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SAARLAND UNIVERSITY

Department of Computer Science

Abstract

In Silico User Testing for Mid-Air Interactions with Deep

Reinforcement Learning

by Noshaba Cheema

User interface design for Virtual Reality and other embodied interaction contexts

has to carefully consider ergonomics. A common problem is that mid-air inter-

action may cause excessive arm fatigue, known as the “Gorilla arm” effect. To

predict and prevent such problems at a low cost, this thesis investigates user test-

ing of mid-air interaction without real users, utilizing biomechanically simulated

AI agents trained using deep Reinforcement Learning (RL). This is implemented

in a pointing task and four experimental conditions, demonstrating that the sim-

ulated fatigue data matches ground truth human data. Additionally, two effort

models are compared against each other: 1) instantaneous joint torques commonly

used in computer animation and robotics, and 2) the recent Three Compartment

Controller (3CC-r) model from biomechanical literature. 3CC-r yields movements

that are both more efficient and natural, whereas with instantaneous joint torques,

the RL agent can easily generate movements that are unnatural or only reach the

targets slowly and inaccurately. This thesis demonstrates that deep RL combined

with the 3CC-r provides a viable tool for predicting both interaction movements

and user experience in silico, without users.
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Chapter 1

Introduction

Interaction design (IxD) is the “practice of designing interactive digital products,

environments, systems, and services” [1]. Typical design goals are defined in terms

of subjective measures, such as user enjoyment in games or low perceived exertion

or effort in gestural interaction, making designing such experiences fundamentally

difficult. Hence, IxD is in practice an iterative trial-and-error process where the

design needs to be gradually and expensively improved by observing users inter-

acting with prototypes. Designing complex interactive experiences without actual

users is therefore even more challenging as the effects of design decisions are nearly

impossible to predict.

Despite this, a rising trend in human-computer interaction design is to utilize com-

putational models of users to predict the user experience [2–7]. A major advantage

of this is that lengthy and tedious trial-and-error processes can be omitted if suf-

ficient accuracy is reached with such models. Evaluation of alternative solutions

to design problems can be done rapidly in silico, without users - or at least a pre-

selection of the most likely solutions which can later be tested in real life. With the

1



Chapter 1. Introduction 2

help of such computational methods a designer can further deploy optimization

algorithms to automatically find and propose high-value solutions.

Computational user models have been successfully applied in, e.g., game playing

[7–9] and typing [5]. However, many complex interactions are still challenging to

model, in particular in the domain of embodied experiences such as Virtual Real-

ity (VR), which require modeling the user’s body and biomechanics. Fortunately,

new and powerful tools are emerging: Recent advances in deep Reinforcement

Learning (RL) [10–13] provide a generic approach to train intelligent agents for

any kind of simulated system such as a video game or biomechanical simulation,

provided that one can define the agent’s goals or tasks as a reward function such

as a game score. For user modeling, this means that one needs to make minimal

assumptions about user behavior; instead, the agents will explore and discover the

behaviors of maximal utility – i.e., cumulative rewards – following a computational

rationality model of behavior [14]. Such AI agents can also be extended with mod-

els of intrinsic motivation and emotion [15, 16], which can allow prediction of the

user experience and behavior beyond simple task-driven behavior and associated

metrics like task success rate [4].

1.1 Contribution

This thesis contributes the first user modeling experiment that combines deep RL

with a biomechanical arm simulation model that allows both synthesizing mid-air

interaction movements and predicting the associated embodied user experience,
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with a focus on subjective fatigue. This approach is tested in a mid-air pointing

task and four experimental conditions, replicating the experiment design of [17]

who tested the same conditions on real humans and analyzed fatigue using motion

capture data. The agent is able to efficiently learn the pointing movements needed

for the tasks, doing away with the need to capture motions from real humans.

Furthermore, the simulation-based fatigue data provides a good fit with the human

data of [17]. Compared to the optimization of mid-air pointing movements of

Montano Murillo et al. [18], the method described in this thesis does not rely on

predetermined effort estimates for different spatial locations. Instead, all resulting

data simply emerges from the biomechanical simulation model and rewarding the

agent for both accomplishing the task and avoiding fatigue/discomfort.

As an additional contribution, two different fatigue/effort models incorporated as

reward function components are compared: 1) instantaneous joint torques com-

mon in computer animation, robotics [19], and standard deep RL movement con-

trol benchmark tasks (MuJoCo) [20], and 2) the recent Three Compartment Con-

troller (3CC-r) model from biomechanical literature [21]. This work demonstrates

that the 3CC-r model yields movements that are both more efficient and natural,

whereas with instantaneous joint torques, the RL agent can easily generate move-

ments that are unnatural or only reach the targets slowly and inaccurately. As the

3CC-r model causes no significant increase in computational complexity, this the-

sis advocates deep RL researchers also incorporating it to their benchmark tasks

to increase both the realism of biomechanical effort modeling and naturalness of

emerging movements.





Chapter 2

Background and Related Work

2.1 Simulating User Behavior

The literature on user modeling features different kinds of models. The most

simple ones like Fitt’s law [22] allow predicting a quantity like pointing target

acquisition time as a function of design variables like target distance using simple

mathematical expressions. However, in many cases such mathematical models are

not available, and one must instead resort to simulations of how users perceive,

things, and act while completing tasks. This was first proposed by Card et al.

[5, 23] as early as in 1983 in their GOMS model. As described in [23] GOMS is “a

set of Goals, a set of Operators, a set of Methods for achieving the goals, and a set

of Selections rules for choosing among competing methods for goals” [23]. Their

model was later extended by Adaptive Control of ThoughtRational (ACT-R) and

other more sophisticated cognitive architectures [5, 24], which rigorously define

basic cognitive and perceptual operations. In theory, each task should consist of

a series of these discrete operations.

