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Abstract. This paper investigates the problem of domain adaptation
for diabetic retinopathy (DR) grading. We learn invariant target-domain
features by defining a novel self-supervised task based on retinal vessel
image reconstructions, inspired by medical domain knowledge. Then, a
benchmark of current state-of-the-art unsupervised domain adaptation
methods on the DR problem is provided. It can be shown that our
approach outperforms existing domain adaption strategies. Furthermore,
when utilizing entire training data in the target domain, we are able to
compete with several state-of-the-art approaches in final classification
accuracy just by applying standard network architectures and using
image-level labels.

Keywords: Domain Adaption, Diabetic Retinopathy, Self-Supervised Learning,
Deep Learning, Interactive Machine Learning

1 Introduction

Diabetic retinopathy (DR) is a type of ocular disease that can cause blindness due
to damaged blood vessels in the back of the eye. The causes of DR are high blood
pressure and high blood sugar concentration, which are very common in modern
lifestyles [40]. People with diabetes usually have higher risks of developing DR.
In fact, one-third of diabetes patients show the symptoms of diabetic retinopathy
according to recent studies [42]. Therefore, early detection of DR is critical
to ensure successful treatment. Unfortunately, detecting and grading diabetic
retinopathy in practice is a laborious task, and DR is difficult to diagnose at
an early stage even for professional ophthalmologists. As a result, developing a
precise automatic DR diagnostic device is both necessary and advantageous.

Automated DR diagnosis systems take retinal images (fundus images) and
yield DR grades. In the common retinal imaging dataset of DR, the grades of
DR can be categorized into five stages [6]: 0 - no DR, 1 - mild DR, 2 - moderate
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DR, 3 - severe DR, and 4 - proliferative DR. Specifically, the severity of DR is
determined by taking the numbers, sizes, and appearances of lesions into account.
For instance, figure 1 provides an illustration of five DR grades in the Kaggle
DR dataset [12]. As can be seen, the characteristics of DR grades are complex
in both structure and texture aspects. Therefore, automated diagnosis systems
are required to be capable of extracting meaningful visual features from retinal
images for precise DR grading.

(a) Grade 0 (b) Grade 1 (c) Grade 2 (d) Grade 3 (e) Grade 4

Fig. 1. Illustration of different DR grades.

With the success of deep learning, several CNN-based methods for DR grading
of retinal images have been proposed. The paper from 2016 [6] introduces the
development and validation of a deep learning algorithm for detection of diabetic
retinopathy—with high sensitivity and specificity when compared with manual
grading by ophthalmologists for identifying diabetic retinopathy. Jiang et al. [11]
also propose an ensemble of conventional deep learning methods to increase the
predictive performance of automated DR grading. Lin et al. [14] in other direction
introduce a joint model for lesion detection as well as DR identification, in which
the DR is inferred from the fusion of original images and lesion information
predicted by an attention-based network. Similarly, Zhou et al. in [41] apply
a two-step strategy: first produce a multi-lesion mask by using a semantic
segmentation component, then the severity of DR is graded by exploiting the
lesion mask. Recently, Wu et al. [35] address the problem in a similar way, the
classification is performed by employing pixel-level segmentation maps.

While recent works have demonstrated its effectiveness when trained and
tested on a single dataset, they often suffer from the domain adaptation problem
in practice. In particular, medical images in clinical applications are acquired
from devices of different manufactures that vary in many aspects, including
imaging modes, image processing algorithms, and hardware components. There-
fore, the performance of a trained network from a particular source domain can
dramatically decrease when applied to a different target domain. One possible
way to overcome this barrier is to collect and label new samples in the target
domain, which is necessary for fine-tune trained networks. Nevertheless, this
task is laborious and expensive especially with medical images, as the data are
limited and labeling requires extreme caution. As a result, it is highly desirable to
develop an algorithm that can adapt well in the new domain without additional
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labeled data for training. Such an approach is known as unsupervised domain
adaption.

In this paper, we propose a self-supervised method to reduce domain shift in
the fundus images’ distribution by learning the invariant feature representations.
To this end, feature extraction layers are trained by using both labeled data from
the source domain and a self-supervised task on a target domain by defining
image reconstruction tasks around retinal vessel positions. Moreover, we also
incorporate additional restricted loss functions throughout the training phase to
encourage the acquired features to be consistent with the main objective.

