Pr∗ ranges between 32.69% and 33.76%, and Re∗ ranges between
93.58% and 94.39% for the different settings of Tp. When increasing the duration and noise
thresholds, we observe a monotonic increase in the number of deletions D: the ratio D

|E|
ranges from 59.49% for 100 ms to 70.87% for 700 ms. At the same time, M

|E| increases from

7.23% to 18.1% and Re = C
|E| decreases from 21.89% to 6.8%. Concerning the error classes of

retrieved events, we observe a monotonic decrease in the number of insertions I′ ranging
from 10.64% for 100 ms to 3.18% for 700 ms. Similarly, F′

|R| decreases from 44.99% to 11.74%,
as well as the absolute number of retrieved events |R| which ranges from 1447 to 409.
The level of merging events M′ increases from 3.73% to 36.19% which corresponds to the
increase of merged events M. In addition, we see a trend in the progressive precision and
recall values: with increasing duration and noise threshold, Re∗ decreases from 40.51% to
26.13% and Pr∗ increases from 89.36% to 96.82%. The highest f1 score of 55.74% is reached
for 100 ms.
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Figure 6. Simplified EAD diagrams for IC methods with varying parameters aggregated over AOIs with non-zero recall.
We vary the probability threshold Tp or the duration and noise threshold Tdur = Tnoise. We use default values for other
parameters. The results for 300 ms and 40% refer to the default setting IC-152-300-40 as shown in Figure 4.

5. Discussion

Our results show that using our methods with default parameters and the AOI
configuration from Table 1 does not support all AOIs. In particular, our observations
confirm that they fail in detecting visual attention for AOIs without a mapping. This affects
15 AOIs (44.12%) for IC and 17 AOIs (50%) for OD. Our results reveal 13 additional AOIs
for IC and 8 AOIs for OD with weak matches that result in zero or close to zero recalls
(dr ≥ 90%). Effectively, we count 28 AOIs (82.35%) for IC and 25 AOIs (73.53%) for OD as
failing. We attribute these fails to challenge I, because the concepts of the AOIs have no
adequate match to any class label of the underlying computer vision model. And, if there
is a matching class label, the instances might differ from what the model has learned, i.e.,
from the training samples.

5.1. Overall Performance

The frame and event metrics for the remaining AOIs show that deletions are the most
frequent false negative error across all methods. Overall, the frame-based deletion rates
dr are lower than the respective level of deletion events D. For instance, in IC-152-300-40,
D
|E| = 66.41% of the ground truth events correspond to dr = 36.79% of the positive ground
truth frames. This may indicate that our methods delete more short events than long ones.
The high level of deleted events might be caused by false negatives from the computer
vision model which relates to challenge I. Another problem could be that our models fail
in mapping the gaze signal although the prediction was correct. To investigate this issue
further, we generated videos showing the manual annotations, the gaze and fixation events,
and our prediction output. We noticed that the eye tracking signal frequently suffers
from low accuracy and, hence, the gaze point does not hit an AOI object even though it is
obvious that the participant followed that object, e.g., a “kite”. The manual annotations
(bounding boxes) in the VISUS dataset are bloated up to include such erroneous gaze
signals which better captures the human behavior than exact annotations. However, under
the assumption that the gaze signal was accurate, this style of data annotation results in
a lot of false positive ground truth events (see Figure 7a). Our methods are not robust
against such cases, because they rely on local image classifications (IC) or fixation to object
mask mapping (OD). Consequently, our methods report no attention events which might
be one of the major reasons for the high level of deletions. We investigate this issue
in detail in Section 5.4. This could also explain the difference between OD-bbox, using
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bounding boxes, and OD-mask, using exact object masks, i.e., OD-bbox better resamples
the manual annotations and, to some degree, compensates the inaccurate gaze signals.
Overall, OD-bbox shows the best progressive recall with Re∗ = 61.06%, while the other
methods average around 35.91%. Also, our results show that OD yields more insertion
errors than IC in terms of frame and event metrics: the insertion rate is I′

|R| ≈ 56% for
OD methods and 6% for IC methods. Consequently, with an average of Pr∗ = 94.33%,
IC results in the better progressive precision than OD with Pr∗ = 43.16%. This suggests
that the IC method may be the better choice for use cases with a good object to class label
match, and if false negative errors are not severe. In addition, the relation of FM, F, F′ to f r
and FM′, M, M′ to mr can reveal more about the error characteristics. For instance, if we
see many event errors and a low ratio of corresponding frame errors, the fragmenting or
merging predictions approximate the ground truth well (see Figure 2). For instance for
IC-152-300-40, merge errors M make up 14% of the event errors with respect to the ground
truth, but result in a low frame error rate of mr = 0.89%.