5
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A limitation of early user models like GOMS is their complexity: Successful ap-

plication of the model in a design task requires the designer to provide a detailed

breakdown of the user’s goals and expected behavior. Early cognitive architecture

development was also plagued by various cognitive processes hand-crafted in isola-

tion, with difficulties of integrating them to general solutions for, e.g., autonomous

skill acquisition [24]. However, this was prior to the recent deep neural network

revolution; deep Reinforcement Learning (RL) agents have now been demonstrated

to learn a wide variety of skills ranging from video game play [11] to controlling the

movement of biomechanically simulated human bodies [13]. Although RL meth-

ods can be complex, they are simple to apply , which makes them lucrative for

user simulation purposes.

Reinforcement Learning is an approach to discovering the optimal actions for a

Markov Decision Process (MDP) [10]. It is assumed that at time t, the agent

is in state st, takes action at, and observes a reward rt and a next state st+1.

The agent is optimizing utility, i.e., expected cumulative future rewards, in line

with the computational rationality view of human behavior [14]. Thus, for user

modeling, one only needs to define the states, actions, and rewards. At least in

some cases, the reward function can also be inferred from human data [25, 26].

Traditionally, RL user simulation has been limited into simple MDP:s with dis-

crete, enumerable states and actions, e.g., dialogue systems, menus and simple

keyboards [27–29]. The discrete states and actions make the MDP:s solvable

with classic RL methods like Q-learning [10]. However, recent deep RL methods

like Proximal Policy Optimization [30] and Soft Actor Critic [12] also work with
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the high-dimensional states and actions required for intelligent control of human

biomechanical simulation [13]. The thesis demonstrates that this makes deep RL a

viable approach for modeling embodied interaction and predicting user experience

outcomes such as fatigue.

A recent result that further motivates this work is that biomechanically realis-

tic movement can be synthesized efficiently through simplified skeletal simulation

without muscle and tendon detail, as long as the actuation effort minimized by

an RL agent is computed with a higher degree of biomechanical realism through

a machine learning model that predicts muscle activations from joint actuation

torques [31]. Extending this approach, the presented model actuates with joint

torques and increases biomechanical realism through a fatigue model incorporated

as an extra reward function component.

It should be noted that modern neural-network based RL also generalizes to Par-

tially Observable Markov Decision Processes (POMDP:s) where the agent cannot

access the full environment or simulation state [32]. This is often the case in user

modeling that incorporates realistic perception models.

2.2 Quantifying Mid-Air Interaction Fatigue

Muscle fatigue is the failure to maintain the required or expected force [33]. Fatigue

depends on a multitude of simultaneous physiological and neurological processes,

making it difficult to pinpoint a single mechanism responsible for the loss of force
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[34–37]. It is also task-related and can vary across muscles and joints [17, 34, 38–

41], which partially explains the challenging nature of representing muscle fatigue

analytically [34].

A widely used empirical model to estimate the effect of fatigue on the task en-

durance time (ET) of static load conditions is the Rohmert’s curve [38, 42]. Hin-

capié et al. [43] developed Consumed Endurance (CE), a metric to quantify arm

fatigue of mid-air interactions, based on the Rohmert’s curve. Although straight-

forward, the approach lacks the ability to generalize to dynamic load conditions or

recovery during rest periods [17, 34] as it is based on the Rohmert’s curve, which

is only valid for static load conditions. Furthermore, CE is assumed to be zero at

exertion levels below 15%. This limits the use of the model for evaluating mid-air

interaction with low exertion levels [17, 40].

Liu et al. [44] have proposed a motor unit (MU)-based fatigue model which uses

three muscle activation states: resting (MR), activated (MA) and fatigued (MF ).

The model is able to predict fatigue at static load conditions but fails at sub-

maximal or dynamic conditions [17, 34]. Xia et al. [34] have proposed a Three-

Compartment Controller (3CC) model which improves upon the model of Liu et

al. for dynamic load conditions by introducing a feed-back controller term be-

tween the active (MA) and rest (MR) muscle states. Frey et al. [41] validated

the 3CC model in estimating ET under static load conditions and have obtained

joint-specific parameters. Later, Jang et al. [17] have optimized the 3CC model

for mid-air interaction tasks [17]. They further show that the 3CC model can be

used to estimate ground truth human perceived fatigue ratings based on the Borg
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CR10 scale [45]. While their findings are based on kinematic data only, they still

require motion data captured from real humans.

More recently, Looft et al. [21] have published an improved 3CC-r model for

intermittent tasks by introducing an additional rest recovery multiplier r and

validated their results based on perceived fatigue from participants for specific

joints.





Chapter 3

Preliminaries: Fatigue Modeling

Two different fatigue models are investigated in this thesis: 1) instantaneous joint

torques as a measure of instantaneous effort, and 2) the recently developed Three-

Compartment Controller (3CC-r) Model by Looft et al. [21].

3.1 Instantaneous Joint Torque Effort

Instantaneous joint torque is a simple measure used in computer animation, robotics,

and standard RL benchmark problems [46–49] to measure and minimize the in-

stantaneous effort of a given task a simulated agent is performing. When defining

movement optimization objective functions, the torques are usually squared to

make the optimization avoid using excessive strength.

3.2 Three-Compartment Controller (3CC-r) Model

An instantaneous effort model gives a simple measure to determine the difficulty

of a given task. However, it is not very biologically accurate as a simple task can

11
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Figure 3.1: Three compartment controller model.

become difficult when done long enough. A cumulative effort function, such as the

3CC-r model, thus gives a more accurate representation of perceived fatigue.