At a glance, we make three main contributions. First, we address the domain
adaptation problem for DR grading on fundus images using a novel self-supervised
approach motivated by medical domain knowledge. Second, we provide a bench-
mark of current state-of-the-art unsupervised domain adaptation methods on
the DR problem. Finally, we show that our approach when using fully training
data in the target domain obtains competitive performance just by employing
standard network architectures and using image-level labels.

Fig. 2. Illustration of our vessel segmentation reconstruction-based SSL. (a) input
image xt, (b) its vessel segmentation yt

v, (c) binary masks Bt (inside green rectangles)
sampled along edges of yt

v in (b) (red rectangles). The image regions inside Bt are
removed to define ŷt and asking the encoder-decoder network to reconstruct them given
the remaining pixels in x̂t.

2 Related Work

Over the last decade, research in domain adaption has achieved remarkable results.
Tzeng et al. [32] propose a deep domain confusion technique to minimize the
maximum mean discrepancy, a non-parametric metric of distribution divergence
proposed by Gretton et al. [5], so that the divergence between two distributions
is reduced. The algorithm developed by Sun et al. [28] is an extension of their
previous work [27], in which CNNs are employed to learn a nonlinear transfor-
mation for correlation alignment. Recently, Wang et al. [33] have presented a
domain adaptation algorithm for screening normal and abnormal retinopathy
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in optical coherence tomography (OCT) images. The system consists of several
complex components guided by the Wasserstein distance [23] to extract invariant
representations across different domains.

In other directions, researchers have employed generative adversarial networks
(GANs) to learn better invariant features. Tzeng et al. [31] combine discrimina-
tive modeling with untied weight sharing and a GAN-based loss to create an
adversarial discriminative domain algorithm. Shen et al.’s algorithm [23] extracts
domain invariant feature representations by optimizing the feature extractor
network, which minimizes the Wasserstein distance trained in an adversarial
manner between the source and target domains. In a different way, Long et al. [15]
design a conditional domain adversarial network by exploiting two strategies,
namely multilinear conditioning, to capture the cross-domain covariance, and
entropy conditioning, to ensure the transferability.

Our method in this paper follows the self-supervised learning (SSL) ap-
proach [13], which is recently an active research direction due to its effectiveness
in learning feature representations. In particular, SSL refers to a representation
learning method where a supervised task is defined over unlabelled data to reduce
the data labeling cost and leverage the available unlabelled data. Until now,
several algorithms based on SSL have been introduced. The method presented by
Xu et al. [38] is a generic network with several kinds of learning tasks in SSL that
can adapt to various datasets and diverse applications. In medical image analysis,
authors in [1] introduce a SSL pretext task based on context restoration, thereby
two isolated small regions are selected randomly and swap their positions. A deep
network is then trained to recover original orders in input images. Unfortunately,
these prior works are mostly designed in the same domain. Recently, Xiao et
al. [36] have pioneered to apply the SSL method for domain adaptation problems.
Specifically, target-domain-aware features are learned from unlabeled data for
image classification through an image rotation-based pretext task trained by a
unified encoder for both source and target domains.

Difference w.r.t. Previous Work: Our method follows Xiao et al. [36];
however, we make the following modifications for our setting. First, rather than
a rotation task like [36], we study medical domain knowledge to create a novel
SSL prediction task, i.e., vessel segmentation reconstruction that has a solid
connection to the severity of diabetic retinopathy [6, ?]. Second, a two-player
procedure is integrated through a discriminate network to ensure mission regions
generated in SSL tasks look realistic and consistent with the image context. As
a results, our objective function has more constraints on learned features when
compared to [36].

