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Abstract

With the advent of generative adversarial networks, synthesizing images from textual descriptions has recently become
an active research area. It is a flexible and intuitive way for conditional image generation with significant progress in
the last years regarding visual realism, diversity, and semantic alignment. However, the field still faces several challenges
that require further research efforts such as enabling the generation of high-resolution images with multiple objects, and
developing suitable and reliable evaluation metrics that correlate with human judgement. In this review, we contextualize
the state of the art of adversarial text-to-image synthesis models, their development since their inception five years ago,
and propose a taxonomy based on the level of supervision. We critically examine current strategies to evaluate text-
to-image synthesis models, highlight shortcomings, and identify new areas of research, ranging from the development
of better datasets and evaluation metrics to possible improvements in architectural design and model training. This
review complements previous surveys on generative adversarial networks with a focus on text-to-image synthesis which
we believe will help researchers to further advance the field.
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1. Introduction

When humans hear or read a story, they immediately
draw mental pictures visualizing the content in their head.
The ability to visualize and understand the intricate rela-
tionship between the visual world and language is so nat-
ural that we rarely think about it. Visual mental imagery
or “seeing with the mind’s eye” also plays an important
role in many cognitive processes such as memory, spatial
navigation, and reasoning [1]. Inspired by how humans vi-
sualize scenes, building a system that understands the rela-
tionship between vision and language, and that can create
images reflecting the meaning of textual descriptions, is a
major milestone towards human-like intelligence.

In the last few years, computer vision applications and
image processing techniques have greatly benefited from
advancements enabled by the breakthrough of deep learn-
ing. One of these is the field of image synthesis which
is the process of generating new images and manipulating
existing ones. Image synthesis is an interesting and impor-
tant task because of many practical applications such as
art generation, image editing, virtual reality, video games,
and computer-aided design.

The advent of Generative Adversarial Networks (GANs)
[2] made it possible to train generative models for images in
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a completely unsupervised manner. GANs have sparked a
lot of interest and advanced research efforts in synthesising
images. They framed the image synthesis task as a two-
player game of two competing artificial neural networks. A
generator network is trained to produce realistic samples,
while a discriminator network is trained to distinguish be-
tween real and generated images. The training objective of
the generator is to fool the discriminator. This approach
has successfully been adapted to many applications such as
high-resolution synthesis of human faces [3], image super-
resolution [4], image in-painting [5, 6], data augmentation
[7], style transfer [8, 9], image-to-image translation [10, 11],
and representation learning [12, 13].

Further developments in this field allowed the extension
of these approaches to learn conditional generative models
[14]. Motivated by how humans draw mental pictures, an
intuitive interface for conditional image synthesis can be
achieved by using textual descriptions. Compared to la-
bels, textual descriptions can carry dense semantic infor-
mation about the present objects, their attributes, spatial
arrangements, relationships, and allow to represent diverse
and detailed scenes.

In this review, we focus on text-to-image (T2I) synthe-
sis, which aims to produce an image that correctly reflects
the meaning of a textual description. T2I can be seen as
the inverse of image captioning [15], where the input is
an image and the output is a textual description of that
image. Although the methods presented in this review
can be applied to many image domains, most T2I research
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focuses on methods generating visually realistic, photo-
graphic, natural images.

The field of purely generative text-to-image synthesis
was started by the work of Reed et al. in 2016 [16].
It extended conditional GANs to generate natural im-
ages based on textual descriptions and was shown to work
on restricted datasets (e.g., Oxford-102 Flowers [17] and
CUB-200 Birds [18]) and relatively small image resolution
(64 × 64 pixels). In the last five years, this field has seen
large improvements both in the quality of generated im-
ages (based on qualitative and quantitative evaluation),
the complexity of used data sets (e.g., COCO [19]), and
the resolution of generated images (e.g., 256 × 256 and
higher). Some of these advancements include approaches
such as improved text encodings, loss-terms introduced
specifically for text-to-image synthesis, and novel archi-
tectures (e.g., stacked networks and attention). Further-
more, the field has developed quantitative evaluation met-
rics (e.g., R-precision, Visual-Semantic similarity, and Se-
mantic Object Accuracy) that were introduced specifically
to evaluate the quality of text-to-image synthesis models.

However, the field still faces several challenges. Despite
much progress, current models are still far from being ca-
pable of generating complex scenes with multiple objects
based only on textual descriptions. There is also very lim-
ited work on scaling these approaches to resolutions higher
than 256 × 256 pixels. We also find that it is challenging
to reproduce the quantitative results of many approaches,
even if code and pre-trained models are provided. This is
reflected in the literature where often different quantitative
results are reported for the same model. Furthermore, we
observe that many of the currently used evaluation metrics
are unsuitable for evaluating text-to-image synthesis mod-
els and do not correlate well with human perception. This
is amplified by the fact that only a few approaches per-
form human user studies to assess if their improvements
are evident in a qualitative sense, and if they do, the stud-
ies are not standardized, making the comparison of results
difficult.

This review aims to highlight and contextualize the de-
velopment of the current state of the art of generative T2I
models and their development since their inception five
years ago. We give an outline of where the research is
currently headed and where more work is needed from the
community. We critically examine the current approach
to evaluating T2I models and highlight several shortcom-
ings in current metrics. Finally, we identify new areas of
research for T2I models, ranging from the development of
better datasets and evaluation metrics to possible improve-
ments in architectural design and model training. In con-
trast to previous surveys and reviews [20, 21, 22, 23, 24],
this review specifically focuses on the development and
evaluation of T2I methods. This review also goes beyond
the only other existing T2I survey [25] by incorporating
more approaches, thoroughly discussing the current state
of evaluation techniques in the T2I field and systematically
examining open challenges.
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Figure 1: Overview of annotations that have been used to generate
images from text. We first revisit direct T2I methods which use
single captions as input. Next, we discuss approaches that leverage
additional information as input.

We first revisit the fundamentals of GANs, commonly
used datasets and text encoders that produce the embed-
ding of a textual description for conditioning (Section 2).
After this, we propose a taxonomy of methods based on the
level of supervision during training, namely approaches for
direct T2I synthesis that use single captions as input (Sec-
tion 3) versus approaches that use additional information
such as multiple captions, dialogue, layout, scene graphs,
or masks (Section 4). See Figure 1 for an overview of an-
notations that haven been used for T2I synthesis. Next,
we specifically focus on evaluation techniques used by the
T2I community and revisit image-quality and image-text
alignment metrics as well as how user studies are con-
ducted (Section 5). We gather published results, high-
light and identify challenges associated with using these
evaluation strategies, define desiderata for future metrics
and suggest how to use currently available metrics to as-
sess the performance of T2I models. Finally, we offer a
thorough discussion of the state of the art across multiple
dimensions such as the suitability of datasets, choice and
developments of model architectures, evaluation metrics,
and on-going as well as possible future research directions
(Section 6). Complementing other reviews on generative
models, we believe that our work will help tackle open
challenges and further advance the field.

2. Fundamentals

This section revisits four key components required to
understand the T2I methods discussed in the next sections:
the original (unconditional) GAN [2] that takes noise as
input to produce an image, the conditional GAN (cGAN)
[14] which allows to condition the generated image on a
label, text encoders used to produce the embedding of a
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G DGAN z
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Ladv
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Figure 2: Simplified architecture of a GAN [2]. Given noise in-
put z randomly sampled from a normal distribution, the generator
is trained to produce images to fool the discriminator. The discrim-
inator is trained to distinguish between real and generated images.

textual description for conditioning, and commonly used
datasets by the T2I community.

2.1. Generative Adversarial Networks

The original GAN proposed in [2] consists of two neu-
ral networks: a generator network G(z) with noise z ∼ pz
sampled from a prior noise distribution, and a discrimina-
tor network D(x), where x ∼ pdata are real, and x ∼ pg are
generated images, respectively. Training is formulated as
a two-player game in which the discriminator is trained to
distinguish between real and generated images, while the
generator is trained to capture the real data distribution
and produce images to fool the discriminator. See Figure 2
for an illustration of the GAN architecture.

More formally, as in [2], the training can be defined
as a two-player minimax game with the value function
V (D,G), where the discriminator D(x) is trained to maxi-
mize the log-likelihood it assigns to the correct class, while
the generator G(z) is trained to minimize the probabil-
ity being classified as fake by the discriminator log(1 −
D(G(z)), see Equation 1. The loss function is indicated as
Ladv in our figures.

min
G

max
D

V (D,G) = Ex∼pdata
[logD(x)]

+ Ez∼pz
[log(1−D(G(z))]

(1)

2.2. Conditional GANs

Although generating new, realistic samples is interest-
ing, gaining control over the image generation process has
high practical value. Mirza et al. proposed the conditional
GAN (cGAN) [14] by incorporating a conditioning variable
y (e.g., class labels) at both the generator and discrimina-
tor to specify which MNIST [26] digit to produce. See
Figure 3 for an illustration. In their experiments, z ∼ pz
and y are inputs to a Multi-Layer Perceptron (MLP) net-
work with one hidden layer, thereby forming a joint hidden
representation for the generator. Analogously, for the dis-
criminator, an MLP combines images and labels. As given
in [14], Equation 1 becomes Equation 2.

min
G

max
D

V (D,G) = Ex∼pdata
[logD(x|y)]

+ Ez∼pz
[log(1−D(G(z|y))]

(2)
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Figure 3: Simplified cGAN [14] and AC-GAN [27] architectures. In
cGAN [14], the class label is input to both generator and discrimi-
nator networks. In AC-GAN [27], the discriminator is trained with
an additional auxiliary classification loss. Note that we are omitting
to depict real images as input to the discriminator in the following
figures for brevity.