Akin to Liu et al. [44], the 3CC-r model [21] assumes motor units (MUs) to be in

one of the three possible states:

• active - MUs contributing to the task

• fatigued - fatigued MUs without activation

• resting - inactive MUs not required for the task

Fig. 3.1 shows the relationship between these states. MA(%) is the compartment

of active MUs, MF (%) the compartment of fatigued, and MR(%) the compartment

of resting MUs. Each compartment is expressed as a percentage of the maximum

voluntary contraction (%MVC) [17, 34].

In addition to that, the compartment theory is combined with control theory to

define system behaviour which matches muscle physiology [34], i.e. active MUs’
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force production should begin to decay (fatigue) over time. This is expressed by

the following equations:

∂MR

∂t
= −C(t) + rR ·MF (3.1)

∂MA

∂t
= C(t)− F ·MA (3.2)

∂MF

∂t
= F ·MA − rR ·MF (3.3)

Where F and rR are the model parameters defining at which rate the motor

units fatigue, and which rate they recover and enter the rest period, respectively.

In contrast to the traditional 3CC model [34], the 3CC-r model introduces an

additional rest recovery factor r, which enhances the recovery when the required

force, i.e. target load (TL), is zero to better represent perceived fatigue estimates

from user studies [21]:

rR =


r ·R if MA ≥ TL

R else

(3.4)

The 3CC-r [21] is equivalent to the 3CC [34] model when r = 1. Based on a

sensitivity analysis r is set to 7.5. F is set to 0.0146, and R to 0.0022 based on

Jang et al. [17] 3CC-model optimization for mid-air interactions.
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Figure 3.2: Behaviour of 3CC-r model at target load of 50% MVC (black
dotted line). The load cannot be held after around 70 s (yellow dashed line).

C(t) is the time-varying muscle activation-deactivation drive, which can produce

the target load TL in percent by controlling the size of MA and the availability of

MR. The following equations describe C(t) mathematically:

C(t) =



LD · (TL−MA) if MA < TL and MR > (TL−MA)

LD ·MR if MA < TL and MR ≤ (TL−MA)

LR · (TL−MA) if MA ≥ TL

(3.5)

LD is the muscle force development factor, and LR is the relaxation factor. Based

on the analysis by [34], these are set to 10.



Chapter 4

System

The system is implemented using the Unity game engine and their ML Agents

Toolkit v0.8.2 [50] implementation of the Proximal Policy Optimization (PPO)

[30] RL algorithm. The following details our effort model, the simulated pointing

task, and the RL problem formulation and training settings.

4.1 Fatigue Model

4.1.1 Instantaneous Fatigue Model

In this thesis, instantaneous torques are compared against to the more advanced

3CC modeling. More specifically, instantaneous torques normalized with respect

to maximum torque Tmax are used:

EffortI(~T ) =

(
‖~T‖
Tmax

)
(4.1)

15
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4.1.2 Cumulative Fatigue Model

Since the 3CC model is a relative unit-less system [34], TL can be described in a

variety of options, e.g. the percentage of maximum voluntary torques (MVT) or

forces (MVF).

Previous studies [17, 21, 41] set TL as the ratio of the magnitude of torque ~T

and the maximum voluntary torque Tmax at a joint: ‖~T‖
Tmax

· 100%. While this is a

valid approach to measure the load at a given joint, it is more accurate to model

two 3CC-r models per degree-of-freedom (DOF) (one for the “positive”, and one

for the “negative” direction)). Each DOF roughly corresponds to a muscle group.

The presented method avoids modeling at the level of individual muscles to reduce

simulation and RL training time.

The target load can then be expressed as a vector of torque ratios for each direction:

~TL(~T ) =

[
T+
1

Tmax
,

T−
1

−Tmax
,
T+
2

Tmax
,

T−
2

−Tmax
,
T+
3

Tmax
,

T−
3

−Tmax

]>
(4.2)

Where
T+
i

Tmax
is the ratio of the torque at axis i in the “positive” direction, and

T−
i

−Tmax
in the “negative” direction, respectively. When

T+
i

Tmax
≥ 0, then

T−
i

−Tmax
= 0,

and vice versa. Each value in ~TL is used as input for a separate 3CC-r model.

For simulated agents the cumulative effort EffortC is described as the difference

between the actual target load ~TL(~T ) at the joint and the desired muscle activation

~MA =

[
M+

A1
,M−

A1
,M+

A2
,M−

A2
,M+

A3
,M−

A3

]>
given by the 3CC-r model:
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Figure 4.1: Forces acting on our biomechanical upper limb model. The limbs
are modeled as rigid bodies (red) connected with joints (green). The degrees of
freedom (DOF) of each joint are denoted by the arrows at the respective joint.

EffortC(~T ) =

∥∥∥∥∥ ~MA

100
− ~TL(~T )

∥∥∥∥∥ (4.3)

The advantage of this over using MF directly is that the cumulative fatigue given

by the 3CC model stagnates after some time (Fig. 3.2 red line). Furthermore,

it is not clear from MF alone when a target load could not be held. Using the

difference between the actual active motor units and the desired load tells when

the load is okay to be held, and when it becomes a burden. This is shown in Fig.

3.2, where the active motor units (yellow) start to decline after 70 s because the

target load (black) was not sustainable.