3 Method

3.1 Overview

Our proposed method aims at learning invariant features across different domains
through encoder layers shared to optimize several relevant tasks. In specific,
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Fig. 3. Overview our proposed unsupervised domain adaption with vessel reconstruction-
based self-supervised learning.

we define labeled images in the source domain Xs = {(xsi , ysi )}
Ns
i=0 with ysi is

the corresponding label (DR grades) of image xsi and Ns is the total of images.
In the target domain, we assume that only a set of unlabeled images denoted
by Xt = {xti}

Nt
i=0 with Nt samples is available. Our framework, which uses

labeled Xs and unlabeled Xt for domain adaptation, consists of four distinct
blocks: an encoder network E, a decoder network D, an adversarial discriminator
AD, and a main classifier M . These blocks are parameterized by θe, θd, θad
and θm respectively. For each image xti ∈ Xt, we transform it through the self-
supervised learning task based on vessel image reconstruction to define a new

set X̂t = {(x̂ti, ŷti)}
N̂t
i=1, which are used to train E and D blocks for predicting

removed sub-patch images. To encourage that the reconstructed regions look
authentic, the adversarial discriminator AD is integrated through the two-player
game learning procedure for distinguishing generated and ground-truth samples.
Finally, the block M is built on top of the encoder layer E and acts as the main
classification task. We describe below each aforementioned architecture in detail.

3.2 Retinal Vessel Reconstruction-based SSL

According to medical protocol [6, 7], the severity of DR can be predicted by
observing the number and size of related lesion appearances and complications.
While their positions tend to cluster near vessel positions, we use this attribute
to create a new SSL task that forces learnt feature representation to capture such
lesions.

Given a sample xt ∈ Xt, we extract its vessel segmentation image ytv = f(xti)
with f(.) is a trained deep network (Figure 2a and 2b). In this work, we use
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f(.) as a proposed architecture in [29]. Let Bt is a binary mask corresponding to
the dropped image region in xt, with a value of 1 if a pixel was dropped and 0
for input pixels. Unlike related works [1, 3], we generate region masks in Bt by
randomly sampling sub-patch images along vessel positions in ytv as indicated in
Figure 2c. We then define a new pair of samples:

x̂t = (1−Bt)� xt, ŷt = Bt � xt (1)

where � is the element-wise product operation.

Reconstruction Loss We train a context encoder F formed from the encoder
E and the decoder D to reconstruct target regions ŷt given the input x̂t. A
normalized L2 distance is employed as our reconstruction objective function:

Lrec = min
θe, θd

Ext∈Xt ||Bt � F (x̂t)− ŷt||22 (2)

Adversarial Loss The objective function Lrec takes into account the overall
construction of the missing region and agreement with its context, but tends to
average together the multiple forms in predictions. We thus adapt the adversarial
discriminator AD as [21, 34] to make the predictions of the context encoder F
look real through selecting similar instances from the target distribution. The
joint min-max objective function of discriminator AD and generator F is:

Ladv = min
θe, θd

max
θad

Ext∈Xt [log(D(xt) + log(1−D(F (x̂t)))] (3)

By jointly optimizing Lrec and Ladv, we encourage the output of the context
encoder F to look realistic on the entire prediction, not just the missing regions
as in Lrec.

3.3 Relevant Features from SSL

Main Classification Loss In our framework, the block M takes the feature
representation from the encoder E to predict a corresponding label yt for each
image xt in the target domain. The network M and encoder E are trained with
labeled data in the source domain by optimizing the classification problem:

Lclass = min
θe,θm

Exs,ys∈Xs [− log p(ys|xs)] (4)

where p(ys|xs) is a conditional probability distribution of ys given xs parameter-
ized by E and M networks.

Constrained Features from SSL While the SSL task is designed to encourage
the encoder E to capture invariant features across different domains and pay
attention to vessel positions, there is no guarantee of the compatibility between
this SSL task and the main classification target. Inspired from prior works in
semi-supervised learning [16, 37], we adapt two additional loss constraints on the
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feature representation generated by the SSL x̂t, the input xt, and the target label
yt:

Lc = min
θe,θm

Ext∈XtEx̂t∈X̂t

[
DKL(p̂(yt|xt)||p(yt|x̂t))

]
(5)

Le = min
θe,θm

Ext∈Xt

[
−
∑
yt

p(yt|xt) log(p(yt|xt))
]

(6)

where DKL is the Kullback-Leibler consistency loss [16, 37], p̂(yt|xt) is a fixed
copy of the current p(yt|xt) with parameters θe, θm, it means that p̂(yt|xt) is only
used for each inference step and the gradient is not propagated through them.