A number of variants extended the cGAN objective
function to improve conditional GAN training. For ex-
ample, in AC-GAN [27] the authors proposed adding an
auxiliary classification loss to the discriminator, indicated
as LC in Figure 3.

2.3. Encoding Text

Creating an embedding from textual representations
that is useful for the network in terms of a condition-
ing variable is not trivial. Reed et al. [28] obtain
the text encoding of a textual description by using a
pre-trained character-level convolutional recurrent neural
network (char-CNN-RNN). The char-CNN-RNN is pre-
trained to learn a correspondence function between text
and image based on the class labels. This leads to visually
discriminative text encodings. During training, additional
text embeddings were generated by simply interpolating
between the embeddings of two training captions. The
authors also showed that traditional text representations
such as Word2Vec [29] and Bag-of-Words [30] were less
effective. TAC-GAN [31] employed Skip-Thought vectors
[32].

Instead of using the fixed text embedding obtained by
a pre-trained text encoder, the authors of StackGAN [33]
proposed Conditioning Augmentation (CA) to randomly
sample the latent variable from a Gaussian distribution
where the mean and covariance matrix are functions of
the text embedding. The Kullback-Leibler (KL) diver-
gence between a standard Gaussian distribution and the
conditioning Gaussian distribution is used as a regular-
ization term during training. This technique yields more
training pairs and encourages smoothness over the con-
ditioning manifold. Many of the following T2I methods
adopted this technique. Similar to CA, in [34] the authors
proposed Sentence Interpolation (SI), a deterministic way
to provide a continuous and smooth embedding space dur-
ing training.

The authors of AttnGAN [35] replaced the char-CNN-
RNN with a bi-directional LSTM (BiLSTM) [36] to ex-
tract feature vectors by concatenating the hidden states
of the BiLSTM to form a feature matrix for each word.
The global sentence vector is formed by concatenating the
last hidden states. The text encoder is obtained by pre-
training a Deep Attentional Multimodal Similarity Model

3



Dataset
Training
Images

Testing
Images

Total
Images

Captions
per Image

Object
Categories

Oxford-102 Flowers [17] 7,034 1,155 8,189 10 102
CUB-200 Birds [18] 8,855 2,933 11,788 10 200
COCO [19] 82,783 40,504 123,287 5 80

Table 1: Overview of commonly used datasets for T2I synthesis.

(DAMSM) to compute word features that match image
subregions (image-text similarity at the word level). The
BiLSTM is trained to match the intermediate features
of a pre-trained image classifier. Since the introduction
of using BiLSTM in AttnGAN [35] to encode captions,
most of the following works adopted it. However, recent
works [37, 38] leverage pre-trained transformer-based mod-
els such as BERT [39] to obtain text embeddings.

2.4. Datasets

Datasets are at the core of every machine learning prob-
lem. Widely adopted datasets in T2I research are Oxford-
120 Flowers [17], CUB-200 Birds [18], and COCO [19].
Both Oxford-102 Flowers [17] and CUB-200 Birds [18] are
relatively small datasets containing around 10k images.
Each image depicts a single object and there are ten asso-
ciated captions per image. COCO [19] on the other hand
consists of around 123k images with five captions per im-
age. In contrast to both Oxford-102 Flowers and CUB-200
Birds, images in the COCO dataset usually contain mul-
tiple, often interacting objects in complex settings. Ta-
ble 1 shows an overview of the dataset statistics. Most
T2I works use the official 2014 COCO split. Example im-
ages and corresponding captions are provided in Figure 4.

3. Direct T2I Methods

After revisiting GANs, text encoders and commonly
used datasets in the previous chapter, we now review state-
of-the-art methods for direct T2I. We start with the first
T2I approach by Reed at al. proposed in 2016, followed
by the use of stacked architectures. Next, we discuss the
introduction of attention mechanisms, the use of architec-
tures, cycle consistency approaches, and the use of dy-
namic memory networks. Finally, we discuss approaches
that adapt unconditional models for T2I.

3.1. First T2I Approaches

The first T2I approach by Reed et al. [16] conditions
the generation process on the whole sentence embedding
obtained from a pre-trained text encoder. The discrimi-
nator is trained to distinguish between real and generated
image-text pairs. Hence, the first T2I model is a natural
extension of a cGAN [14] in that the conditioning on a
class label y is simply replaced by a text embedding ϕ. In
GAN-INT-CLS [16], three different pairs are used as input
to the discriminator: a real image with matching text, a

This flower has 
petals that are 
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tips.
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petals with 
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the center.
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Figure 4: Example images and corresponding captions of common
T2I datasets.

generated image with corresponding text, and a real image
with mismatching text. This approach is often referred to
as the matching aware discriminator and the correspond-
ing objective is indicated as Lmatch in our figures. This
approach forces both the generator and the discriminator
to not only focus on realistic images but also to align them
with the input text. See Figure 5 for a simplified architec-
ture. Compared to GAN-INT-CLS [16], TAC-GAN [31]
employs an additional auxiliary classification loss inspired
by AC-GAN [27] using one-hot encoded class labels.

3.2. Stacked Architectures

GAN-INT-CLS [16] was able to generate low-resolution
64 × 64 pixel images, while TAC-GAN [31] generated
128× 128 pixel images. In order to enable T2I models to
synthesize higher resolution images, many following works
proposed to use multiple, stacked generators.

In StackGAN [33], the first stage generates a coarse
64×64 pixel image given a random noise vector and textual
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TAC-GAN y
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LC

TEtext φsentence
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Text Encoder
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imagez

φ

Figure 5: GAN-INT-CLS [16] conditions both generator and dis-
criminator on a text embedding provided by the pre-trained char-
CNN-RNN text encoder and employs the matching aware pair loss
Lmatch. TAC-GAN [31] uses an additional auxiliary classification
task and loss LC during training.

conditioning vector. This initial image and the text em-
bedding are then input to a second generator that outputs
a 256 × 256 pixel image. At both stages, a discrimina-
tor is trained to distinguish between matching and non-
matching image-text pairs.

StackGAN++ [40] improved the architecture further via
an end-to-end framework in which three generators and
discriminators are jointly trained to simultaneously ap-
proximate the multi-scale, conditional and unconditional
image distributions. The authors proposed to sample text
embeddings from a Gaussian distribution for a smooth
conditioning manifold, instead of using fixed text embed-
dings. To encourage the network to produce images at
each scale to share basic structure and colors, an addi-
tional color-consistency regularization term was proposed
that aims at minimizing the differences between the mean
and covariance of pixels between different scales. Fig-
ure 6 shows the architecture of StackGAN [33] and Stack-
GAN++ [40].

Similar to the idea of training conditional and uncondi-
tional distributions at the same time, FusedGAN [41] con-
sists of two generators (one for unconditional and one for
conditional image synthesis) that partly share a common
latent space to allow both conditional and unconditional
generation from the same generator.

To overcome the need for multiple generator networks,
HDGAN [42] employed hierarchically-nested discrimina-
tors at multi-scale intermediate layers to generate 512×512
images. In other words, the adversarial game is played
along the depth of the generator with distinct discrimina-
tors at each level of resolution. In addition to the matching
aware pair loss, the discriminators are also trained to dis-
tinguish real from generated image patches. This objective
acts as a regularizer to the hidden layers of the generator,
since outputs at intermediate layers can utilize the signal
from discriminators at higher resolutions to produce more
consistent outputs between different scales.

Similarly, PPAN [43] uses only one generator and three
distinct discriminators. The generator of PPAN applies
a pyramid framework [44, 45] to combine low-resolution,
semantically strong features with high-resolution, seman-
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Figure 6: StackGAN [33] and StackGAN++ [40] architectures.
While StackGAN requires a two-stage training pipeline, Stack-
GAN++ can be trained end-to-end. During training, intermediate
visual features are passed as input to the next generator stage, while
additional convolutional layers produce the image. CA: text em-
beddings ĉ are sampled from a Gaussian distribution to provide a
smooth conditioning manifold.

tically weak features through a down-to-top pathway with
lateral connections. During training the authors addition-
ally employed a perceptual loss [46] based on extracted
features from a pre-trained VGG [47] network, and an aux-
iliary classification loss.

In contrast, HfGAN [48] uses a hierarchically-fused ar-
chitecture with only one discriminator. Multi-scale global
features are extracted from different stages and adaptively
fused together such that lower-resolution feature maps
that are spatially coarse, but contain and dictate the over-
all semantic structure of the generated image, can guide
the generation of fine details. Inspired by ResNet [49], the
authors adopted identity addition, weighted addition, and
shortcut connections as their fusion method.

3.3. Attention Mechanisms

Attention techniques allow the network to focus on spe-
cific aspects of an input by weighting important parts more
than unimportant parts. Attention is a very powerful tech-
nique and had a major impact on improving language and
vision applications [50, 51, 52, 53]. AttnGAN [35] builds
upon StackGAN++ [40] and incorporates attention into
a multi-stage refinement pipeline. The attention mecha-
nism allows the network to synthesize fine-grained details
based on relevant words in addition to the global sentence
vector. During generation, the network is encouraged to
focus on the most relevant words for each sub-region of
the image. This is achieved via the Deep Attentional Mul-
timodal Similarity Model (DAMSM) loss during training
that computes the similarity between generated image and
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Figure 7: Simplified AttnGAN [35] architecture. The attention
modules and similarity loss between local image and word features
LDAMSM help the generator to synthesize fine-grained details based
on relevant words.

input text using both sentence and word level information.
See Figure 7 for an illustration of AttnGAN.