4.2 Simulated Upper Limb Model

Similar to [17], arm fatigue is mostly assumed to be attributed to shoulder-joint

fatigue, due to the shoulder fatiguing faster than the elbow or wrist during arm
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Figure 4.2: ISO 9241-9 reciprocal pointing task with 7 targets. Agents point
to highlighted (red) target. Targets highlight in the pattern indicated by the

arrows.

movement [40]. Thus, only the shoulder joint torques are used for either effort

model. The arm is simulated using a 4 DOF serial chain - 3 for the shoulder and

1 for the elbow (Fig. 4.1), where the limbs are modeled as rigid bodies connected

by joints [51]. To estimate the shoulder joint the method described in [43] is used.

4.3 Mid-Air Pointing Task

The mid-air pointing task is modeled after the ISO 9241-9 standard [17, 52, 53]

based on Fitts’ law [22, 54]. The standard is extensively used for evaluating

2D pointing devices, such as mice, pens, and touch screens [53]. The task has

participants point at a circle of targets, with a given width and distance to each

other, in a given order. Akin to [17], this work uses seven targets with a width of

10 cm and a distance of 30 cm to each other, corresponding to an index of difficulty

ID [22, 54] of ID = log2

(
30
10

+ 1
)

= 2. Fig. 4.2 shows the target sequence.

Previous studies [17, 43, 55] have shown that the height and distance from the

arm’s resting position affect the perceived fatigue ratings of participants, making

them fatigue more rapidly the higher and further away the arm is. Additionally,
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rest periods are also a decisive factor of how fatigued we are [17]. These two

factors are investigated in the presented experiments and compared to ground

truth human data from prior studies [17].

Similar to Jang et al. [17], the task switches between pointing and resting periods.

Like them, the following four different rest periods are used: [5s, 10s, 15s, 20s].

4.4 RL Problem Formulation

To be able to apply RL methods, the MDP needs to be defined, i.e. states,

actions, and rewards. Additionally, the PPO method used in this thesis requires

the definition of a policy network for sampling an action given the current state.

The MDP transition model st+1 = f(st, at) is implemented by Unity’s ML-Agents

Toolkit: After sampling an action, it actuates the simulation and queries the next

state.

4.4.1 State and Action Space

The state vector ~s of the agent, comprises a concatination of the following features:

• limb positions with respect to the shoulder [9 values]

• linear velocities of upper and lower arm limbs [6 values]

• angular velocities of upper and lower arm limbs [6 values]

• direction vector from finger tip to target (not normalized) [3 values]
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• target switch time [1 value]

• rest period Boolean [1 value]

The RL actions are defined as actuation torques applied through Unity’s Ad-

dTorque() method at the center of mass of the upper and lower arm limbs. The

action vector ~a from the policy specifies how much of the maximum voluntary

torques (MVT) to apply to the limbs. It is comprised of 4 values, denoting the

three actuation torque values for the upper, and one for the lower arm. The torques

that are applied cannot overshoot shoulder MVT and elbow MVT values, respec-

tively. The shoulder MVT is furthermore used as Tmax in the effort calculation,

described in Section 4.1.

4.4.2 Network

A policy π is represented by a neural network which maps a given state s to a

distribution over action π(a|s). The action distribution is modeled as a Gaussian,

where the state dependant mean µ(s) and the diagonal covariance matrix Σ are

specified by the network output:

π(a|s) = N (µ(s),Σ) (4.4)

The inputs s to the network is processed by two fully-connected layers with 128

hidden units, each, using the Swish [56] activation function. During training the
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network adapts the mean and covariance matrix such that the actions become less

noisy as the agent gradually starts to exploit instead of explore.

4.4.3 Reward

The reward ρ(t) at each step t consists of two terms that encourage the character

to pointing towards the target when there is one, while using minimal effort:

ρ(t) = (ωPρ(t)P + ωFρ(t)F ) · 0.01 (4.5)

ρ(t)P and ρ(t)F are defined as the pointing and fatigue objectives, respectively,

with ωP and ωF being their respective weights. The pointing objective encour-

ages the agent to point towards the current target, while the fatigue objective

encourages it to make use of actions which require less effort than others. Setting

ωP = 100 and ωF = 0.01 results in the desired behavior for various settings.

The pointing reward ρ(t)P depends on the distance between the target and the

finger tip, and is defined with:

ρ(t)P =


1 target has been hit

exp
(
−‖ptarget(t)−pfinger(t)‖2

τ2P

)
else

(4.6)

where ptarget(t) is the target’s position, and pfinger(t) the position of the finger tip

at step t, respectively. τP the tolerance distance in meters for when the reward
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becomes ρ(t)P ≈ 0.3679, when the finger does not hit the target. τP is set to

τP = 0.15. A minimal reward of approx. 0.001 is obtained at around 40 cm from

the target with this objective function.

The fatigue reward ρ(t)F is defined using the Effort functions described in Section

4.1:

ρ(t)F = exp

(
−Effort(

~T (t))2

τ 2F

)
(4.7)

τF is the tolerance in percentage of how much the torque ratio is allowed to deviate

from the desired torque ratio, while obtaining a reward of at least approx. 0.3679.

In the case of the instantaneous effort function this means how much percent is

the shoulder muscle allowed to deviate from zero torque. However, in the case of

the cumulative effort function based on the 3CC-r model, this means how much

is it allowed to deviate from the allowed motor unit activation ~MA given by the

3CC-r model. The best tolerance value τF for each effort model is determined in

Section 5.1.

Note that in some movement optimization cases, squared cost terms are used

without the exponentiation [47, 57]. The exponentiation in this thesis follows

Peng et al. [49]; it converts minimized costs to maximized rewards and also limits

the reward to a predefined range, which makes it easier to train PPO’s value

function predictor network.
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4.5 Training

The policy training is done using the Proximal Policy Optimization (PPO) al-

gorithm [30, 50]. Standard hyperparameters defined in [50] are used, with the

following adjustments: batch size = 2024, buffer size = 20240, γ = 0.995, max

steps = 1.0e6, normalization = True, number of epochs = 3, time horizon = 1000,

summary of frequency = 3000.

