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ABSTRACT

Advances in telecommunication network technologies
have led to an ever more interconnected world. Accord-
ingly, the types of threats and attacks to intrude or dis-
able such networks or portions of it are continuing to
develop likewise. Thus, there is a need to detect previ-
ously unknown attack types. Supervised techniques are
not suitable to detect previously not encountered at-
tack types. This paper presents a new ensemble-based
Unknown Network Attack Detector (UNAD) system.
UNAD proposes a training workflow composed of het-
erogeneous and unsupervised anomaly detection tech-
niques, trains on attack-free data and can distinguish
normal network flow from (previously unknown) at-
tacks. This scenario is more realistic for detecting pre-
viously unknown attacks than supervised approaches
and is evaluated on telecommunication network data
with known ground truth. Empirical results reveal that
UNAD can detect attacks on which the workflows have
not been trained on with a precision of 75% and a recall
of 80%. The benefit of UNAD with existing network
attack detectors is, that it can detect completely new
attack types that have never been encountered before.

INTRODUCTION

The Internet has become a part of our daily lives
with billions of active users. New types of network
attacks keep emerging, and there is a need to detect
novel attacks without prior knowledge. Yet many Data
Mining approaches to detect network attacks are su-
pervised and are only suitable for detecting previously
known attack types. There is a need for more explo-
ration of unsupervised approaches as these approaches
typically suffer from many false positives [1], a low pre-
cision or recall in detecting attacks, and some works
are based on older attack types. Hence, the motivation
of the paper is to fill this gap by developing the un-
supervised ensemble-based Unknown Network Attack
Detector (UNAD).

This paper first explores several unsupervised al-
gorithms with respect to precision, recall, F1-Score

for their suitability to be included as part of UNAD,
namely the Local Outlier Factor (LOF) [2], Isolation
Forest (iForest) [3] and Elliptic Envelope [4]. For this
exploration, the CICIDS2017 [5] dataset is used. CI-
CIDS2017 comprises 14 attack types, some of which
emerged in recent years. Next, the paper proposes
UNAD as a composition of some of the evaluated
anomaly detecting methods as base learners (LOF and
iForest). The reason for choosing an ensemble approach
here is that ensemble approaches tend to improve the
average accuracy over any member of the ensemble and
reduce overfitting [6].

The contributions of the paper are (1) an exper-
imental evaluation of the suitability of unsupervised
anomaly detection methods for unknown attack detec-
tion; (2) a new heterogeneous unsupervised ensemble
technique termed UNAD capable of detecting new pre-
viously unseen attack types; and (3) an experimental
evaluation showing that UNAD it is capable of achiev-
ing high accuracy, precision and recall for detecting
unknown attack types, and outperforms its standalone
base learners.

Lastly the paper provides an outlook on ongoing and
future research with respect to UNAD and also provides
concluding remarks.

RELATED WORK

Supervised data mining approaches for Intrusion De-
tection Systems tend to achieve high accuracy, recall
and precision such as [7], [8], [9]. However, they are not
suitable for detecting unknown attacks types. Hence,
unsupervised techniques have been explored, such as
the Intrusion Detection System proposed in [10] based
on One-class SVM. However, One-class SVMs tend to
have a high computational overhead [11] and thus are
not suitable for high-speed network traffic flow. The au-
thors of [1] proposed an unsupervised ensemble model
based Intrusion Detection System which achieved rel-
atively high recall and precision. Yet both aforemen-
tioned unsupervised approaches have been trained and
evaluated on relatively old datasets comprising none of
the attack types that emerged over the last 10 years.
More recently, iForest [3] was used in [12] to detect ab-
normal user behaviour on payroll access logs. Ensemble
methods have also been used for insider threat detec-



tion such as in [13]. The authors of [14] used LOF to
detect network attacks as anomalies. However, their
study was conducted almost 10 years ago, and it is not
clear if it still holds on recent attack types. Elliptic
Envelopes [4], another unsupervised anomaly detection
method, it has been used by the authors of [15] to de-
tect Injection Attacks in Smart Grid Control Systems.