Huang et al. [54] extended grid-based attention with
an additional mechanism between object-grid regions and
word phrases, where the object-grid regions are defined by
auxiliary bounding boxes. Phrase features are extracted in
addition to sentence and word features by applying part-
of-speech tagging.

The authors of SEGAN [55] proposed an attention com-
petition module to focus only on key-words instead of
defining an attention weight for each word in the sentence
(as is done in AttnGAN). They achieved this by introduc-
ing an attention regularization term (inspired by [56, 57])
that only keeps the attention weights for visually impor-
tant words.

ControlGAN [58] can do both: T2I generation and ma-
nipulation of visual attributes such as category, texture,
and colour by changing the description without affecting
other content (e.g., background and pose). The authors
proposed a word-level spatial and channel-wise attention-
driven generator which allows the generator to synthesize
image regions corresponding to the most relevant words.
Compared to the spatial attention in [35] which mainly
focuses on colour information, the channel-wise attention
correlates semantically meaningful parts with correspond-
ing words (e.g., “head” and “wings” for CUB-200 birds). A
word-level discriminator provides the generator with fine-
grained training signals and disentangles different visual
attributes by exploiting the correlation between words and
image subregions.

3.4. Siamese Architectures

Siamese networks, first proposed to solve signature [59]
and face verification problems [60], typically consist of two
branches with shared model parameters operating on a
pair of inputs. Each branch operates on a different input,
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Figure 8: Simplified SD-GAN [61] architecture. Depending on
whether the two captions input to each of the branches are from
the same ground truth image or not, the contrastive loss minimizes
or maximizes the distance between the computed features to learn se-
mantic commons. The Semantic-Conditioned Batch Normalization,
a variant of conditional batch normalization [63], takes linguistic cues
as input and adapts the visual feature maps.

and the goal is to attain a mapping where inputs with
similar patterns are placed more closely to each other than
dissimilar ones.

SD-GAN [61] is such a Siamese network architecture
consisting of two branches. While the individual branches
of the network process different text inputs to produce an
image, the model parameters are shared. A contrastive
loss based on [62] is employed to minimize / maximize the
distance between the features computed in each branch to
learn a semantically meaningful representation, depend-
ing on whether the two captions are from the same ground
truth image (intra-class pair) or not (inter-class pair). This
approach distills semantic commons from text but might
tend to ignore fine-grained semantic diversity. In order to
maintain the diversity in generated images, the authors
additionally proposed Semantic-Conditioned Batch Nor-
malization, a variant of conditional batch normalization
[63], to adapt the visual feature maps depending on the
linguistic cues. See Figure 8 for an illustration of SD-GAN.

SEGAN [55] trains a Siamese architecture to exploit
ground truth images for semantic alignment. They do so
by minimizing the feature distance between generated im-
age and corresponding ground truth image while maximiz-
ing the distance to another real image associated with a
different caption. To effectively balance easy versus hard
samples, the authors proposed a sliding loss inspired by
the focal loss [64] to adapt the relative importance of easy
and hard sample pairs.

Instead of randomly sampling a mismatching negative
image sample, in Text-SeGAN [65] several strategies based
on curriculum learning [66] are introduced to select nega-
tive samples with gradually increasing semantic difficulty.
Instead of using classification as an auxiliary task, the au-
thors formulated a regression task to estimate semantic
correctness based on the semantic distance to the encoded
reference text.
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Figure 9: Simplified MirrorGAN [68] architecture. An image cap-
tioning network takes the generated image as input and produces
a caption. A cross-entropy based text reconstruction loss aligns the
generated caption to the input caption that was used to generate the
image, thereby creating a cycle.

3.5. Cycle Consistency

We group T2I models that take the generated image and
pass it through an image captioning [67, 68, 69] or image
encoder network [70], thereby creating a cycle to the input
description or latent code, as cycle consistency approaches.

PPGN [67] is based on feedback from a conditional net-
work, which can either be a classifier or an image caption-
ing network for conditional image synthesis. The main
idea is to iteratively find the latent code that leads the
generator to produce an image which maximizes a specific
feature activation in the feedback network (e.g., classifica-
tion score or hidden vector of an RNN). In this framework,
a pre-trained generator can be re-purposed by plugging in
a different feedback network.

Inspired by CycleGAN [11], cycle-consistent image gen-
eration by re-description architectures [68, 69] learn a se-
mantically consistent representation between text and im-
age by appending a captioning network and train the net-
work to produce a semantically similar caption from the
synthesized image. In MirrorGAN [68], sentence and word
embeddings are used to guide a cascaded generator archi-
tecture via both global sentence and local word attention.
Next, an encoder-decoder based image captioning network
[71, 72] is used to produce a caption given the generated
image. In addition to the adversarial image and image-text
matching losses, a cross-entropy based text reconstruction
loss is used to align the semantics between input caption
and re-description. See Figure 9 for an illustration of Mir-
rorGAN.

Inspired by adversarial inference methods [73, 74], Lao
et al. [70] proposed to disentangle style (captured via noise
vector) and content (described via text embedding) in the
latent space in an unsupervised manner. In their method,
an additional encoder takes in real images and infers the
two latent variables (style and content), which are subse-
quently used to generate an image. A cycle consistency
loss term constrains the encoder and decoder to be con-
sistent with one another. In addition to the adversarial
image loss, they also employ a discriminator to distinguish
between joint pairs of images and latent codes.

 textStyleGAN

z
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FC Mapping
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GblockA
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…
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Figure 10: Simplified textStyleGAN [80] architecture. The noise z
and sentence features ĉ are first passed through an MLP network to
produce an intermediate latent space. The intermediate latent vec-
tors w adapt the feature maps via the AdaIn [81] operation. Given
the word features, the attention modules allow the generator to fo-
cus on relevant words. Each generator block is provided with un-
correlated single-channel noise images for stochastic variation in the
generation process. The CMPM and CMPC losses [82] encourage
semantic consistency between the generated image and input text.
See [83] for more details about StyleGAN.

3.6. Memory Networks

DM-GAN [75] is an architecture based on dynamic
memory networks [76, 77, 78, 79]. DM-GAN consists of
an initial image generation stage to synthesize a rough
64 × 64 pixel image given the sentence embedding. A
memory writing gate takes initial image and word fea-
tures as input, computes the importance of each word,
and finally writes memory slots by combining word and
image features. Then, a key addressing and value reading
step is performed in which the relevant memory slots are
retrieved by computing a similarity probability between
memory slots and image features. Afterwards, the output
memory representation is computed by a weighted sum-
mation over value memories according to the similarity
probability. Finally, the gated response dynamically con-
trols the information flow of the output representation to
update the image features. Similar to previously discussed
T2I models, DM-GAN employs the unconditional adver-
sarial image and conditional image-text matching losses.
Additionally, the DAMSM loss [35] and CA loss [33] are
used.

3.7. Adapting Unconditional Models

Building upon progress in unconditional image gener-
ation [83, 84, 85], multiple works proposed to adapt the
architecture of these unconditional models for conditional
T2I generation.

The authors of textStyleGAN [80] extended StyleGAN
[83], which can generate images at a higher resolution than
other T2I models and allows for semantic manipulation.
The authors proposed to compute text and word embed-
dings using a pre-trained image-text matching network [82]
similar to the one used in AttnGAN [35] and concatenate
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the sentence embedding with the noise vector before per-
forming a linear mapping to produce an intermediate la-
tent space. Furthermore, they employ attentional guid-
ance using word and image features in the generator. In
addition to unconditional and conditional losses in the dis-
criminator, the cross-modal projection matching (CMPM)
and cross-modal projection classification (CMPC) losses
[82] are used to align input captions with generated images.
See Figure 10 for an illustration of textStyleGAN. Image
manipulation can be performed by first finding directions
in the intermediate latent space corresponding to seman-
tic attributes such as “smile” and “age” for face images.
Since the intermediate latent space in StyleGAN does not
have to support sampling, it has been empirically shown
[83] to unwarp the initial latent code such that the factors
of variation become more linear and as a result support
semantic image manipulation.

Bridge-GAN [86] employs a progressive growing scheme
of the generator and discriminator during training, similar
to [3]. Inspired by [83], an intermediate network is used
to map the text embedding and noise into a transitional
mapping space, and two additional losses based on mu-
tual information are proposed. The first loss computes the
mutual information between the intermediate latent space
and input text embedding to guarantee that textual infor-
mation is present in the transitional space. The second
loss computes the mutual information between generated
image and input text to improve the consistency between
image and input text.

In [34], the authors adapted BigGAN [84], an architec-
ture that has previously presented a new state-of-the-art
on ImageNet conditioned on class labels, for T2I synthesis.
Furthermore, they proposed a novel Sentence Interpolation
method (SI) to create interpolated sentence embeddings
using all available captions corresponding to a particular
image. Compared to CA [33], which introduces random-
ness and optimizes a KL divergence to enforce a Gaussian
distribution, SI is a deterministic function.

Similar, TVBi-GAN [87] employed a BiGAN [73] archi-
tecture by extending the definition of the latent space in
ALI [85] to project sentence features into it. Additionally,
the authors proposed a gate mechanism inspired by [75]
to compute the importance between word features and se-
mantic features before applying attention. Furthermore,
semantics-enhanced batch normalization similar to [61] is
proposed by injecting random noise to stabilize the scale-
and-shift operation based on linguistic cues.