4.5.1 Initial State Distribution

PPO training proceeds in episodes, where at the start of each episode the agents

and the environment are reset to an initial state s0. Each episode is simulated to

a fixed time horizon with actions sampled from the policy, after which the agents

and the environment are reset again. In total, 1e6 time steps, or 1000 episodes

with a time horizon of 1000 for each episode is used in this thesis.

Many RL benchmark problems such as the MuJoCo locomotion environments

use a fixed initial state s0 or add only small random perturbations to it [46].

However, as demonstrated by [49], a diverse enough initial state distribution can

greatly improve movement learning. To implement this, multiple settings of the

pointing task are randomly sampled from a uniform distribution. Table 4.1 shows

an overview of these settings. Target Height and Target Distance are in relation

to the shoulder position and the center point of the target circle. Pointing Period

describes the duration of the pointing period before the user is supposed to rest,



Chapter 4. System 24

Training Settings for Pointing Task

Setting Distribution Lower Bound Upper Bound

Target Height Uniform −40 cm +20 cm
Target Distance Uniform +10 cm +70 cm
Switch Time Uniform 1 s 2 s
Pointing Period Uniform 30 s 90 s
Rest Period Index Uniform 1 4
Initial Target Index Uniform 1 7

Table 4.1: Settings of the pointing and resting task during training. Target
height and distance are in relation to the shoulder position.

while Rest Period Index defines which of the four rest periods [5s, 10s, 15s, 20s]

to use. The initial target index of the seven targets sequence is chosen randomly.

During training five agents are used whose attributes are also sampled randomly

for each episode. However, instead of sampling from a uniform distribution they

are sampled from a Gaussian distribution to more accurately represent male and

female strength properties. Table 4.2 shows which features are sampled from

what kind of distribution. For the MVT of shoulder, average values found in

biomechanical literature [58] are used. Based on [58, 59] the average elbow MVT

is estimated between 1 Nm to 10 Nm higher to the person’s shoulder MVT. Hence,

the elbow MVT is sampled from a uniform distribution, where the lower bound

(LB) is the agent’s shoulder MVT and the upper bound (UB) is an additional +10

Nm. Once the body weight is sampled, the actual arm weight is set according to

average body weight percentages for the upper limbs (Table 4.3) [60].

For the 3CC-r model a random initial fatigue is set by sampling uniformly from

an initial shoulder load (between −Tmax and Tmax for each of the three DOF),

which is then applied for a randomly set time (between 0 s and 180 s) onto the
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Agent Settings

Setting Distribution LB / µ UB / σ

Body Weight (M) Gaussian 80 kg 1.0
Body Weight (F) Gaussian 65 kg 1.0
MVT Shoulder (M) Gaussian 54.9 Nm [58] 1.0
MVT Shoulder (F) Gaussian 29.2 Nm [58] 1.0
MVT Elbow Uniform +0 Nm +10 Nm

Table 4.2: Weight and Maximum Voluntary Torque (MVT) settings for upper
body limbs. The elbow MVT is in relation to the agent’s shoulder MVT.

Arm Length & Weight

Limb Length Male Female

Upper Arm 29.06 cm 2.71% 2.55%
Lower Arm 29.44 cm 1.62% 1.38%
Hand 21 cm 0.61% 0.56%

Table 4.3: Length of arm limbs in cm and their corresponding weights in
percentage of the total body weight based on [60].

joint. With this experiences for more long-term fatigue effects are gathered in the

described experiments.
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Evaluation and Results

Our system is evaluated in two experiments, with details provided below. The

results are visualized in Figures 5.3 and 5.4.

First, the movement synthesis quality of the two effort models in terms of both

accuracy of reaching the pointing targets and naturalness of movement are com-

pared. As the presented method defines naturalness as the arm relaxing when

possible, there is an obvious accuracy-naturalness trade-off for the agent, which

can be adjusted with the reward function parameter τF . Fig. 5.3 indicates that

the 3CC model is able to obtain better combinations of naturalness and accuracy,

i.e., points near the bottom-right corners of the plots.

Second, using the model parameters that yield the best accuracy-naturalness

trade-off, the modeled fatigue is compared to ground truth human data. Fig.

5.4 shows how the modeled fatigue gives similar fit to the ground truth data as

previous work that used motion capture data instead of movement synthesized

through RL-controlled simulation. This indicates that the presented approach is

successful in predicting user experience without actual data from users.

27
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Figure 5.1: Four interaction zones used for determining the best model. 1)
Target is shoulder height and arm is bent. 2) Target is waist height and arm is
bent. 3) Target is shoulder height and arm is straight. 4) Target is waist height

and arm is bent.

5.1 Naturalness vs. Accuracy

To determine the best fatigue tolerance value τF for each effort model, a grid search

on the trained networks is done and the results are plotted in terms of accuracy

and naturalness.

