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Abstract. Detecting when there is a domain drift between training and
inference data is important for any model evaluated on data collected in
real time. Many current data drift detection methods only utilize input
features to detect domain drift. While effective, these methods disregard
the model’s evaluation of the data, which may be a significant source
of information about the data domain. We propose to use information
from the model in the form of explanations, specifically gradient times
input, in order to utilize this information. Following the framework of Ra-
banser et al. [11], we combine these explanations with two-sample tests
in order to detect a shift in distribution between training and evaluation
data. Promising initial experiments show that explanations provide use-
ful information for detecting shift, which potentially improves upon the
current state-of-the-art.
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1 Introduction

Many AI models are trained on data that is gathered during an initial collection
period and evaluated on data that is collected in real time. Real-time data is often
subject to drift due to changes in data collection methodology, sampling differ-
ences, or a drift in underlying variables over time. Such drift can be problematic
and may result in a degradation in the performance of the model. Therefore,
detecting drift is important to ensure that a model performs optimally.

Covariate drift, which is a drift in the input domain, is commonly detected by
comparing inputs from the training domain to the test domain using statistical
tests. However, using only information from the inputs disregards another sig-
nificant source of information about the data: The model itself, which is trained
in the input domain.

One way to represent this information from the model is with explanations.
Explanations are generated for a model to provide insight into a model’s evalu-
ation of an input. One type of explanation, attribution, denotes the importance
of each input feature to the model’s output on a data point. Many attribution
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techniques use model gradients as feature importance values, or more specifi-
cally, the gradient of the class output neuron with respect to the input feature
[14]. Gradient times input [13] simply multiplies the attribution provided by the
gradient by the input itself.

In order to use information from the model to detect drift, we introduce a
model-based drift detection method in the framework of Rabanser et al. [11] that
employs attributions in the form of gradient times input to detect data drift.

1.1 Related Work

Much work has already been done on detecting data drift. The main source of
inspiration for our work, Rabanser et al. [11] employs two-sample tests, which
compare datasets as samples from probability distributions in order to identify
any divergence. Distribution-free tests are used to compare the distance between
distributions and, based on this distance, determine the probability that the sam-
ples come from the same distribution. These tests are applied to representations
of the input consisting of various dimensionality reductions.

Our method is not the first to use the model’s representation of the data in de-
tecting drift. Other methods, such as Black Box Shift Detection (BBSD)[9], make
use of model output. BBSD was originally defined to detect prior-probability
drift, but has also been applied to detect covariate drift [11]. Other methods use
additional information from the model such as Elsahar et al. [2], where model
confidence and reverse classification accuracy are used to detect drift conditioned
on the model.

2 Methods

Our goal is to detect whether newly collected data has drifted compared to the
initial training dataset. Formally, we compare samples from two distributions
X = {x1, x2, ..., xn} ∼ Ptrain(x) and X ′ = {x′1, x′2, ..., x′n} ∼ Ptest(x) to test the
null hypothesis H0 that the two samples come from the same distribution.

To accomplish this, we employ the MMD test [4] as employed by Rabanser
et al. [11]. The MMD statistic represents the squared distance between the em-
bedding means of distributions, that is:

MMD(F , p, q) = ‖µptrain
− µptest‖2F (1)

where µptrain and µptest are the mean embeddings of the distributions Ptrain

and Ptest in a reproducing kernel Hilbert space F . The MMD test is distribution-
free, meaning that it does not require any prior knowledge of the distribution
types of Ptrain and Ptest. The MMD statistic on X and X ′ should be large
when Ptrain and Ptest are different; the MMD kernel matrix can also be used to
calculate a p-value for H0 using a permutation test. A threshold α is chosen such
that if the p-value ≤ α, H0 can be rejected. We choose the standard α = 0.05.
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Our contribution to this framework is to introduce attributions to the two-
sample drift detection procedure. We perform two-sample tests on representa-
tions of the input as in Rabanser et al. [11]. However, instead of dimensionality
reduction, we substitute the original inputs with attribution maps consisting of
the gradient times input. The attribution map φ(x) for a data point x and model
output f(x) is defined for gradient times input as

φ(x) =
∂f(x)

∂x
· x (2)

3 Experiments‡

Following the framework of Rabanser et al. [11], shifts are artificially induced
in the inputs of the test set and representations are produced, which are then
compared to the original validation set with two-sample tests. In the image
domain, we test the two main harmful types of drift identified by Rabanser et
al. [11]: An image shift consisting of a random image translation of 5% or less,
rotation of 10 degrees or less, and scaling of 10% or less (denoted small image
shift in [11]), along with an adversarial shift, which replaces the test set with
adversarial samples from FGSM [3]. For gradient times input, the model used
to generate the explanations is a ResNet-50 model [5] trained on the train set of
MNIST [8] with early stopping.