In [88], the authors train an invertible network [89, 90]
to fuse the pre-trained, expert networks BERT [39] and
BigGAN [84], translate between their representations and
reuse them for text-to-image synthesis. This is a very
promising research direction to reuse expert networks
which are expensive to train for other tasks.

4. T2I Methods with Additional Supervision

In the previous section we discussed T2I approaches that
are conditioned on one text description. However, there
are also approaches that incorporate additional supervi-
sion. Models that use more supervision often push the
state-of-the-art performance, but they require additional
annotations during training. In the following sections we
review methods that use additional inputs such as multiple
captions, dialogue data, layout, scene graphs and semantic
masks.

4.1. Multiple Captions

Since common datasets often contain more than one cap-
tion per image, using multiple captions could provide ad-
ditional information to better describe the whole scene.
C4Synth [91] uses multiple captions by employing a cross-
caption cycle consistency which ensures that a generated
image is consistent with a set of semantically similar sen-
tences. It operates sequentially by iterating over all cap-
tions and improves the image quality by distilling concepts
from multiple captions [91].

RiFeGAN [92] treats available images and captions as a
knowledge base and uses a caption matching mechanism
to retrieve compatible items. They enrich an input de-
scription by extracting features from multiple captions to
guide an attentional image generator. In contrast to [91],
RiFeGAN does not need an image captioning network and
is executed once instead of multiple times.

4.2. Dialog

Motivated by the fact that a single sentence might not be
informative enough to describe a scene containing several
interacting objects, Sharma et al. proposed ChatPainter
[93] to leverage dialog data. The authors use the Visual
Dialog dataset [94], which consists of 10 question-answer
conversation turns per dialogue, and pair it with COCO
captions. The authors experimented with a recurrent and
non-recurrent encoder and showed that the recurrent en-
coder performed better.

Niu et al. [95] proposed VQA-GAN to condition the
image generator on locally-related texts by using question
answer (QA) pairs from VQA 2.0 [96], a dataset built on
COCO for visual question answering (VQA) tasks. Their
method is built upon AttnGAN-OP [97] and consists of
three key components: i) a QA encoder that takes QA
pairs as input to produce global and local representations,
ii) a QA-conditioned GAN that takes the representations
from the QA encoder to produce the image in a two-stage
process, and iii) an external VQA loss using a VQA model
[98] that encourages correlation between the QA pairs and
the generated image. A typical VQA model takes an image
and question as input and is trained for classification i.e.,
to minimize the negative log-likelihood loss to maximize
the probability of the correct answer. Consequently, VQA
accuracy can be used as a metric to evaluate the consis-
tency between input QA pairs and generated images. Since
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VQA-GAN is based on [97], in addition to the QA pairs
from VQA 2.0, their model also requires supervision in the
form of a layout.

In [99], the authors proposed to leverage VQA data
without changing the architecture. By simply concate-
nating QA pairs and use them as additional training sam-
ples and an external VQA loss, the performance can be
improved across both image quality and image-text align-
ment metrics. In contrast to [95], it is a simple, yet effec-
tive technique and could be applied to any T2I model.

4.3. Layout

There is an increasing interest in the layout-to-image
generation task [100, 101, 102, 103] where each object is
defined by a bounding box and class label. It provides
more structure to the generator, leads to better localized
objects in the image, and has the advantage of allowing
user-controlled generation by changing the layout and gen-
erated images are automatically annotated. Naturally, re-
searchers have also tried to combine layout information
with text for better T2I.

GAWWN [104] conditions on both textual descriptions
and object locations to demonstrate the effectiveness of
this approach on the CUB-200 Birds dataset. The follow-
up work [105] extends PixelCNN [106] to generate images
from captions with controllable object locations leveraging
keypoints and masks. In [107], a parallelized PixelCNN for
more efficient inference is used.

In [97], the location and appearance of objects is ex-
plicitly modelled by adding an object pathway to both
generator and discriminator. While the object pathway
focuses on generating individual objects at meaningful lo-
cations, a global pathway generates a background that fits
with the overall image description and layout. OP-GAN
[108] extends this by adding additional object pathways at
higher layers of the generator and discriminator and also
employs an additional bounding box matching loss using
matched and mismatched bounding box, image pairs. OC-
GAN [103] tackles the problem of merged objects and spu-
rious modes by proposing a Scene-Graph Similarity Mod-
ule (SGSM) similar to DAMSM in AttnGAN [35].

4.4. Semantic Masks

Another line of research leverages masks to learn the
object shapes thereby providing an even better signal to
the network.

Hong et al. [109] obtain the semantic masks in a two-
step process: the first step generates a layout from the
input description, which is then used to predict object
shapes. It has a single-stage image generator and con-
ditions only on the generated shape and global sentence
information.

Obj-GAN [110] builds upon [109] and consists of an
object-driven attentive generator and an object-wise dis-
criminator. The generator uses GloVe [111] embeddings of
object class labels to query GloVe embeddings of relevant

words in the sentence. The object-wise discriminator is
based on Fast R-CNN [112] to provide a signal on whether
the synthesized objects are realistic and match the layout
and text description.

LeicaGAN [113] has a multiple priors learning phase in
which a text-image encoder learns semantic, texture, and
color priors, while a text-mask encoder learns shape and
layout priors. These complementary priors are aggregated
and used to leverage both local and global features to pro-
gressively create the image. To reduce the domain gap
during projection of the input text into an underlying com-
mon space, the authors adopted an adversarially trained
modality classifier during training.

AGAN-CL [114] consists of a network which is trained
to produce masks, thereby providing fine-grained infor-
mation such as the number of objects, location, size and
shape. The authors employed a multi-scale loss between
real and generated masks, and an additional perceptual
loss for global coherence. In a next step, the image mask
is given as input to a cyclic autoencoder, similar to [11],
to produce a photo-realistic image.

In [115], Wang et al. proposed an end-to-end framework
with spatial constraints using semantic layout to guide the
image synthesis. Multi-scale semantic layouts are fused
with text semantics and hidden visual features to produce
images in a coarse-to-fine way. At each stage the genera-
tor produces an image and additionally a layout to be used
by the corresponding discriminator. The matching aware
discriminator from [16] is extended to also distinguish be-
tween matching and mismatching layout-text pairs as well
as distinguish real from generated layouts.

Pavllo et al. [38] proposed a weakly-supervised approach
by exploiting sparse, instance semantic masks. In contrast
to dense pixel-based masks, sparse instance masks allow
easy editing operations such as adding or removing ob-
jects because the user does not face the problem of “filling
in wholes”. Their method is particularly good at con-
trolling fine-grained details of individual objects which is
realized by a two-step generation process that decomposes
background from foreground.

4.5. Scene Graphs

The relationship between multiple objects can often be
more explicitly represented by structured text i.e., a scene
graph instead of a caption. For COCO, where scene graph
annotations are not provided, a scene graph can be con-
structed from the object locations using six geometric re-
lationships: “left of”, “right of”,“above”, “below”, “in-
side”, and “surrounding” [116]. However, there are also
other datasets with more fine-grained scene graph anno-
tations which make this approach very promising (e.g.,
Visual Genome [117] provides on average 21 pairwise rela-
tionships per image).

Johnson et al. [116] used a graph neural network [118] to
process input scene graphs [119] and computed a scene lay-
out by predicting bounding boxes and segmentation masks
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for each object. The individual object boxes and masks are
combined to form a scene layout and subsequently used to
produce an image by a cascaded refinement network [120].
Ground-truth bounding boxes and optional masks are used
during training, but predicted at test time.

An extension of [116] is [121] which uses segmentation
masks. It separates the layout embedding from the ap-
pearance embedding which leads to better control by the
user and generated images that better match the input
scene graph. Appearance attributes can either be selected
from a predefined set or copied from another image.

In [122], a scene graph is used to predict initial bound-
ing boxes for objects. Using the initial bounding boxes,
relation units consisting of two bounding boxes are pre-
dicted for each individual subject-predicate-object relation.
Since each entity could participate in multiple relations,
all relation-units are unified and converted into a visual-
relation layout using a convolutional LSTM [123]. The
visual-relation layout reflects the structure (objects and
relationships) in the scene graph, and each entity corre-
sponds to one refined bounding box. Finally, the visual-
relation layout is used in a conditional, stacked GAN ar-
chitecture to render the final image.

PasteGAN [124] uses scene graphs and object crops to
guide the image generation process. While the scene graph
encodes the spatial arrangements and interactions, the ap-
pearance of each object is provided by the given object
crops. Object crops and relationships fused together and
then fed into an image decoder to generate the output im-
age.

An interactive framework in [125] extends [116] with a
recurrent architecture to generate consistent images from
an incrementally growing scene graph. The model updates
an image generated from a scene graph by changing the
scene graph while keeping the previously generated con-
tent as much as possible. Preserving the previous image
is encouraged by replacing the noise passed to the cas-
caded image generator with the previous image and an
additional perceptual loss between the images in the in-
termediate steps.

4.6. Mouse Traces

TRECS [126] uses mouse traces collected by human an-
notators in the Localized Narratives [127] dataset which
pairs images with detailed natural language descriptions
and mouse traces. The mouse traces provide sparse, fine-
grained visual grounding for the descriptions. Given mul-
tiple descriptions and their corresponding mouse traces,
TRECS retrieves semantic masks from which the images
are generated.