Values between 0.0 ≤ τF ≤ 0.5 in 0.02 steps were tested. For this experiment 20

agents with different settings for each trained model are used. The parameters

of the agents are seeded to have the same settings for each model. To make the

models comparable to ground truth human data [17], the targets’ switch time is

set to 1.3 s, and the pointing period to 60 s. Jang et al. [17] determined that if

subjects performed four mid-air interaction periods in a series they had a higher

chance of learning and pre-fatigue effects [61]. Hence, the presented experiment is

designed in a similar fashion to theirs with the following rest periods in between

in this order: [20s, 5s, 15s, 10s]. This setup is akin to group 1 in [17]. In total

the pointing task lasts roughly 5 min. In this experiment the targets are placed

at four different interaction zones with five agents sharing the same zone: one at

shoulder height and having the arm bent, one at waist height and having the arm
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Figure 5.2: Experiment protocol of naturalness vs. accuracy measure, as well
as during comparison against ground truth human data.

bent, one at shoulder height and the arm straight, and finally one at waist height

and having the arm straight. The four interaction zones for this experiment are

shown in Fig. 5.1.

For the accuracy of a model this work considers two separate measures: the median

of the average distance over time from a target, and the median average time it

takes to reach a target. If the agent could not reach the target, the time is set to

the switch time. The median is computed over the average value for each agent.

To determine the naturalness η of arm movements, the following equation is used:

η = 4−
(
d̃pointE + φ̃restE + φ̃restA + ṽrestA

)
(5.1)

with dpointE , φrestE , φrestA , vrestA ∈ [0, 1]. The higher the value is, more natural the arm

motion is supposed to be. “˜” denotes the median value over the agents.

dpointingE is the average distance over T time steps of the elbow to the plane that

is spanned between the shoulder and finger tip and the direction of gravity, when

the agent is pointing:
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dpointE =
1

T

∑
t

|〈~n,
−−−→
ShEl〉|

‖
−−−→
ShEl‖

(5.2)

with
−−−→
ShEl being the vector from the shoulder to the elbow position. The distance

is divided by the length of this vector to obtain values between 0 and 1. ~n is the

plane normal of the shoulder-finger plane:

~n =

−−−→
ShFi

‖
−−−→
ShFi‖

× ~g

‖~g‖
(5.3)

−−−→
ShFi is the vector from the shoulder to the finger tip. The higher dpointE is, the fur-

ther away the elbow is from this plane. The idea is that during pointing movements

the agent should prefer to keep its elbow down since this position is perceived as

less fatiguing than having the elbow point side-ways.

To measure the naturalness of the arm during rest periods, φrestE , φrestA , and vrestA

are added into the naturalness equation.

φrestE is the average elbow angle between the lower and upper arm. The idea is that

during rest periods the agent is not supposed to flex its arm much. It is calculated

the following way:
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φrestE =
1

T

∑
t

(
〈 −−−→ElSh

‖
−−−→
ElSh‖

,

−−−→
ElHa

‖
−−−→
ElHa‖
〉+ 1

)
· 0.5 (5.4)

−−−→
ElSh is the vector from elbow to shoulder and

−−−→
ElHa from elbow to hand, respec-

tively. When the arm is straight the dot product becomes −1, when the lower

arm is perpendicular to the upper arm the dot product is 0, and when the arm

is flexing it is close to 1. To keep φrestE between 0 and 1 (0 being straight and 1

flexing), the dot product is increased by 1 and scaled with 0.5.

While this value determines when the arm is flexing during rest periods, with it

alone the naturalness measure would classify holding an arm in front of oneself as

more natural than flexing it. Thus, the average angle φrestA is calculated between

arm and the direction of gravity and incorporated in the presented naturalness

equation:

φrestA =
1

T

∑
t

(
〈 −−−−−−→COMSh

‖
−−−−−−→
COMSh‖

,
~g

‖~g‖
〉+ 1

)
· 0.5 (5.5)

−−−−−−→
COMSh is the vector from the center of mass of the arm to the shoulder.

While this gives a good measure for policies where the arm learns to be static

during rest periods, it still sometimes classifies moving arms to be more natural

than flexing but resting arms during rest periods. This is because the average of
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all frames is taken and if the arm jerks around a lot, this average of that could

still be an arm hanging down. To overcome this issue, the average velocity vrestA

of the arm during rest periods is also added:

vrestA =
1

T

∑
t

vUA + vLA
vrestAmax

(5.6)

vUA and vLA are the upper arm and lower arm velocities obtained by the Unity

engine. vrestAmax
is the maximum velocity value of all parameter settings and agents.

Fig. 5.3 shows the results of the 3CC-r and the instantaneous effort model. Each

point denotes a different τF value for a model. The models are ordered based on

their naturalness measure (lowest first). Models above a median time of 1.2 s learn

to hang the arm down due to obtaining more reward from using as little effort as

possible compared to the reward obtained from pointing. Models with naturalness

values below 0.3 result in unnatural movements and jerky arm behaviour during

rest periods. Furthermore, the variance of the results in terms of accuracy increases

as is suggested by Fig. 5.3. The sweet spot in which motions are natural, i.e.

arm hangs down during rest periods and elbows are kept down during pointing

periods, but still accurate lies usually within naturalness values between 3.5 and

3.9 (Fig. 5.3). This is the case for 0.1 ≤ τF ≤ 0.18 for the 3CC-r model, and

0.16 ≤ τF ≤ 0.18 for the instantaneous effort model. Note how the span of natural

but efficient behaviour is larger for the models based on 3CC-r. The plots in Fig.

5.3 show how the 3CC-r models consistently outperform the instantaneous fatigue
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Figure 5.3: The evolution of the trade-off between pointing task performance
and movement naturalness when sweeping the τF parameter in the range [0, 0.5],
plotted using both instantaneous torque effort (green) and the 3CC-r model
effort (red). For each tested τF , the agent is retrained and re-evaluated. The
yellow stars indicate the best combinations of both naturalness and pointing
task performance. Overall, the 3CC-r yields better combinations of naturalness

and pointing task performance, across a range of τF .

model in terms of speed and accuracy within this region. Based on the results

in Fig. 5.3, we found that τF = 0.1 for the 3CC-r model yields the best results

in terms of efficiency and naturalness. In the next section this model is used to

compare against ground truth perceived fatigue ratings from humans.
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5.2 Comparison to Ground Truth Human Data

The synthesized motions obtained from the best presented model are compared

against ground truth human data obtained from [17]. Jang et al. [17] use the 3CC

model to estimate fatigue ratings based on motion capture data from a Kinect [62]

sensor. They compare their results with the subjects’ perceived exertion rating

using the Borg CR10 [45] scale (see Table 5.1).