Intuitively, the consistency objective function Lc forces the feature represen-
tation in E to be insensitive to data augmentation in defined SSL task while
the objective Le penalizes uncertain predictions, leading to more discriminative
representations. However, the equations Lc, Le require labels yt in the target
domain to optimize, which are assumed to be not available in our unsupervised
domain adaption. We address this challenge by integrating pseudo-labels yt

generated by predictions using E and M blocks and updating it progressively
after each training step.

Overall Objective Function In summary, our overall objective function is:

L = Lclass + λrecLrec + λadvLadv + λcLc + λeLe (7)

where λrec, λadv, λc, λe are coefficients of corresponding objective functions. Due
to the generative adversarial function in Ladv, L is the min-max objective prob-
lem. We adapt the alternative optimization strategy to first update parameters
θe, θd, θm, second update θad and repeating this process until convergence. In
our experiment, we use feature extraction layers from ResNet-50 [8] for both
the encoder E, decoder D and adversarial discriminator AD. These layers are
shaped in certain architectural constraints as in [22]. For the main classification
M , we adapt a simple average pooling followed by a fully connected layer.

4 Experiments and Results

4.1 Evaluation Method

We assess our method, denoted as VesRec-SSL, in two DR grading scenarios:
unsupervised domain adaption (UDA) and conventional classification problems.
In the first case, all UDA methods are trained using both supervised samples in
the source domain and unlabeled samples in the target domain. The performance
is then evaluated using the target domain’s testing set. In the second case, we
train and test in the same domain, i.e., the training set’s labeled images are
utilized in the training step, and trained networks are measured on the remaining
data. For the latter case, our method may be viewed as a pre-training phase [1,
18]; thereby, obtained weights after training VesRec-SSL will be used in the
fine-tuning step using partially or completely supervised training samples.
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4.2 Dataset and Metrics

We employ two DR-graded retinal image datasets, Kaggle EyePACS [12] and
FGADR [42], for training and testing with DR gradings from 0-4 (Figure 1).
We follow the splitting standard in EyePACS with 35126 training images and
53576 testing images. With the FGADR dataset, we can only access 1842 images
(SegSet) out of a total of 2842 images at the moment due to data privacy. Because
there is no specific train/test on the SegSet, we apply 3-fold cross-validation to
compute the final performance. For quantitative metrics, we use classification
accuracy and Quadratic Weighted Kappa (Q. W. Kappa) [42].

4.3 Performance of Unsupervised Adaption Methods

In this task, we choose one dataset as the source domain and the other as the
target domain. We provide a benchmark of three different methods in literature:
Xiao et al.’s Rotation-based SSL [36], Long et al.’s CDAN and CDAN-E [15]. For
fairly comparison, we choose ResNet50 as the backbone network for all methods.
The quantitative evaluation is shown in Table 1 where “EyePACS → FGADR
(SegSet)” indicates the source domain is EyePACS the target domain is FGADR
restricted on SegSet with 1842 images, and similarly for “FGADR (SegSet) →
EyePACS”. In practice, we found that training baselines directly in our setting is
not straightforward due to the imbalance among grading types and the complexity
of distinguishing distinct diseases. Therefore, we applied the following training
methods:

– First, we only activate the main classification loss using fully supervised
samples in the source domain in the initial phase and training until the model
converges. Next, auxiliary loss functions will be activated, and the network
is continued to train in the latter phase.

– Second, we apply the progressive resizing technique introduced in the fast.ai1,
and the DAWNBench challenge [2] in which the network is trained with
smaller images at the beginning, and obtained weights are utilized for training
another model with larger images. We use two different resolutions in our
setting: 256× 256 and 512× 512.

– Finally, the optimal learning rate is automatically chosen by the Cyclical
Learning method [25] with the SGD optimizer [4], which sets the learning
rate to cyclically change between reasonable boundary values.

As shown in Table 1, our VesRec-SSL outperforms competitors by a remarkable
margin in all settings and metrics. For instance, we achieve 2 − 3% more for
FGADR and 1 − 3% more for EyePACS, compared to the second competitor
CDAN-E. In addition, we can observe that the performance in “FGADR (SegSet)
→ EyePACS” is lower than that in “EyePACS → FGADR (SegSet)” in most of
the cases. We argue this happens due to the number of training instances in the
source domain of “FGADR“, which is much lower than that of “EyePACS“.