The research presented in this paper develops a new
ensemble learner and workflow termed UNAD for un-
known attack detection. Unlike previous ensemble
learners for network intrusion/attack detection, UNAD
integrates a heterogeneous set of standalone anomaly
detection methods and improves upon their accuracy,
precision and recall. Furthermore, UNAD is applied on
recent data which contains more recent attack types. A
problem with training models for unknown attacks is
privacy issues. Therefore, publicly available synthetic
benchmark datasets such as KDD Cup 99 [16], NSL-
KDD[17], Kyoto 2006+[18], UNSW-NB15[19] and CI-
CIDS2017 [5] can be used to mitigate privacy issues.
The work presented in this paper uses CICIDS2017 as
it contains more recent attack types.

UNAD BASE ANOMALY DETECTION
METHOD SELECTION

In order to build the UNAD ensemble learner
anomaly detection methods need to be selected as base
learners. In total, 4 different kinds of anomaly de-
tection methods that have previously been applied for
similar applications to network attack detection (see
RELATED WORK section) were considered. The con-
sidered techniques are One-Class SVM [20], iForest [3],
LOF [2] and Elliptic Envelope [4]. The One-Class SVM
method was ruled out early in the selection process
since it is unsuitable for fast network flows due to its
high computational demand [11]. The remaining three
algorithms were experimentally optimised on the CI-
CIDS2017 dataset and subsequently evaluated for their
inclusion in the UNAD ensemble.

Experimental Setup

Evaluation Metrics

The metrics used to evaluate base learners are preci-
sion, recall and F1-Score. In UNAD, precision is equiv-
alent to the portion of true positive attacks of all detec-
tions and recall is equivalent to the portion of attacks
detected from all attacks present in the network flow. A
high precision is equally important as detecting the ma-
jority of attacks. This is because false positive attack
detections may trigger expensive actions to counter a
non-existing threat. Since precision and recall are both
equally important in this application, the base learners
have been selected based on the F1-Score, which is the
harmonic mean between precision and recall. An alter-
native measure to use instead of F1-Score could have
been ROC AUC; however, ROC AUC measure is more
reliable on balanced data and the ratio of benign data
to data comprising attacks is 3:1 in the test set and
validation set.

Dataset and Pre-Processing

For evaluating the algorithms, CICIDS2017 [5]
dataset is used. CICIDS2017 is a publicly available
benchmark dataset generated by the Canadian Insti-
tute for Cybersecurity, it covers five day, consists of 84
features, about 3 million data instances and covers 14
attack types including newer types that emerged in re-
cent years. For generating the dataset [5] a complete
network topology was created including Modem, Fire-
wall, Switches, Routers. In addition, nodes in the net-
work comprised various operating systems such as Win-
dows, Ubuntu and Mac, all using commonly available
protocols such as HTTP, HTTPS, FTP, SSH and email
protocols. Table I summarises the number attacks per
type and benign data instances in CICIDS2017.

TABLE I: CICIDS2017 overall traffic type distribution

Traffic Type Count
Benign 2,358,036
DoS Hulk 231,073
Port Scan 158,930
DDoS 41,835
DoS GoldenEye 10,293
FTP Patator 7,938
SSH Patator 5,897
DoS SlowLoris 5,796
DoS SlowHTTPTest 5,499
Botnet 1,966
Web Attack: Brute Force 1,507
Web Attack: XSS 625
Infiltration 36
Web Attack: SQL Injection 21
HeartBleed 11
Total 2,829,463

Fig. 1. Experimental workflow

All experiments were implemented in Python 3.6
using Google Colaboratory. The dataset was pre-
processed before application of the anomaly detection
algorithms. The pre-processing workflow is depicted
in Figure 1. The first step was data cleaning which
comprises removing missing and NaN values, as the
used algorithms are designed for numerical data only.
Moreover, duplicated records were removed to main-
tain data quality and avoid biased results. This step is