To replicate the four conditions in [17], the first two interaction zones shown in

Fig. 5.1 are used, and two groups with different rest periods in between the four

60 s pointing periods: [20s, 5s, 15s, 10s] for group 1 and [5s, 10s, 20s, 15s] for

group 2. In the following this thesis refers to group 1 and 2 as G1 and G2, and

the high and low interaction zones as H and L. Based on the findings of Jang et

al. [17], the tasks based on the higher interaction zones should be more fatiguing

than the ones based on the lower interaction zones. Furthermore, G1 should feel

less fatigued compared to G2, due to a large rest period in the initial period of

the task.

Jang et al. [17] use 24 participants in their study of which two were female. Since

there was no ground truth data published of each participant’s weight and their

corresponding maximum torque estimate, this work gauges their subjects in a

virtual environment by using average torque and arm weight estimates found in

literature. See Table 4.2 and 4.3 for details. Additionally, the presented experi-

ment also uses 22 male, and 2 female (virtual) subjects.
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Figure 5.4: Results of predicting the Borg CR10 rating. Green: Upper/lower
bound of ground truth. Yellow: Average of ground truth. Red: Average 3CC
estimate of ground truth computed using motion capture data [17]. Black: Our
simulation-based average 3CC-r estimate. Our simulation model yields similar

modeling accuracy as [17], but does not require motion capture data.

Similar to [17] a linear relationship between the fatigued motor units MF obtained

from the 3CC-r model and the Borg CR10 scale is assumed, with ϕ(x) = 0.3 · x

denoting the linear mapping. To compute MF for the Borg CR10 estimate, the

ratio of magnitude of the torque ‖T‖
Tmax
·100% is used as a target load for the model.

An overview of the obtained results is shown in Fig. 5.4. The 3CC-r estimates

(black) on virtual data mostly follow the trend of the 3CC estimates (red) from

[17] based on human data, as well as the ground truth average Borg CR 10 data

(yellow). The average root mean squared error (RMSE) between the 3CC esti-

mates from [17] and their average Borg CR10 ground truth data is 0.58, while ours

to ground truth is 0.66. The largest deviation of the presented model is in experi-

ment G2-H. This may be attributed to physiological and psychological factors that

play into the role of an individual’s perceived fatigue rating [17]. As the minimum

and maximum values for G2H in Fig. 5.4 suggest, the variance of inter-individual

Borg ratings is high for this case. However, despite using no ground truth human

data for the presented calculations this work achieves a similar accuracy to [17]

on their data.
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Borg CR10 Scale

Score Definition Note

0 Nothing at all No arm fatigue
0.5 Very, very weak Just noticeable
1 Very weak As taking a short walk
2 Weak Light
3 Moderate Somewhat but not hard to go on
4 Somewhat heavy
5 Heavy Tiring, not terribly hard to go on
6
7 Very strong Strenuous
8
9
10 Extremely strong Extremely strenuous

Table 5.1: Borg CR10 scales with verbal commentary.



Chapter 6

Discussion

This thesis makes two main contributions to the HCI and ML community: 1) a

cumulative fatigue model for Reinforcement Learning of movement tasks 2) an in

silico method for virtual user testing.

6.1 Cumulative Fatigue for RL

The presented results show that RL-agents trained on a cumulative fatigue model

based on biomechical literature, instead of instantaneous joint torques, learn more

efficient and natural policies. This can be utilized for new optimization procedures

in computer animation and robotics. The developed model is the first one to use

cumulative effort in such a way.

6.2 Reliable In Silico Fatigue Estimate

Furthermore, the results confirmed that ground truth human kinematic data is not

necessarily needed to obtain reliable fatigue estimates for the presented pointing

37
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task. This is the first method to achieve this. Hence, the presented model could

be utilized for a multitude of HCI applications, where human data is not readily

available or expensive to record, and open new pathways to virtual user testing.

The advantage of such in silico methods is that many physical properties can be

reliably modeled with standard games and physics engines [20, 50, 63, 64] making

the prediction - in theory - more accurate than with non-invasive in vivo methods.

With this new environments, e.g. effects of fatigue on the moon or under high

pressure, could be easily explored.

6.3 Limitations

While the developed model showed overall good results and performance, the

following limitations were identified which should be addressed for future work.

Similar to [17], the proposed method is based on the assumption that perceived

fatigue can be directly deduced from biomechanical information. In reality how-

ever, an individual’s perceived fatigue can be attributed to a multitude of different

factors [17, 34], e.g. through physiological and psychological changes. Previous

studies [17, 43, 45, 59] have shown that individuals may experience fatigue and

rest differently than others. However, this could be mitigated with extending the

agents with models of intrinsic motivation and emotion [16] in future work.

An additional limitation of this work is that for the trained agent to generalize,

it must experience the full variance of environments and tasks during training.

In this case, the pointing targets have varying settings, but more variation may
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be needed for other applications. Furthermore, the learning process itself is also

time-consuming and laborious, and needs to be performed independently for each

policy. While it takes around 2 hours on an i7 processor to learn pointing, training

can take days for other, more complex tasks [49]. Continous control approaches

that combine Monte Carlo Tree Search (MCTS) and machine learning have shown

to learn complex tasks online in under 1 minute [19, 65] and could be extended

with this method to reduce computing time.