5. Evaluation of T2I Models

Access to automatic evaluation metrics that correctly
assess performance are of utmost importance to gauge im-
provement and for fair comparison. Because there are mul-
tiple aspects that would resemble a good image (e.g., visual

Input Method

caption

[16], [33], [40], [42],
[41], [48], [35], [54],
[43], [55], [58], [61],
[65], [67], [68], [69],
[70], [75], [80], [86],
[34], [87], [128]

caption + dialogue [93], [95], [99]
caption + layout [104], [97], [108], [103]

caption + semantic masks
[109], [110], [113], [114],
[115], [38]

scene graphs
[116], [121], [122], [124],
[125]

multiple captions [91], [92]
multiple captions + mouse traces [126]

Table 2: Methods grouped by their supervision. We define “lay-
out” as bounding box and class label annotations, and “masks” as
labelled, instance segmentation masks.

realism and diversity), evaluating generated images is very
challenging [129]. However, generating realistic images is
only one aspect of a good T2I model. Another important
aspect is to assess the semantic alignment between text
descriptions and generated images. In the next sections
we revisit which automatic metrics are currently used by
the T2I community and how user studies are performed.
Next, we identify and highlight challenges of current eval-
uation strategies, discuss desiderata of good metrics, and
suggest how to evaluate T2I methods with the currently
available metrics. An overview of metrics and what they
evaluate is given in Table 3. We also collect reported re-
sults on Oxford-102 Flowers (Table A.1), CUB-200 Birds
(Table A.2), and COCO (Table A.3).

5.1. Image Quality Metrics

The images generated from textual descriptions should
correctly represent the training data distribution. In the
case of commonly used T2I datasets, images should be
photo-realistic and diverse. Many metrics have been pro-
posed to evaluate the image quality of generated images,
and we refer to [135] for a detailed review. In the next
paragraphs we revisit and discuss the Inception Score [136]
and Fréchet Inception Distance [131] which are the most
frequently used metrics.

Inception Score (IS) The IS [136] is computed by clas-
sifying generated images with a pre-trained Inception-v3
network [137] to get a conditional label distribution p(y|x).
If the network can produce meaningful images, the con-
ditional label distribution should have low entropy. If
the network is also able to generate diverse images, the
marginal

∫
p(y|x = G(z))dz should have high entropy. In

other words, the IS roughly measures how distinctive each
image is in terms of classification, and how much variation
there is in the generated images overall. Both requirements
can be measured by computing the Kullback-Leibler (KL)
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IS [130] X X
FID [131] X X X
SceneFID [103] X X

R-prec. [35] X X
VS [42] X X
SOA [108] X X X
Captioning (X) X

User Studies X X X X X X X X X

Table 3: Overview of commonly used evaluation metrics and desired evaluation aspects. “Captioning” refers to metrics used by the image
captioning community such as [132, 133, 134]. As they are not visually grounded (just use captions, not also the image to compute the score),
we put it in brackets.

divergence between p(y|x) and p(y), see Equation 3. The
IS is commonly computed from ten splits of a large collec-
tion of samples (usually 30k or 50k) and report the average
and standard deviation. The result is exponentiated to al-
low for easier comparison:

IS = exp(Ex KL (p(y|x) || p(y)) (3)

As pointed out in [108], and because of its known weak-
nesses [135, 130], the IS may not be a good measure. For
example, it can not detect overfitting and can not measure
intra-class variation. As result, a network that memorizes
the training set or only produces one perfect image per
class achieves a very high IS. Furthermore, it does not take
ground truth data into account and uses a classifier pre-
trained on the ImageNet dataset, which mostly contains
images with one object at the center. Hence, it is likely
not well suited for more complex datasets where images
contain multiple objects such as in COCO.

Fréchet Inception Distance (FID) The FID [131]
measures the distance between the distribution of real and
the distribution of generated images in terms of features
extracted by a pre-trained network. The FID is more con-
sistent at evaluating GANs than the IS and better cap-
tures various kinds of disturbances [131]. Similar to the
IS, the FID is usually computed from 30k or 50k of real
and generated image samples, using the activations of the
last pooling layer of a pre-trained Inception-v3 [137] model
to obtain visual features. To compute the FID, the acti-
vations are assumed to follow a multidimensional Gaus-
sian [131]. The FID between real and generated data with
mean and covariance of the extracted features (µr,Σr) and
(µg,Σg), respectively, is then given by Equation 4.

FID =
∥∥µr − µg

∥∥2
2

+ Tr
(
Σr + Σg − 2 (ΣrΣg)

1/2
)

(4)

However, the FID assumes that the extracted features fol-
low a Gaussian distribution which is not necessarily the
case. Furthermore, the estimator of FID has a high bias
requiring the same number of samples for fair comparison
[138]. The Kernel Inception Distance (KID) introduced in
[138] is an unbiased alternative to the FID, but still has
high variance when the number of per-class samples is low
[139]. The FID suffers from the same problem as the IS,
in that it relies on a classifier pre-trained on ImageNet.

5.2. Image-Text Alignment Metrics

Generating images that look realistic is only one aspect
of a good T2I model. Another important characteristic
to assess is whether the generated image aligns with the
semantics of the input text description. The metrics dis-
cussed above cannot measure whether the generated im-
age matches the input description. In the following para-
graphs, we review the commonly used R-precision [35],
Visual-Semantic similarity (VS) [42], and the recently pro-
posed Semantic Object Accuracy (SOA) [108].

R-precision R-prec. [35] measures visual-semantic sim-
ilarity between text descriptions and generated images by
ranking retrieval results between extracted image and text
features. In addition to the ground truth caption from
which an image was generated, additional captions are ran-
domly sampled from the dataset. Then, the cosine similar-
ity between image features and the text embedding of each
of the captions is calculated and the captions are ranked
in decreasing similarity. If the ground truth caption from
which the image was generated is ranked within the top
r captions it is counted as a success. In the default set-
ting, R-prec. is calculated by setting r = 1 and randomly
sampling 99 additional captions. In other words, R-prec.
evaluates if the generated image is more similar to the
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Figure 11: Examples of images generated by models trained on the
CUB-200 Birds [118] dataset. Images are generated by the following
models (from top to bottom): GAN-INT-CLS [16], Stack-GAN [33],
AttnGAN [35], and DM-GAN [75]. Figure reproduced from [75].

ground truth caption than to 99 randomly sampled cap-
tions. Similar to the previous metrics, R-prec. is usually
calculated as an average over a large sample (e.g. 30k) of
images.

Compared to scores on CUB-200 Birds (Table A.2), the
R-prec. achieved by state-of-the-art models is generally
higher for the COCO dataset (Table A.3). We hypothesize
that the images as well as the captions are much more di-
verse compared to CUB-200 Birds, which makes it easier to
distinguish between corresponding and random captions.
However, R-prec. often fails for COCO images, in which
a high similarity can be assigned to wrong captions which
mention the global background color (e.g., “snow” for im-
ages with white background) or objects that appear in the
center [108].

Visual-Semantic (VS) Similarity VS similarity pro-
posed in [42] measures the alignment between synthesized
images and text by computing the distance between images
and text via a trained visual-semantic embedding model.
Specifically, two mapping functions are learned to map im-
ages and text, respectively, into a common representation
space. Then, the similarity is computed via Equation 5,

where ft(·) is the text encoder, and fx(·) is the image en-
coder.

VS =
ft(t) · fx(x)

||ft(t)||2 · ||fx(x)||2
(5)

The VS has not been widely adopted by the community
and there are only a few reported results. A problem of the
VS score is that the standard deviation is very high even
for real images. Therefore, it does not yield a very precise
way of evaluating the performance of a model. Another
challenge that hinders easy comparison arises from using
different pre-trained models to compute the VS similarity.

Captioning Metrics To measure the relevance of gen-
erated image and text, [109, 108] employ an image caption
generator [72] to obtain captions for the generated images,
and report standard language metrics such as BLEU [132],
METEOR [133], and CIDEr [134]. Generated captions
should be similar to the input captions that were used to
generate the images. The hypothesis is that these proxy
metrics favour models that produce images which reflect
the meaning of the input caption. Reported CIDEr scores
are shown in Table A.5. However, it is possible that very
different captions correctly describe the same image. Fur-
thermore, many of these metrics rely on n-gram overlap
and hence may not correlate with human judgement [108].

Semantic Object Accuracy (SOA) Hinz et al. pro-
posed SOA to evaluate individual objects specifically men-
tioned in the description within an image using a pre-
trained object detector [108]. For example, we can infer
from the caption “a dog sitting on a couch” that the im-
age should contain a recognizable dog and a couch, and
hence an image detector should be able to detect both ob-
jects. More specifically, they propose two metrics: SOA-C
reports the recall as a class average (i.e., in how many im-
ages per class the given object was detected), and SOA-I
reports the image average (i.e., in how many images a de-
sired object was detected). The authors constructed a list
for viable words in the caption for each label and another
list containing excluded strings (e.g. “hot dog” for “dog”)
in addition to a list of false positive captions. In contrast
to [140] which also proposed a detection based evaluation
metric, SOA does take the caption into account. Table A.5
shows SOA scores as reported in [108].

Although SOA is based on words mentioned in the cap-
tion, it assumes rather objective and rigid descriptions,
where the description is roughly a list of words of visible
objects, and hence might not be well suited to evaluate
meaning, interaction and relationship between objects, as
well as possible subjectivity. The authors acknowledged
the fact that an image may contain many objects not
specifically mentioned in the caption and hence proposed
only to focus on false positives, abstaining from calculating
a false negative rate [108].
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Figure 12: Examples of images generated by models trained on the COCO [19] dataset. Images are generated by the following models (from
left to right): OP-GAN [108], DM-GAN [75], Obj-GAN [110], AttnGAN-OP [97], and AttnGAN [35]. Figure reproduced from [108].