followed by dropping out some features that could af-
fect the model’s performance; for instance, ID features
were removed as they do not have discriminatory value
with respect to attacks. Next features containing IP
addresses were also removed as attackers often spoof
their email addresses to avoid IP filtering systems [8].
Finally, features representing port information were re-
moved as they cause models to overfit towards socket
information [21]. Next, the categorical text in the La-
bel feature was converted to numeric form. Hence, the
label for all attack types were converted to 1 and for
benign instances to 0. This is because anomaly detec-
tion methods are essentially binary classification meth-
ods since they distinguish normal data (i.e. benign)
versus anomalies (i.e. attacks). After pre-processing,
the dataset was split into training, validation, and test
sets. Assuming that there is no prior knowledge about
the network attacks, the models will be trained only on
benign flow. Thus, data from the first day was used
to train the model which comprises 529,445 normal
data instances (about 19% of the entire dataset). The
remaining four-day dataset, which contains 2,298,225
data instances of both attacks and benign flow, were
split for validation and testing (50% each). All data
instances were normalised between 0-1 using min-max
scaling to reduce inductive bias while keeping the shape
of the original data distribution. For the experiments,
Principal Component Analysis (PCA) is used. PCA
has been applied in the Intrusion Detection area since
it only requires a few parameters of the principal com-
ponents to be managed for future detections and most
importantly, the statistics can be estimated in a short
amount of time during the detection stage, which en-
ables real-time usage of PCA [22], [23].

Evaluation of Anomaly Detection Algorithms as
Base Learners for UNAD

The anomaly detection models were learned from the
training data (comprising only benign network flow),
and the validation data (including all types of attacks)
was used to find the best combinations of hyperparame-
ter to maximise F1-Score. For hyperparameter tuning,
various Principal Components (PCs) were considered
(2-15 PCs) to reduce the data’s dimensionality.

Local Outlier Factor (LOF)

LOF detects local outliers by comparing the local
density of an object to its adjacent neighbours. LOF
considers an object as an outlier if the average of the
local reachability density of that object is lower than
the local reachability density of its adjacent neighbours
[2]. LOF’s main advantage is detecting local and neigh-
bouring outliers to data instances in very large datasets
with heterogeneous densities [24], [25]. Therefore, for
massive network traffic, LOF is expected to play a sig-
nificant role in detecting attacks. Accordingly, LOF
is evaluated here as a potential part of the proposed
ensemble-based UNAD. The LOF module from scikit-
learn [26] was used. The hyperparameters are contami-
nation and n neighbours. Contamination is the propor-

tion of the outliers expected in the dataset ranging from
0 to 0.5. We assumed no knowledge about the propor-
tion of outliers constituting non-attacks in the training
data. The hyperparameters were tuned using various
combinations of values for the contamination value. It
was tuned from 0.01 to 0.5 in steps of 0.01. The value of
n neighbours was selected within a range of 5 to 50 in
steps of 5. Once the hyperparameters were optimised
and the best combination was determined, they were
applied to the test set for every number of PCs ranging
between 2-15.

Fig. 2. Summary of Experimental Results expressed in percent-
ages for the LOF based workflow

Fig. 2 shows the best results for each number of PCs
used. For each number of PCs, always the best setting
of contamination and the number of nearest neighbours
is displayed. The figure shows that the highest preci-
sion and F1-Score was achieved for 7 PCs (with con-
tamination parameter 0.07 and 30 neighbours), while
the highest recall was observed for 10 PCs (with con-
tamination parameter 0.08 and 35 neighbours). Based
on the F1-Score, the optimal number of PCs for LOF
is 7.

Isolation Forest

iForest consists of a random trees forest that keeps
portioning all instances until they are fully separated.
Moreover, iForest assumes that anomalies are expected
to be split in early partitioning; therefore, instances
with shorter path lengths are very likely to be anoma-
lies [27]. iForest provides low linear time-complexity
with a low memory requirement, making it ideal for
detecting network attacks in a fast and timely manner.
Furthermore, iForest can deal with high dimensional
data with unrelated attributes [27]. Hence, making it
perfect to be integrated in the proposed UNAD ensem-
ble. iForest implementation from scikit-learn [26] was
used. The hyperparameters here are contamination fac-
tor, n estimators (number of trees) and max samples.
The contamination parameter is the same as for LOF.
We assumed no knowledge about the proportion of out-
liers constituting non-attacks in the training data. The
hyperparameters were optimised using various combi-
nations of values for the contamination value. It was
tuned from 0.01 to 0.5 in steps of 0.01. The number of
n estimators was selected from 50 to 450 in steps of 50.