Chapter 7

Conclusion and Future Work

This thesis presents a framework for evaluating subjective fatigue only using vir-

tual embodied AI-agents. The agents have been trained on a pointing task using

Reinforcement Learning. For the training we compared two different effort models.

First, using instantaneous joint torques; second, using a biomechanical cumulative

fatigue model. This work shows that the model trained with cumulative fatigue is

able to learn more natural and efficient movements. This is believed to be the first

work to use cumulative fatigue in such a way. Finally, the best trained model is

used to estimate fatigue ratings under various conditions and the results are com-

pared to ground truth human data obtained from previous studies [17]. Overall,

the presented model shows comparable results to ground truth Borg CR10 ratings

and 3CC-estimates based on motion capture data, without using any human data.

To the best of the author’s knowledge this is the first work to achieve this.

There are various possibilities for future work of which some have already been

mentioned in Section 6.3, and will be discussed in further detail here. A natural

extension of this work is to apply it to multiple joints to obtain a full-body biome-

chanical model. A recent result by [31] has shown that a machine learning approach

41
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which maps an optimal control problem formulated in the muscle-actuation space

to an equivalent problem in the joint-actuation torque results in more natural but

computationally more efficient movements. Their approach can be incorporated

in the presented model to better model maximum joint voluntary torques. For

additional accuracy this work can easily be extended for individual muscle groups.

Another possible path for future work lies in improving the 3CC-r model by either

learning the task- and joint-specific parameters from kinematic data and Borg

CR 10 ratings, or learning the effort functions directly from data. The latter

may generelize the cumulative effort model to various tasks by including possible

non-linearities [66] and make predictions of avereage Borg CR 10 ratings more

accurate. Furthermore, emotion-driven models [16, 67, 68] might further improve

in this direction.

In recent years, computational user models [22–24, 42] have provided a fruitful

analysis tool for studying user behaviour and fatigue. While these previous meth-

ods were not able to generalize well, this thesis presents a novel model which can

be easily extended to various tasks by simply defining a reward, state and action

space using RL agents. Additionally, the method described is the first one to both

synthesize mid-air movements and accurately predict subjective fatigue ratings

without real users. Hence, it has the possibility to open various pathways for in-

expensively modeling user behaviour under circumstances that may be difficult -

if not impossible - to model in vivo.
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[24] Kristinn Thórisson and Helgi Helgasson. Cognitive architectures and auton-

omy: A comparative review. Journal of Artificial General Intelligence, 3(2):

1–30, 2012.

[25] Senthilkumar Chandramohan, Matthieu Geist, Fabrice Lefevre, and Olivier

Pietquin. User simulation in dialogue systems using inverse reinforcement

learning. In Interspeech 2011, pages 1025–1028, 2011.
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[43] Juan David Hincapié-Ramos, Xiang Guo, Paymahn Moghadasian, and

Pourang Irani. Consumed endurance: a metric to quantify arm fatigue of

mid-air interactions. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pages 1063–1072. ACM, 2014.

[44] Jing Z Liu, Robert W Brown, and Guang H Yue. A dynamical model of muscle

activation, fatigue, and recovery. Biophysical journal, 82(5):2344–2359, 2002.

[45] Gunnar A Borg. Psychophysical bases of perceived exertion. Med sci sports

exerc, 14(5):377–381, 1982.

[46] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint

arXiv:1606.01540, 2016.

[47] Mazen Al Borno, Martin De Lasa, and Aaron Hertzmann. Trajectory opti-

mization for full-body movements with complex contacts. IEEE transactions

on visualization and computer graphics, 19(8):1405–1414, 2012.

[48] Jack M Wang, Samuel R Hamner, Scott L Delp, and Vladlen Koltun. Optimiz-

ing locomotion controllers using biologically-based actuators and objectives.

ACM transactions on graphics, 31(4), 2012.

[49] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne.

Deepmimic: Example-guided deep reinforcement learning of physics-based

character skills. ACM Transactions on Graphics (TOG), 37(4):143, 2018.

[50] Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter Henry,

Marwan Mattar, and Danny Lange. Unity: A general platform for intelligent

agents. arXiv preprint arXiv:1809.02627, 2018.



Bibliography 52

[51] Rositsa Raikova. A general approach for modelling and mathematical inves-

tigation of the human upper limb. Journal of biomechanics, 25(8):857–867,

1992.

[52] ISO ISO. 9241-9 ergonomic requirements for office work with visual dis-

play terminals (vdts)-part 9: Requirements for non-keyboard input devices

(fdis-final draft international standard), 2000. International Organization for

Standardization, 2000.

[53] Robert J Teather and Wolfgang Stuerzlinger. Pointing at 3d targets in a

stereo head-tracked virtual environment. In 2011 IEEE Symposium on 3D

User Interfaces (3DUI), pages 87–94. IEEE, 2011.

[54] I Scott MacKenzie. Fitts’ law as a research and design tool in human-

computer interaction. Human-computer interaction, 7(1):91–139, 1992.

[55] Marina Hofmann, R Brger, Ninja Frost, Julia Karremann, Jule Keller-Bacher,

Stefanie Kraft, Gerd Bruder, and Frank Steinicke. Comparing 3d interaction

performance in comfortable and uncomfortable regions. In Proceedings of the

GI-Workshop VR/AR, pages 3–14, 2013.

[56] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation

functions. arXiv preprint arXiv:1710.05941, 2017.
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