5.3. User Studies

The metrics presented above are heuristics that have
been shown to correlate (to a degree) with human judge-
ments. To achieve more reliable results, some works addi-
tionally perform user studies for verification. Most studies
follow a common structure: first, each evaluated model
generates a certain number of images from a certain num-
ber of randomly sampled captions. Users are then pre-
sented with a caption and the generated image(s) from
each of the evaluated models. The users then either have
to pick the “best” image or rank images from best to worst.
While many user studies are set up in a similar way, there
is currently no clear guideline for how these user studies
should be structured and evaluated. Hence, user studies
can differ across a number of fundamental factors such
as the number of samples, number of users, number of
models, specific instructions made to the users, time lim-
itations, and what is finally reported. Instructions can
vary between choosing the “best” without specifying what
it means, to precise directives such as rating whether ob-
jects are identifiable and/or match the input description.
For example, users have been asked to rank images based
on the relevance of text [109], to select the image which
best depicts the caption [141, 108], to rate whether any
one object is identifiable, and how well the image aligns

with the text given [140], to select the more convincing
image and the one which is more semantically consistent
with the ground truth [113]. While some report average
ranks, others report the ratio of being ranked first.

As we can see, user studies are not always set up in
the same way and, hence, are difficult to compare. While
different setups make comparisons between various user
studies unreliable, we highlight that none of the performed
studies took real images as an option into account which
is just another indication, that current models still strug-
gle to generate images of complex scenes that can fool
humans. Furthermore, performing user studies can be ex-
pensive and time consuming.

5.4. Challenges of Current Techniques

After introducing the most commonly used evaluation
metrics and strategies, we now discuss challenges and
shortcomings of these approaches.

Higher Scores than Real Images As can be seen in
Table A.3 and Table A.5, current models already reach
the upper-bound performance in terms of IS, R-precision,
and CIDEr given by real images on the COCO dataset.
This circumstance is misleading given that the generated
images are still very unrealistic, and indicates that these
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metrics might not be reliable. The IS can be saturated,
even overfitted, and might simply be improved by using
a larger batch size [110]. Hinz et al. [108] have already
observed that the R-prec. scores are much higher for some
models than for real images and hypothesized that this
may be because many of the current models use the same
text-encoder during training as well as for final R-prec.
evaluation. Therefore, the models might overfit this metric
already during training. This problem has also been ob-
served in [128], and the authors proposed to evaluate the
R-prec. using a different model which was pre-trained on
the large Conceptual Captions [142] dataset which is dis-
joint with COCO. In contrast, the reported FID, VS sim-
ilarity, and SOA scores of current methods are worse than
the scores computed on real COCO images, which is in ac-
cordance to the approaches still having problems synthe-
sizing individual, sharp objects. Due to the high standard
deviation in VS results, SOA is likely more meaningful to
gauge improvement of future approaches even though it is
also just an approximation of human judgement.

Single Object Images vs Complex Scenes The IS
and FID both use a Inception-v3 network pre-trained on
ImageNet, which leads to problems when applied to com-
plex scene images with multiple objects as in the case of
COCO. In [108], the authors find that the IS has inter-
esting failure cases for images with multiple objects such
as assigning the same class to very different images and
scenes (bad diversity) or having high entropy in its out-
put layer possibly due to multiple, not centered objects
(bad objectiveness). One way to mitigate this problem is
to apply the IS and FID on object crops. In [103], the
authors train a layout-to-image generator, and proposed
SceneFID, which corresponds to the FID applied to ob-
ject crops as identified by the input bounding boxes. This
could potentially be adapted even for models that do not
take layout as input by using a pre-trained object detector
to locate objects.

Inconsistent Scores The current literature reports
many, often very different, scores for the same model. In
Table A.6, we collect reported results for multiple mod-
els and show that they can vary drastically. For example,
we found reported FID scores between 35.49 and 28.76 for
AttnGAN [35], IS scores between 32.43 and 30.49 for DM-
GAN [75], and FID scores between 36.52 and 17.04 and
R-prec. scores between 91.91% and 83.00%, respectively,
for Obj-GAN [110]. This suggests that the metrics, even
though official implementations exist, are not applied con-
sistently.

While it has been known that the scores can vary de-
pending on the used implementation, image resolution,
and number of samples, many inconsistencies are hard to
resolve. Often occurring problems are that the evaluation
procedures are not explained precisely and that the code,
if open-sourced, does not contain evaluation code. Fur-
thermore, code of baseline methods can be updated and
achieve scores different from the ones reported in a pa-

per. Most differences are subtle and do not do change the
overall ranking, but others are hard to ignore and put the
validity and fairness of comparisons into question. To im-
prove reproducibility, we encourage researchers to provide
precise descriptions of their evaluation procedure, explain
possibly existing differences, and to also open-source their
evaluation code.

Ranking of Models As shown before, user studies are
not always set up in the same way which makes compar-
isons across different studies difficult. However, user stud-
ies revealed that not all current metrics rank the models
as users would. This is problematic because we aim to
have automatic metrics that correlate with human judge-
ment and allow for accurate and meaningful model rank-
ings. For example, in [141] the authors observed that users
preferred their model when compared against competing
methods by a large margin while the IS, and Captioning
Metrics showed otherwise. Also, the user study in [108]
showed that FID and SOA matched the user ranking more
closely than the IS, R-precision, and CIDEr metrics.

5.5. Desiderata of Future Metrics

Developing good automatic metrics is difficult and given
the various aspects a generative model could be optimized
for, it is very unlikely there will be consensus about the
one and only good measure [135]. Nevertheless, thinking
about the desired properties of future metrics can serve
as a proxy to compare various metrics with each other
and guide future research. Roughly speaking, a good T2I
should be able to both generate high quality images and
generate images that align with the input description. In
terms of image quality, we refer the reader to [135] in which
the author provides a comprehensive list of desired proper-
ties of measures when evaluating generated images such as
favouring models with a) high image fidelity and diversity,
b) disentangled representations, c) well-defined bounds,
d) invariance to small transformations, e) high agreement
with human judgement and ranking, and f) low sample
and computational complexity.

In terms of image-text alignment, it is difficult to de-
fine what precisely it should mean for an image to be
aligned with the input description. Generating images
that are “semantically consistent”, “fit”, “match”, or “cor-
rectly reflect” the input text can be similarly ambiguous
expressions. This is further complicated by the fact that
many different captions can correctly describe images de-
picting complex scenes. In fact, it might be necessary to
first study what exactly makes users prefer one image over
an another (especially if both are quite unrealistic). De-
spite these difficulties, the following is an attempt to list
desired properties which are specifically targeted at evalu-
ating image-text alignment. Good T2I evaluation should
include metrics that:

• evaluate whether mentioned objects are depicted and
recognizable;

14



• evaluate whether objects are generated according to
numerical and positional information in the input de-
scription;

• evaluate whether the image can correctly be described
by the input description;

• evaluate whether the model is robust to small changes
in the input description (e.g., replacing individual
words, or using paraphrases);

• are explainable, i.e. specify what makes the image not
“aligned” with the input.

As can be seen in Table 3, we currently do not have
image-text metrics that evaluate many of the desired as-
pects. R-precision, VS similarity, and SOA are only prox-
ies which might not correlate very well with human judge-
ments across the various properties we would like to eval-
uate.

5.6. Suggestions to Evaluate T2I Models

After discussing the current state of evaluation tech-
niques and desiderata of future metrics, it becomes appar-
ent that evaluation is still a very difficult problem and did
not necessarily become easier with the proposal of many
recent approaches. In fact, it might have even added to
the problem by giving false confidence about the true per-
formance of a method. While fair and standardized user
studies are as of now the only true way to evaluate the per-
formance of a model, we want to suggest how to best use
the currently available metrics using our current knowl-
edge about their properties:

• we suggest to use the FID to evaluate the visual qual-
ity of images and measure the distance to the real
data distribution;

• we suggest to additionally use the SceneFID on
cropped objects if object locations are provided;

• we suggest to use SOA (where applicable) and user
studies to evaluate the image-text alignment between
images and corresponding captions;

• we suggest to be precise at describing how the scores
were obtained and clearly indicate whether baseline
scores were copied from a reference or re-computed;

• we suggest to provide a thorough description of how
user studies were setup with details about the number
of samples/models/users, and specific instructions;

• we encourage researchers to open-source not just
training, but also evaluation code and report the used
implementation and version.

6. Discussion & Challenges

In the last chapters we reviewed state-of-the-art T2I
methods, currently used evaluation techniques, desiderata
of future metrics as well as how to evaluate T2I models
with the currently available ones. Next, we summarize
the current progress in this field, highlight challenges, and
discuss future research directions.

6.1. Model Architecture

Synthesizing images from text has experienced a lot of
progress. Compared to a rather simple architecture in
2016 with one generator, one discriminator and a basic
adversarial GAN loss during training, current methods of-
ten employ a multi-stage pipeline and several contributing
losses. Starting from generated images having a low reso-
lution, we can now generate realistic looking flower, bird,
and high-resolution face images. While there is also a large
improvement on more challenging datasets like COCO, the
produced images, and in particular individual objects, lack
fine-grained details and sharpness.