Regarding the max samples parameter, which selects
the portion of the training data for each base estimator,
a proportion settings of 25%, 50%, 75% and 100% were
used in addition to the default setting of 256 samples.
Concerning other parameters, max features parameter
which controls the number of features to be extracted
from the dataset to train each estimator [26], it was
set to its default values (1.0) to draw all features to
train the estimators, and the random state parameter
was set to a fixed number (42) for results reproducibil-
ity. Once the hyperparameters were optimised and the
best combination was determined, they were applied to
the test set for every number of PCs ranging between
2-15.

Fig. 3. Summary of Experimental Results expressed in percent-
ages for the iForest based workflow

Fig. 3 shows the best results of iForest for each num-
ber of PCs used. For each number of PCs, always the
best stetting of contamination and the number of near-
est neighbours are displayed. The figure shows that
the highest precision and F1-Score was obtained us-
ing 11 PCs (with contamination parameter of 0.24, 400
estimators and 25% max samples), while the highest
recall was observed using 6 PCs (with contamination
parameter of 0.43, 200 estimators and default setting
(256) max samples). Based on the F1-Score the opti-
mal number of PCs for iForest was at 11.

Elliptic Envelope

Elliptic Envelope detects outliers on multivariate
Gaussian distributed datasets. Elliptic Envelope cre-
ates and fits an ellipse around the centre of a group of
data instances using the Minimum Covariance Deter-
minant. Hence, any data instance that is outside the
ellipse is considered an outlier [4]. As the method was
developed for Gaussian distributed datasets, it may not
perform well on data streams, because the distribution
a data stream can change over time due to concept
drift. However, since the method has a low computa-
tional complexity, and is readily available in scikit-learn
[26] it has been evaluated as a potential base learner for
UNAD. The Elliptic Envelope contamination hyperpa-
rameter is the same as for LOF and iForest. Again, we
assumed no knowledge about the proportion of outliers
constituting non-attacks in the training data. The con-
tamination parameter value was set ranging from 0.01

to 0.5 in steps of 0.01. Once the contamination pa-
rameter was optimised and its best value determined,
it was applied to the test set for every number of PCs
ranging between 2-15.

Fig. 4. Summary of Experimental Results expressed in percent-
ages for the Elliptic Envelope based workflow

Fig. 4 depicts the Elliptic Envelope results for each
number of PCs used. The figure shows that the highest
recall and F1-Score was seen for 6 PCs (with contam-
ination parameter of 0.44), while the highest precision
was observed also for 6 PCs (with contamination pa-
rameter of 0.29). Based on the F1-Score and assuming
equal importance of precision and recall, Elliptic Enve-
lope’s best setting was thus at 6 PCs, with contamina-
tion parameter of 0.44.

Conjectures and Selection of UNAD Base
Learner Types

Although the anomaly detector candidates have been
optimised with F1-Score as a target, ROC AUC was in-
cluded in the evaluation metrics as well since it is fre-
quently used in anomaly detection literature. Interest-
ingly in all cases using ROC AUC rather than F1-Score
would have lead the same outcome.

With respect to base anomaly detector selection for
UNAD, LOF and iForest have been chosen. The reason
for choosing LOF is that it achieves a relatively good
F1-Score at 7 PCs on its own with 74% and a relatively
high recall with 83% for 7 PCS. The precision of LOF
is moderate with 66% at 7 PCs. The metrics for iFor-
est are similar, but a bit more extreme. F1-Score is
moderate at 61% for 11 PCs. the recall is high at 85%
using 11 PCs, yet precision is relatively low with 48%,
meaning that about half the anomaly detections are
false alarms. Elliptic Envelope achieves the lowest F1-
Score of all anomaly detectors with 59% at 6 PCs and
even lower precision than iForest at 6 PCs with 42%. It
has the highest recall though, with 97%. Since Elliptic
Envelope achieves a very low precision, the technique is
likely to be counterproductive in the UNAD ensemble
and hence is excluded.