kitekite

personperson

(a) 07-kite

left faceleft face right faceright face

shirtshirt

(b) 03-dialog

Figure 7. Example frames from two scenarios of the VISUS dataset [2] showing the recent fixation (white circle), ground
truth annotations (green), object masks and bounding boxes for OD (blue), and the cropping area for IC (white rectangle).

5.2. Performance per AOI

The results for default parameters at the AOI level show that OD-bbox performs best
for the four overlapping AOIs (see Figure 5). However, all other AOIs for OD-bbox suffer
from high insertion levels of more than 40%. A reason might be that these AOIs match
to “person” (see Table 1) and, at least, a second AOI shares this concept, which relates to
challenge II. For instance, we map the MS COCO class label “person” to the AOI “left face”
in 03-dialog, but “person” would also fit “right face” and “shirt”. The generated debug
videos show that both OD methods detect attention events for “right face” and “shirt”
based on the “person” class label. However, these are wrongly mapped to “left face” which
results in a high number of false positives (see Figure 7b). This problem of the remaining
AOIs is likely to cause the high level of insertion errors and the low progressive precision
for OD, overall.

5.3. Impact of IC Parameters

Our investigation with different parameters for IC reveals that Tp is likely to have
no impact on event metrics. Our assumption is that the subsequent aggregation of image
classification results is a harder criterion than a high Tp. E.g., an incorrect classification
with low probability might be dropped anyway due to reaching Tnoise, because it alternates
with other wrong classifications. The parameters Tdur and Tnoise have a clear impact on
the performance: increasing the threshold results in decreasing values of Re and Re∗.
Tdur = Tnoise = 100 ms yields the best overall performance by means of the f1 score,
followed by the default setting which results in a better Pr∗, but worse Re∗.
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5.4. Impact of Re-Annotating the Ground Truth Data on Deletions

In many cases, the gaze recordings from the VISUS dataset suffer from a low spatial
accuracy, which resulted in coarse manual annotations. For instance in Figure 7a, the
manual annotations for “person” and “kite” (green bounding boxes) are much larger than
the actual object to catch the point of gaze that, when looking at the video, obviously
follows the kite. In contrast, the bounding boxes and exact object masks generated by Mask
R-CNN (blue rectangles and polygons) frame the “person” and the “kite” closely. Our
hypothesis is, that this kind of annotation is responsible for a large portion of deletion
errors (false negative events), because the ground truth reports a false attention event that
cannot be captured by our detection methods. To verify our assumption, we re-annotate
AOIs without a close to zero recall (see Figure 5) and repeat our analysis using the new
ground truth annotations, but the same event predictions from IC-152-300-40 and OD-bbox
that we have gathered in our main experiment. The videos are annotated by a single
annotator and reviewed by an eye tracking expert using the Computer Vision Annotation
Tool CVAT (https://github.com/openvinotoolkit/cvat, accessed on 15 June 2021). We
use the polygon-based annotation feature: a polygon is created that closely frames an
object at keyframes with interpolation for intermediate frames. The results show that the
ratio of deletion events D

|E| decreases by 16.3% to 50.11% for the IC method and by 10.3%
to 28.64% for the OD method. Consequently, the progressive recall values Re∗ increase
by the same amounts to 49.89% for IC and to 71.36% for OD. Thus, we can confirm our
hypothesis that coarse AOI annotations increase the level of deletions. This emphasizes
the importance of accurate gaze estimation methods to avoid such errors. Further, it raises
the need for error-aware gaze-to-object mapping methods to compensate the impact of the
gaze estimation error, similar to those presented in Barz et al. [5]. For instance, we could
detect an AOI hit by checking whether the distance of a fixation point to the boundary of
an AOI is smaller than a defined threshold.