Compared to high-quality and high-resolution results
currently achieved on single object images, generating
complex scenes with multiple objects remains difficult.
The architectural development of T2I methods reflects
the general progress made in the field of deep learning
(e.g., attention mechanisms, cycle consistency, dynamic
memory, Siamese architectures). More importantly, cur-
rent T2I approaches have shown successful adaptations of
state-of-the-art unconditional image generation models for
T2I. Therefore, building upon progress made in the uncon-
ditional image generation domain and investigating bet-
ter adaptations for conditional image generation might be
more efficient than designing special architectures for T2I.

Importance of Text Embeddings One neglected but
rather interesting aspect is to investigate the importance
and influence of various linguistic aspects in the descrip-
tions such as sensitivity to grammar, positional, and nu-
merical information. Since the introduction of AttnGAN
[35], many following works used the same, pre-trained, text
encoder to obtain text embeddings, and there has been
little investigation into how the embedding quality affects
the final T2I performance. Recent works [37, 38] leverage
transformer-based encoders such as a pre-trained BERT
[39] model to obtain text embeddings for T2I. In [88], the
authors used an invertible network [89, 90] to translate
between BERT [39] and BigGAN [84] to tackle T2I. An-
other interesting direction could be to build upon successes
of vision-and-language models [143, 144, 145] which have
recently shown remarkable progress when fine-tuned on
downstream tasks.

Other Generative Methods Current T2I methods
are heavily based on GANs which still have many open
problems despite the remarkable progress during the last
few years [146]. Hence, one possible future research di-
rection could be to investigate and build upon progress
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made with other generative models such as Variational
Autoencoders (VAEs) [147, 148], autoregressive models
[106, 149, 150], flow-based models [89, 90, 151], score
matching networks [152, 153, 154, 155], and transformer-
based models [156, 157, 158, 159]. However, comparing
different generative models using the IS and FID might be
unfair since they penalize non-GAN models [139]. Hence,
future evaluation strategies should be model-agnostic to
enable reliable comparisons.

Lack of Scene & Object Understanding Although
currently used datasets provide multiple textual descrip-
tions, most often they are semantically very similar (with
the notable exception of the COCO dataset). Moreover,
single sentence descriptions are possibly insufficient to de-
scribe a complex scene such as in the case of COCO im-
ages. Current models struggle to generate images of mul-
tiple, interacting objects and various scenes directly be-
cause the captions may not provide enough information.
In fact, current methods seem to fail at modelling simple
objects by trying to generate whole scenes because they
lack the understanding that scenes are composed of ob-
jects. Approaches such as [110] and [109] therefore decom-
pose T2I into text-to-layout-to-image and text-to-mask-to-
image, respectively, to guide the generation process. An-
other approach taken by [38] is to use instance masks for
the desired objects and split the image generation process
into foreground (objects), and background synthesis be-
fore blending them into the final image (similar to [160]
and iterative generation as in [161, 162, 93]).

6.2. Datasets

Large, high quality datasets are fundamental to the suc-
cess of deep learning methods. In the following, we discuss
the state of currently used datasets and where future work
might enable further advancements of the fields.

Single Object Datasets Many of the recent methods
do not report results on the Oxford-102 Flowers dataset
anymore. It is similar to CUB-200 Birds in that images
depict a single object only. However, compared to CUB-
200 Birds, there are slightly fewer images, and just 100, as
opposed to 200, different object categories. Hence, using
CUB-200 Birds to evaluate T2I methods on single object
dataset is enough, and Oxford-102 Flowers does not yield
more meaningful insights. Another approach could be to
use the high-resolution human face dataset CelebA-HQ [3]
for T2I as was done in [37, 80]. Unfortunately, the cap-
tions or code to reproduce the captions from the provided
attribute labels are not open-sourced as off now. Since
current generative models can synthesize highly realistic
images when trained on single object datasets, the focus
of evaluation should be on image-text alignment.

Low Image Resolution of Multiple Object Datasets
One drawback of currently available datasets of complex
scenes depicting multiple objects is the low image reso-
lution. As of now, we still lack generative methods that

can be trained to synthesize photorealistic images of com-
plex scenes with multiple, interacting objects. Although
image quality is currently the bottleneck, it might soon
be necessary to collect a high-resolution dataset of images
with multiple objects in diverse settings to enable further
progress and build practical applications.

Visually Grounded Captions Building upon the idea
of locally-related texts [95], future work might consider
allowing to provide textual descriptions for individual re-
gions in the image. An interesting recent approach con-
siders captions which are paired with mouse traces [126]
from the Localized Narratives [127] dataset, which provide
sparse, fine-grained visual grounding for textual descrip-
tions. Another starting point could be the Visual Genome
[117] dataset, which contains descriptions of individual im-
age regions.

Objectivity vs. Subjectivity One aspect that has not
been addressed yet is the incorporation of subjectivity. A
recent study [163] analyzes human generated captions and
observes that captions that simply describe the obvious
image contents are not very common. This also raises
questions regarding a good dataset and requirements for
T2I. Moreover, current datasets are better suited for image
captioning, since the captions were collected by asking hu-
mans to describe images. To get insights into how humans
interpret textual descriptions and draw mental pictures,
one might need to collect images created by humans given
a description (similar to how Eitz et al. collected sketches
drawn by humans given an object category [164]).

Limited Cross-Modal Associations Another problem
stemming from the fact that the T2I community relies on
image captioning datasets are the one-sided annotations.
In other words, current datasets provide multiple, match-
ing captions for one image, and such annotations could
potentially help to improve T2I models (e.g., via a curricu-
lum learning scheme). But it is also possible to correctly
assign the same caption to describe multiple different im-
ages. This problem is addressed in [165] by extending
the COCO annotations and providing continuous semantic
similarity ratings for existing image-text pairs, new pairs,
and ratings between captions. Unfortunately, the Criss-
crossed Captions (CxC) [165] dataset provides ratings only
for the COCO evaluation splits.

Towards Multilingual T2I Furthermore, current
datasets are limited to the English language. To increase
the practical usefulness of T2I models, future work could
consider collecting descriptions of other languages and an-
alyze whether there are differences in how target images
are described. It might even be beneficial for general-
ization to leverage captions from multiple languages. A
practical T2I should handle input captions from various
languages without requiring re-training.
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6.3. Evaluation Metrics

Image Quality Evaluating the quality, diversity, and
semantic alignment of generated images is difficult and
still an open problem. It has become easier with the in-
troduction of IS [136] and FID [131], but they have their
weaknesses. Besides the IS and FID, there have been mul-
tiple other proposals such the detection based score [140],
SceneFID [103], the classification accuracy score (CAS)
[139], precision and recall metrics [166, 167], and the re-
cently proposed density and coverage metrics [168], which
have not yet been adopted by the T2I community. Similar
to [100, 101], we could adopt the LPIPS metric [169] as the
Diversity Score (DS) on two sets of generated images from
the same captions to specifically evaluate the diversity of
generated images.

Image-Text Alignment Images created by a T2I model
should also semantically align with the input text. While
current models seem to overfit on the R-precision score,
the VS similarity and SOA scores correctly reflect that
current models are still far from generating realistic images
containing multiple objects. As of now, we do not have a
set of good image-text metrics that provide insights across
a number of different aspects. Therefore, and similar to the
image captioning community, a solid evaluation requires a
user study.

In terms of future work it might help to join forces with
the image captioning community whose goal it is to evalu-
ate the opposite direction: whether the generated caption
matches the input image. In [170], a joint Fréchet distance
metric is proposed which aims at providing a single score to
evaluate various conditional modalities by taking both im-
age and conditioning information into account. However,
the strengths and weaknesses compared to existing text-
image metrics are not analyzed, and hence it is unclear
whether the approach yields better insights. Furthermore,
current automatic metrics rely on activations extracted
from pre-trained models. Therefore, another promising
direction could be to investigate pre-trained, cross-modal
vision-and-language models [143, 144, 145].

Standardized User Studies Although the progress on
automatic metrics is promising, we currently lack metrics
that render user evaluation studies obsolete. While user
studies are sometimes performed, the settings can vary
drastically, and they can be time consuming and expen-
sive. Therefore, a promising future research direction is
to standardize user evaluation studies for the T2I com-
munity. Similar to HYPE [171] which standardized user
evaluation studies for image quality, the community could
benefit from a standardized user evaluation strategy for
image-text alignment.

6.4. Practical Applications

Image synthesis research is often motivated by practi-
cal applications. Many of these (e.g., image editing and
computer-aided design) require fine-grained control (e.g.,

for interactive and iterative manipulation), and so we be-
lieve that future work should also focus on gaining fine-
grained control over the image generation process.

Image Manipulation It should be possible to manipu-
late generated images and edit just some parts of an image
without affecting other content. Recent works by Bau et
al. [172, 173] are interesting approaches towards achieving
this goal. On the forefront of image manipulation there
are also many works that address text-guided image ma-
nipulation [174, 175, 176, 177, 178, 179], which might be
a more flexible interface for users than, e.g., editing se-
mantic maps or (a limited amount of) labels. Since text
allows to transfer rich information, future models might
need to accumulate and compile an overall representation
from multiple, possibly different textual descriptions, sim-
ilar to how humans draw mental pictures of a scene from
both high-level information and fine-grained details. A
study collecting practical requirements (application fea-
tures users would want) for an optimal T2I model could
help the community and give research directions towards
practical applications.