UNSUPERVISED ENSEMBLE LEARNER
ARCHITECTURE FOR UNKNOWN

ATTACK DETECTION

Based on the preliminary results discussed in the pre-
vious section, the UNAD ensemble was developed using
of iForest and LOF as base learners, excluding Elliptic
Envelop. The UNAD ensemble is depicted in Figure 5.

The dataset is cleaned the same way as described in
the previous section, normalised and then two versions
of the dataset are produced each projected on the best
number of PCs for LOF (7 PCs) and iForest (11 PCs)
respectively as determined in the experiments outlined
in the previous section. Diversity among each type of
base learner is created through bagging. For each base
learner, bagging is applied on the 529,445 benign data
instances of day one. In order to improve the stabil-
ity and predictive performance of a composite learner
[28], bagging was first introduced by Breiman [29]. It
involves random sampling of the data instances with
replacement. Each data instance is randomly selected
whether to be in the sample or not. The size of the
sample is equal to that of the original number of data
instances. This suggests that some training instances
may appear more than once in the same sample set,
and some may not be included at all.

Fig. 5. Proposed UNAD workflow

UNAD induces 50 LOF and 50 iForest base learn-
ers, all of which are likely to be different since each has
been induced on a separate bootstrap sample. UNAD
further diversifies the base learners by randomly choos-
ing a set of parameter values for the number of Nearest
Neighbours and a contamination factor. Here parame-
ter values from the top 3 best performing instances of
LOF for 7 PCs were considered. These are:

• Nearest Neighbours: 25, 30 and 40
• Contamination: 0.06, 0.07 and 0.08

Concerning the iForest base learners, similar to the
LOF base learners, UNAD chooses randomly the best
parameter values from the iForest preliminary experi-
ments with 11 PCs. These are in particular:

• Number of estimators: 150, 350 and 400.

The contamination parameter and the max samples
parameters for iForest were identical for all top three
instances in the preliminary experiments with 11 PCs.
Hence, UNAD uses contamination 0.24 and 25% max
samples for all iForest instances.

To detect anomalies, UNAD uses a majority vot-
ing scheme of all 100 base anomaly detector instances.
There is an equal vote per base learner instance and per
classification (benign or attack). Please note that due
to equal voting and even number of base learners tie
breaks are possible. The same number of base learners
for LOF and iForest has been chosen to avoid bias to-
wards one type of base learner, hence there is an even
number of base learners. Currently, tie breaks are anal-
ysed by a human analyst, since they represent an uncer-
tainty of the system. In the ONGOING and FUTURE
WORK Section we consider reducing the number of tie
breaks through a weighted voting mechanism.

EXPERIMENTAL EVALUATION

The UNAD learner was applied on the CICIDS2017
dataset as a case study. The data is pre-processed as
already described in Section UNAD BASE ANOMALY
DETECTION METHOD SELECTION. The dataset
attack types and benign distribution is highlighted in
Table I. Data from day one of the network flow was
used as training data. These 529,445 instances com-
prised only benign cases. The test set comprising
1,149,112 instances was used to evaluate UNAD. The
test set comprised instances with all attack types and
also benign data instances.

TABLE II: LOF, iForest and UNAD results comparison in %

Measure(%)
Method

LOF iForest UNAD

Accuracy 86 74 87
Precision 66 48 71
Recall 83 85 80
F1-Score 74 61 75
ROC AUC 85 78 85

Table II depicts the EXPERIMENTAL results of
UNAD compared with the standalone LOF and iFor-
est results. Although the UNAD’s recall was slightly
lower than in standalone LOF and iForest algorithms,
the precision was considerably improved and also there
is some improvement of the F1-Score. The ROC AUC
results are the same compared with the best standalone
competitor, and accuracy has slightly improved. How-
ever, accuracy and ROC AUC are not considered a
good evaluation metric since the data is imbalanced 3:1
in favour of benign data. Thus, F1-Score is considered
a suitable metric, since it describes how well attacks
have been detected in terms of true positive detections



and portion of overall attacks being detected. It can be
seen that F1-Score has improved due to a considerable
improvement of precision.