Input representations compared are those outlined by Rabanser et al. [11]
plus the gradient times input methods. These representations consist of:

– No reduction (NoRed): A simple baseline consisting of original, unmodified
inputs.

– Principal Components Analysis (PCA), Sparse Random Projection (SRP):
Standard dimensionality reduction techniques detailed in [11]. As in the orig-
inal paper, the input dimensionality is reduced to a size of 32.

– Autoencoder, Trained (TAE) and Untrained (UAE): The latent space of
an autoencoder which has either been trained on the input domain, or has
not received any training.

– Black Box Shift Detection, Softmax (BBSDs): The softmax-layer output of
a model trained for classification on the training set.

– Gradient times input (GradxInput): The attribution produced by the gra-
dient of the output neuron with highest activation with respect to the input
multiplied by the input as in Equation 2.

We aim to detect drift with high sensitivity, that is, with as low a number
of samples as possible. Thus we compare results from different methods with
varying random sample sizes s ∈ {10, 20, 50, 100, 200, 500, 1000}. Each test is
performed 15 times and the mean p-value is then determined.

We also evaluate on a simple sentiment classification task consisting of a
DistilBERT [12] model pretrained on the Large Movie Review Dataset (IMDB)

‡Code available at https://github.com/DFKI-NLP/xai-shift-detection

https://github.com/DFKI-NLP/xai-shift-detection
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[10] of movie reviews labeled as either positive or negative. In this case, the
shift consists of adversarial reviews provided by TextFooler [6]. Representations
are compared at the embedding level, with the gradient times input calculated
with respect to the embedding. For this experiment, the autoencoder represen-
tations were not evaluated. Additionally, since only 1000 adversarial examples
were available, s = 1000 was not tested for this task.
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Fig. 1: Top: Mean p-values over 15 random runs of the MMD test
for small image shift (left) and adversarial shift (right) with the
MNIST dataset. In all experiments, the null hypothesis is rejected
with a lower number of samples when input times gradient is used
as the representation of the input. H0 is rejected when the p-value
≤ 0.05. Bottom: Mean p-values for the IMDB adversarial exper-
iment. A significant shift is detected with gradient times input at
a lower sample size than any of the other representations.



Detecting Covariate Drift with Explanations 5

4 Results

Results are shown in Figure 1. The gradient times input methods generally out-
perform other methods tested in sensitivity: They are able to reject H0 with
an order of magnitude fewer samples. This method therefore improves over the
baseline in sensitivity of detecting drift. The gradient times input seems espe-
cially useful for detecting adversarial samples with MNIST, as it detects these
with very high sensitivity compared to other methods. It also greatly outper-
forms other representations when used to detect adversarial shift in the text
task.

5 Discussion and Future Work

While initial results show promise, additional testing is needed to fully com-
pare results to Rabanser et al. and establish the sensitivity of the method. Our
experiments differ from Rabanser et al. in a few ways: First, we only use the
multivariate MMD test, as the authors found it to have similar shift detection
performance to the univariate KS test which they also evaluated. Future find-
ings should also provide results on the KS test. In addition, we perturb all test
samples, rather than fractions of the test set. Thus we do not evaluate the per-
formance when only a subset of samples has shifted. We also do not evaluate on
all types of shift identified by Rabanser et al. A more definitive comparison can
only be established after all tests from the original paper are assessed.

Testing on a wider variety of model architectures and datasets would also
provide more opportunity to demonstrate the strong performance of this method.
In further testing, models such as BERT [1] should be evaluated in the text
domain for other tasks such as question answering. In addition, other types of
explanations such as PatternAttribution [7] or SmoothGrad [15] can be evaluated
in place of gradient times input, as they have been found to reduce noise in
explanations. Comparing against other baselines [2][9] is also important to show
that this method is state-of-the-art.

6 Conclusion

We demonstrate initial promising results which show improvement upon the
framework employed by Rabanser et al. Representing data using explanations
from the model in the form of gradient times input provides additional infor-
mation about the data domain for two-sample tests, and helps improves shift
detection sensitivity beyond the performance seen by the baseline.
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