Speech and Video Building upon the progress made
in T2I, multiple recent works proposed and investigated
methods for speech-to-image synthesis (S2I) [180, 181, 182,
183]. We believe S2I will receive more attention in the
future due to its natural interface which can enable many
new interesting and interactive applications. The S2I com-
munity can benefit from the T2I community, since S2I can
be realized by replacing the text encoder with a speech
encoder and vice versa. Similarly, generating videos from
textual descriptions seems like an obvious future research
direction [184, 185]. However, evaluating text- and speech-
to-video methods comes with it’s own challenges, because
the individually generated frames should be coherent.

7. Conclusion

This review presented an overview of state-of-the-art
T2I synthesis methods and commonly used datasets, ex-
amined current evaluation techniques, and discussed open
challenges. We categorized existing T2I methods into di-
rect T2I approaches which only use a single textual de-
scription as input, and other methods which can use addi-
tional information such as multiple captions, dialogue, lay-
out, semantic masks, scene graphs or mouse traces. While
synthesizing images from individual captions has experi-
enced a lot of progress in the recent years, generating im-
ages of complex scenes with multiple, possibly interacting
objects is still very difficult. The best image quality is
achieved by models which leverage additional information
in the form semantic masks, and decompose the generation
process into generating foreground objects and background
separately, before blending them together.

We also revisited the most commonly used evaluation
techniques to assess image quality and image-text align-
ment. Evaluating T2I models has become easier with the
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introduction of automatic metrics such as the IS, FID,
R-prec., and SOA. However, these are only proxies for hu-
man judgement and we still require user studies for veri-
fication, especially when evaluating image-text alignment
and subtle aspects such as numerical and positional in-
formation. Performing user studies comes with its own
challenges. Given that we currently lack a standardized
setup, we suggest to provide thorough details of the setup
with details about the specific instructions made to the
users.

Finally, we offered an in-depth discussion of open chal-
lenges across multiple dimensions. In terms of model ar-
chitecture, we hope to see more analysis on the importance
and quality of text embeddings, the application of other
generative models for T2I, and approaches which lead
to better scene understanding. Regarding datasets, we
believe that visually grounded captions and dense cross-
modal associations could be the keys to learn better rep-
resentations such as the concept of compositionality. To
enable practical applications of T2I, gaining fine-grained
control over the image generation process is important.
Hence, future work should focus on iterative and interac-
tive manipulation and regeneration in addition to synthe-
sis.

Although significant progress has been made, there is
still a lot of potential for improvement in terms of gen-
erating higher resolution images that better align to the
semantics of input text, finding better automatic metrics,
standardizing user studies, and enabling more control to
build user-friendly interfaces. We hope this review will
help researchers to gain an understanding of the current
state-of-the-art and open challenges to further advance the
field.
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Appendix A. Collected Results

In the following tables we collect results as found in the
literature on the three most commonly used datasets. Ta-
ble A.1 contains results on Oxford-102 Flowers, Table A.2
contains results on CUB-200 Birds, and Table A.3 con-
tains results on COCO. Table A.4 contains contains VS
results on all three datasets. Table A.5 contains SOA re-
sults on COCO. Table A.6 shows that there are multiple,
often varying, scores in the literature for the same model.
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Model IS ↑ FID ↓

Real Images - -

GAN-INT-CLS [16] 2.66 79.55
TAC-GAN [31] 3.45 -
StackGAN [33] 3.20 55.28
StackGAN++ [40] 3.26 48.68
CVAEGAN [186] 4.21 -
HDGAN [42] 3.45 -
Lao et al. [70] - 37.94
PPAN [43] 3.52 -
C4Synth [91] 3.52 -
HfGAN [48] 3.57 -
LeicaGAN [113] 3.92 -
Text-SeGAN [65] 4.03 -
RiFeGAN [92] 4.53 -
AGAN-CL [114] 4.72 -
Souza et al. [34] 3.71 16.47

Table A.1: Results on the Oxford-102 Flowers dataset, as reported in the corresponding reference.

Model IS ↑ FID ↓ R-Prec. ↑

Real Images - - -

GAN-INT-CLS [16] 2.88 68.79 -
TAC-GAN [31] - - -
GAWWN [104] 3.62 67.22 -
StackGAN [33] 3.70 51.89 -
StackGAN++ [40] 4.04 15.30 -
CVAEGAN [186] 4.97 - -
HDGAN [42] 4.15 - -
FusedGAN [41] 3.92 - -
PPAN [43] 4.38 - -
HfGAN [48] 4.48 - -
LeicaGAN [113] 4.62 - -
AttnGAN [35] 4.36 - 67.82
MirrorGAN [68] 4.56 - 57.67
SEGAN [55] 4.67 18.17 -
ControlGAN [58] 4.58 - 69.33
DM-GAN [75] 4.75 16.09 72.31

DM-GAN [75]† 4.71 11.91 76.58
SD-GAN [61] 4.67 - -
textStyleGAN [80] 4.78 - 74.72
AGAN-CL [114] 4.97 - 63.87
TVBi-GAN [87] 5.03 11.83 -
Souza et al. [34] 4.23 11.17 -
RiFeGAN [92] 5.23 - -
Wang et al. [115] 5.06 12.34 86.50
Bridge-GAN [86] 4.74 - -

Table A.2: Results on the CUB-200 Birds dataset, as reported in the corresponding reference. Rows marked with † indicate updated results
in its open-source code.
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Model IS ↑ FID ↓ R-Prec. ↑

Real Images [108] 34.88 6.09 68.58

GAN-INT-CLS [16] 7.88 60.62 -
StackGAN [33] 8.45 74.05 -

StackGAN [33]† 10.62 -
StackGAN++ [40] 8.30 81.59 -
ChatPainter [93] 9.74 - -
HDGAN [42] 11.86 - -
HfGAN [48] 27.53 - -
Text2Scene [141] 24.77 - -
AttnGAN [35] 25.89 - 85.47
MirrorGAN [68] 26.47 - 74.52
Huang et al. [54] 26.92 34.52 89.69
AttnGAN+OP [97] 24.76 33.35 82.44
OP-GAN [108] 27.88 24.70 89.01
SEGAN [55] 27.86 32.28 -
ControlGAN [58] 24.06 - 82.43
DM-GAN [75] 30.49 32.64 88.56

DM-GAN [75]† 32.43 24.24 92.23
Hong et al. [109] 11.46 - -
Obj-GAN [110] 27.37 25.64 91.05

Obj-GAN [110]† 27.32 24.70 91.91
SD-GAN [61] 35.69 - -
textStyleGAN [80] 33.00 - 87.02
AGAN-CL [114] 29.87 - 79.57
TVBi-GAN [87] 31.01 31.97 -
RiFeGAN [92] 31.70 - -
Wang et al. [115] 29.03 16.28 82.70
Bridge-GAN [86] 16.40 - -
Rombach et al. [88] 34.7 30.63 -
CPGAN [187] 52.73 - 93.59
Pavllo et al. [38] - 19.65 -
XMC-GAN [128] 30.45 9.33 -

Table A.3: Results on the COCO dataset, as reported in the corresponding reference. Rows marked with † indicate updated results in its
open-source code.

Model Oxford CUB COCO

Real Images [42] 33.6 ± 13.8 30.2 ± 15.1 42.6 ± 15.7

GAN-INT-CLS [16]† - 8.2 ± 14.7 -

GAWWN [104]† - 11.4 ± 15.1 -
StackGAN [33] 27.8 ± 13.4 22.8 ± 16.2 -
HDGAN [42] 29.6 ± 13.1 24.6 ± 15.7 19.9 ± 18.3
HfGAN [48] 30.3 ± 13.7 25.3 ± 16.5 22.7 ± 14.5
PPAN [43] 29.7 ± 13.6 29.0 ± 14.9 -

Bridge-GAN [86]† - 29.8 ± 14.6 -

Real Images [55] - 46.3 21.2

AttnGAN [35] - 22.5 7.1
SEGAN [55] - 30.2 8.9

Table A.4: Reported VS results (higher is better). Rows marked with † indicate results as reported in [86]. Results in the second section of
the table are from [55] computed using a different pre-trained model [188] for evaluation.
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Model SOA-C ↑ SOA-I ↑ CIDEr ↑

Real Images 74.97 80.84 79.5

AttnGAN [35] 25.88 39.01 69.5
AttnGAN+OP [97] 25.46 40.48 68.9
Obj-GAN [110] 27.14 41.24 78.3
DM-GAN [75] 33.44 48.03 82.3
OP-GAN [108] 35.85 50.47 81.9
CPGAN [187] 77.02 84.55 -
XMC-GAN [128] 50.94 71.33 -

Table A.5: Reported SOA-C, SOA-I, and CIDEr results for COCO, as in [108].

Model Ref. IS ↑ FID ↓ R-Prec ↑

AttnGAN [35] [35] 25.89 - 85.47
[75] - 35.49 -
[55] 25.56 34.28 -

[110] 23.79 28.76 82.98
[108] 23.61 33.10 83.80
[115] 23.89 28.76 82.90
[68] - - 72.13

[187] - - 82.98
[54] - 32.12 -
[99] 26.66 27.84 83.82

DM-GAN [75] [75] 30.49 32.64 88.56

[75]† 32.43 24.24 92.23
[108] 32.32 27.34 91.87
[110] - - 82.70
[187] 30.49 - 88.56

Obj-Gan [110] [110] 30.29 25.64 91.05
[108] 24.09 36.52 87.84
[115] 30.89 17.04 83.00
[187] 30.29 - 91.05

OP-GAN [108] [108] 27.88 24.70 89.01
[187] 28.57 - 87.90

Table A.6: Multiple, often varying, reported results in the literature on the COCO dataset. Rows marked with † indicate updated results
in its open-source code.
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