Fig. 6. Summary of UNAD detected benign and attacks

Figure 6 illustrates the percentage of identified be-
nign cases and detected attacks using the UNAD sys-
tem. UNAD was able to detect all the heartbleed at-
tacks and almost all the portscan attacks (99.64%).
UNAD was also able to identify 89.44% of the be-
nign flow. DDoS and DoS detection rate were between
77.47% and 71.91% expect for DoS Slowloris and DoS
Slowhttptest, which were 60.8% and 57.71% respec-
tively. Attacks under the Web Attack category were
the least well detected attacks with 7.69% for Brute
Force, 3.37% for XSS and none of the SQL Injection at-
tacks were detected. One can see that although there is
overall a high recall / F1-Score the proportion of identi-
fied attacks varies by a large amount from attack type
to attack type, yet all attacks, except Injections, are
represented in the positive attack detections. However,
considering the precondition that UNAD has never seen
any of the attack types in the test set, it performs rel-
atively well finding most attacks with a high precision
and also almost all attack types are represented. In
the ONGOING WORK section an approach to improve
upon the recall of some attack types is briefly discussed.

TABLE III: Traffic type instances abstained from detection

Type Count Percentage (%)
BENIGN 151663 17.4
DDoS 3272 5.1
FTP-Patator 1546 38.9
DoS Slowhttptest 1160 42.1
DoS slowloris 868 29.9
DoS Hulk 824 0.7
DoS GoldenEye 789 15.3
Web Attack: Brute Force 386 51.2
SSH-Patator 671 22.8
PortScan 252 0.3
Web Attack: XSS 143 43.9
Bot 12 1.2
Infiltration 8 44.4
Web Attack: Sql Injection 3 30
Total 164597 14.3

Since UNAD abstains from detection when uncer-
tain, there are also 161,597 test instances for which

UNAD flagged that it was uncertain. How these traf-
fic instances are composed is depicted in Table III. In
the next section an approach to mitigate abstaining is
briefly discussed.

ONGOING WORK

It was observed in the experimental evaluation that
although UNAD did perform with a high F1-Score and
precision on detected attacks, two limitations surfaced:
(1) a low proportion of some attack types were detected
and (2) abstaining from classifying some test instances.

With respect to limitation (1), a supervised adaptive
component alongside UNAD is currently being devel-
oped that augments UNAD by training on new attack
types previously detected by UNAD. Thus, once a new
threat has been identified UNAD actively tries to fur-
ther improve the detection of this particular type of
attack. With respect to (2), a weighted majority vot-
ing is being considered since it is expected to improve
UNAD’s performance in general and lower the risk of
tie breaks. For this a detection score is currently being
developed (calculated on the out of bag sample from the
bagging procedure). This detection score will be used
to weight votes of UNAD base learners and thus reduce
the possibility of tie breaks and further improve F1-
Score. Tie-breaks resulting in abstaining from detec-
tion attempts may still occur; however, a lower number
of abstained instances is expected to be more feasible
to be examined manually by human analysts.

In addition, ongoing work also includes investigating
why SQL injection are not well detected and which type
of attacks are causing the ensemble’s lower recall.

CONCLUSIONS

The paper discussed the need for unsupervised ma-
chine learning techniques to detect network attacks, be-
cause new types of network attacks constantly emerge.
However, if an attack-type is and previously unknown,
a supervised model is generally not capable of detect-
ing such an attack sufficiently. Hence, this paper ex-
plores experimentally various anomaly detection meth-
ods for their detection capabilities of recent unknown
network attacks. Based on this experimental evalua-
tion the authors proposed a heterogeneous ensemble-
based Unknown Network Attack Detection (UNAD)
system which is composed of some of the evaluated
anomaly detection methods, in order to improve preci-
sion and recall of unknown attack detection compared
with standalone anomaly detection methods. UNAD
is evaluated on the CICIDS2017 dataset, which does
not pose any privacy issues and comprises recent attack
types. The ensemble achieved a high precision and F1-
Score and generally outperformed its standalone base
anomaly detectors. Ongoing and future work comprise
an improved voting strategy for base learners to further
improve UNAD’s performance and reduce tie breaks.
Also an augmentation of UNAD is considered which
provides a simultaneously running adaptive parallel su-
pervised learner, which trained / adapted if a new, pre-
viously unknown attack, has been identified by UNAD.
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