1 https://course.fast.ai/
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Table 1. Performance of Unsupervised Domain Adaption Methods.

Method
EyePACS → FGADR (SegSet) FGADR (SegSet) → EyePACS

Acc. Q.W. Kappa Acc. Q.W. Kappa

Rotation-based SSL [36] 0.728 0.672 0.681 0.660

CDAN [15] 0.741 0.685 0.697 0.685

CDAN-E [15] 0.755 0.706 0.702 0.691

VesRec-SSL (Our) 0.782 0.725 0.736 0.702

Table 2. Performance of competitor methods on the DR grading prediction. Red, blue,
black, and orange represent the top four best results.

Method
EyePACS

Acc. Q.W. Kappa

VGG-16 [24] 0.836 0.820
ResNet-50 [8] 0.846 0.824

Inception v3 [30] 0.840 0.811
DenseNet-121 [10] 0.854 0.835

Lin et al., [14] 0.867 0.857

Zhou et al., [41] 0.895 0.885
Wu et al., [35] 0.886 0.877

VesRec-SSL (ResNet-50) + 0% 0.736 0.702
VesRec-SSL (ResNet-50) + 50% 0.798 0.774
VesRec-SSL (ResNet-50) + 100% 0.864 0.852

VesRec-SSL (DenseNet-121) + 0% 0.744 0.711
VesRec-SSL (DenseNet-121) + 50% 0.815 0.793
VesRec-SSL (DenseNet-121) + 100% 0.871 0.862

VesRec-SSL (ResNet-50 + DenseNet-121) + 100% 0.891 0.879

4.4 Performance of Baseline Methods on DR Grading Prediction

In this task, we compare our algorithm to the most recent state-of-the-art method
reported in [42]. Due to the data privacy on the FGADR dataset, we can only
benchmark baselines on the EyePACS dataset. For ablation studies, we also
fine-tune our VesRec-SSL with additional 0%, 50%, and 100% labeled data pairs
from the target domain. The evaluation results are shown in Table 2. Besides
the default backbone with ResNet-50, we consider a variation with DenseNet-121
network for fairly evaluation with two top methods in [41, 35]. Moreover, we also
utilize feature extraction layers as average pooling of feature maps obtained from
ResNet-50 and DenseNet-121 at the last row and train this network with 100%
training data.

The results indicate that without labeled data from the target domain, our
two settings perform considerably worse than all baselines trained with fully
supervised images. However, by progressively increasing the amount of labeled
data from 50% to 100%, we can significantly increase performance. For example,
the ResNet-50 with 50% data outperforms the 0% case with approximately 6/7%
in Acc/Q.W.Kappa. DenseNet-121 follows a similar pattern, improving 7/8%
(50% data), and even with 100% training data, our VesRec-SSL can achieve
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the fourth rank in total. Finally, we observe that utilizing both the ResNet-
50 and DenseNet-121 backbones can result in a second-rank overall without
modifying the network architecture or adding extra pixel-level segmentation
maps for relative lesion characteristics as in [35, 41]. In summary, we argue that
our method with vessel reconstruction-based SSL has proven effective for domain
adaptation under DR grading applications, especially as partial or complete
annotations are available.

5 Conclusion

Domain shift is a big obstacle of deep learning-based medical analysis, especially
as images are collected by using various devices. In this work, we showed that
the unsupervised domain adaption for diabetic retinopathy grading can benefit
from our novel self-supervised learning (SSL) based on the medical vessel image
reconstruction tasks. Furthermore, when fully integrating annotation data and
simply using standard network architectures, our technique achieves comparable
performance to cutting-edge benchmarks. In future work, we consider to extend
the SSL task to include related lesion appearances such as microaneurysms
(MAs), Hard exudates, and Soft exudates [42] to acquire improved invariant
feature representation guided by medical domain knowledge. Moreover, making
our network’s predictions understandable and explainable to clinicians is also a
crucial question for further investigation based on our recent medical application
projects [17, 19, 20, 26]. We also aim to investigate in the direction of information
fusion and explainable AI by incorporating multimodal embeddings with Graph
Neural Networks [9, 39].
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