5.5. Limitations & Future Work

Our evaluation revealed several limitations that relate to the challenges that we identi-
fied in Section 4.1.1 or to accuracy issues with the gaze signal in the VISUS dataset. The main
limitation of our methods is related to challenge I: many AOIs are not supported because
the concepts are not included with the pre-trained computer vision models. A promising
solution to address it is to collect new samples for unsupported AOIs and AOIs with weak
matches for fine-tuning the computer vision models [75,76]. We want to investigate the
effectiveness of interactive machine learning methods for this purpose [77,78] compared to
randomly annotating a small portion of the data as suggested in Wolf et al. [16]. Training
a model from scratch, as suggested in [11,12], is not an option with state-of-the-art com-
puter vision models, because they need a large quantity of training samples. Further, our
methods offer no solution for challenge II: AOIs share the same concept. This could be
solved using similarity models with interactive training. For instance, we could iteratively
train a model to differentiate between “left face” and “right face” which would reduce the
number of insertion errors for 03-dialog. Using multiple object tracking algorithms [57]
with humans-in-the-loop is a promising approach to support challenges III and IV. Further,
we plan to develop error-aware gaze to AOI mapping similar to [5,79] to compensate
for the gaze estimation error in mobile eye tracking. Also, it is likely that the fixation
detection algorithm used in [2] has an impact on the ground truth extraction. The authors
mentioned that, e.g., smooth pursuit movements are not supported well, which make
up a large portion of the data. The selection of a suitable fixation detection algorithm is
even more important for mobile eye tracking [74]. In addition, we recently showcased a
real-time application of the IC method in an augmented reality setting with objects that
are well represented in the training data of the image classification model [72], similar to
Machado et al. [9], based on the AR eye tracking toolkit [80]. Our method enables a stable
augmentation of ambient objects via the head-mounted display.

https://github.com/openvinotoolkit/cvat
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6. Conclusions

In this work, we implemented two methods for detecting visual attention using
pre-trained deep learning models from computer vision. In addition, we defined an
evaluation framework based on the VISUS dataset by Kurzhals et al. [2] and identified
four challenges for methods that map gaze to AOIs. We used a set of fine-grained metrics
by Ward et al. [18] from the field of activity recognition to evaluate our visual attention
to AOI mapping methods. Our methods performed well for AOIs with distinct concepts
which have a strong match to the pre-trained model classes. However, several limitations
impede our goal of accelerating and objectifying AOI annotation in eye tracking research.
For instance, our methods drop in performance when a concept is not supported, when two
instances of the same concept cannot be disambiguated, or when gaze estimation errors
occur. In the discussion, we proposed ways to overcome these limitations. In particular, we
suggest to use interactive machine learning for adapting our methods to new scenarios or
to differentiate between instances of the same concept. Further, we proposed an approach
based on multi-object tracking to cope with AOIs that have a similar appearance.
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Abbreviations

General
AOI Area of Interest
IC [Method] Detect Attention using Gaze-guided Image Classification
OD [Method] Detect Attention using Object Detection
EAD Event Analysis Diagram
Event-based Error Classes and Metrics
|E| Number of ground truth events |E| = D + F + FM + M + C
|R| Number of predicted events, or returns |R| = M′ + FM′ + F′ + I′ + C
D Number of deletion errors (false negatives)
I′ Number of insertion errors (false positives)
F, F′ Number of fragmentation errors
M, M′ Number of merge errors
FM, FM′ Number of fragmentation and merge errors (if both occur together)
C Number of correct events
Pr Event-based precision Pr = C

|R| (conservative)

https://www.visus.uni-stuttgart.de/publikationen/benchmark-eyetracking
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Re Event-based recall Re = C
|E| (conservative)

Pr∗ Event-based precision Pr∗ = |R|−I ′
|R| (progressive)

Re∗ Event-based recall Re∗ = |E|−D
|E| (progressive)

Frame-based Error Classes and Metrics
P Total number of positive frames
N Total number of negative frames
TP Number of true positives (frames)
TN Number of true negatives (frames)
D f , dr Number of deletion errors (frames), deletion rate
I f , ir Number of insertion errors (frames), insertion rate
FF, f r Number of fragmentation errors (frames), fragmentation rate
M f , mr Number of merge errors (frames), merging rate
O f , o Number of overfill errors (frames), ratio of overfills
U f , u Number of underfill errors (frames), ratio of underfills
tpr True positive rate
f pr False positive rate
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