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Abstract. Transformer models have recently attracted much interest
from computer vision researchers and have since been successfully em-
ployed for several problems traditionally addressed with convolutional
neural networks. At the same time, image synthesis using generative ad-
versarial networks (GANs) has drastically improved over the last few
years. The recently proposed TransGAN is the first GAN using only
transformer-based architectures and achieves competitive results when
compared to convolutional GANs. However, since transformers are data-
hungry architectures, TransGAN requires data augmentation, an auxil-
iary super-resolution task during training, and a masking prior to guide
the self-attention mechanism. In this paper, we study the combination of
a transformer-based generator and convolutional discriminator and suc-
cessfully remove the need of the aforementioned required design choices.
We evaluate our approach by conducting a benchmark of well-known
CNN discriminators, ablate the size of the transformer-based generator,
and show that combining both architectural elements into a hybrid model
leads to better results. Furthermore, we investigate the frequency spec-
trum properties of generated images and observe that our model retains
the benefits of an attention based generator.

Keywords: Image Synthesis · Generative Adversarial Networks · Trans-
formers · Hybrid Models

1 Introduction

Generative adversarial networks (GANs) [15], a framework consisting of two
neural networks that play a minimax game, made it possible to train generative
models for image synthesis in an unsupervised manner. It consists of a generator
network that learns to produce realistic images, and a discriminator network that
seeks to discern between real and generated images. This framework has since
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successfully been applied to numerous applications such as (unconditional and
conditional) image synthesis [21,2,13], image editing [26], text-to-image trans-
lation [35,12], image-to-image translation [19], image super-resolution [25], and
representation learning [32]. Given the breakthroughs of deep learning enabled
by convolutional neural networks (CNNs), GANs typically consist of CNN layers.

While CNNs have been the gold standard in the computer vision community,
natural language processing (NLP) problems have recently been dominated by
transformer-based architectures [40]. On a high level, transformer models consist
of an encoder and decoder built from multiple self-attention heads and processes
sequences of embedded (word) tokens. Due to their simple and general architec-
ture, transformers are less restricted by inductive biases and hence well-suited
to become universal models. Inspired by the developments in the field of NLP,
researchers have started to apply transformers on image problems by represent-
ing an image as a sequence of image patches or pixels [31,5]. Since then, there
have been major developments of using vision transformers for computer vision
applications [4,8,20].

Given the success of adversarial training frameworks, the authors of [20] con-
ducted the first pilot study to investigate whether a GAN can be created purely
from transformer-based architectures to generate images of similar quality. Their
method, termed TransGAN, consists of a generator that progressively increases
the feature resolution while decreasing the embedding dimension, and a patch-
level discriminator [8]. However, the discriminator of TransGAN requires careful
design choices to reach competitive performance because it seems to be an infe-
rior counterpart unable to provide useful learning signals to the generator. Given
that transformers typically require large datasets, the authors partially alleviate
this issue through data augmentation. Furthermore, they introduce an auxiliary
super-resolution task and construct a gradually increasing mask to limit the
receptive field of the self-attention mechanism.

Although TransGAN achieves good results and is less restricted by inductive
biases, the required design choices are cumbersome. On the other hand, CNNs
have strong biases towards feature locality and spatial invariance induced by the
convolutional layers which make them very efficient for problems in the image
domain. Given the success of CNNs for vision problems, in this work we explore
the combination of a purely transformer-based generator and CNN discriminator
into a hybrid GAN for image synthesis. In particular, we show that the discrim-
inator of SNGAN [27] is especially well-suited and leads to improved results on
CIFAR-10. Moreover, our analysis of the frequency spectrum of generated images
indicates that our model retains the benefits of a transformer-based generator.
Figure 1 shows an illustration of our method. In summary, our contributions are:

– we combine a purely transformer-based generator and convolutional discrim-
inator into a hybrid GAN thereby achieving better results on CIFAR-10;

– we benchmark several convolutional discriminators, ablate the size of the
generator and show that our hybrid method is more robust;

– we analyze the frequency spectrum of generated images and show that our
hybrid model retains the benefits of the attention-based generator.



Combining Transformer Generators with Convolutional Discriminators 3

2x UpScaling

2x UpScaling

MLP

Noise Input

Generator Discriminator

Linear Unflatten

1 2 3 N

LayerNorm

Multi-Head
Self-Attention

LayerNorm

MLP 

Embedded
Tokens

Transformer Encoder

4x Transformer

5x Transformer

Encoder

Encoder
MLP

R
es

ol
ut

io
n 

D
ec

re
as

in
g ResBlock

SpectralNorm

2x Transformer Encoder

2x ResBlock

ResBlock

ResBlock

DownScaling

DownScaling

Real/Fake

2x Conv

R
es

ol
ut

io
n 

G
ro

w
in

g

Fig. 1: Illustration of our proposed hybrid model consisting of a transformer-
based generator and convolutional discriminator. While the transformer consists
of multiple up-sampling stages combined with transformer encoder blocks, the
discriminator consists of down-sampling stages combined with ResBlocks.

2 Related Work

The goal of generative models is to approximate a real data distribution with a
generated data distribution. To that end, the model is trained to automatically
discover and learn the regularities and patterns in the real data assigning a prob-
ability to each possible combination of these features. Eventually, this procedure
will encourage the system to mimic the real distribution. Until recently, most
generative models for image synthesis were exclusively built using convolutional
layers. However, with the uprising of transformers, new topologies started to
break the convolution hegemony.

2.1 Generative Models Using CNNs

Generative adversarial network (GAN) [15] is one of the most successful genera-
tive framework based on convolutional layers. They are trained to minimize the
distance between the real and generated distributions by optimizing the Jensen-
Shannon divergence. From a game theoretical point of view, this optimization
problem can be seen as a minimax game between two players, represented by the
discriminator and generator model. While the generator is trained to generate
plausible data, the discriminator’s goal is to distinguish between generated and
real data, and to penalize the generator for producing unrealistic results.

Variational Autoencoder (VAE) [23] is another very popular framework to
train generative models. Unlike GANs, VAEs explicitly estimate the probability
density function of real data by minimizing the Kullback-Leibler (KL) divergence
between the two probability distributions. Similar to an autoencoder, VAEs con-
sist of an encoder and decoder. The encoder maps the input (e.g., an image) to
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a latent representation, which usually has a lower dimensionality, to fit a pre-
defined probability distribution. The decoder is trained to reconstruct the input
from the latent representation thereby approximating the original probability
distribution. Once the training has converged to a stable solution, one can sam-
ple from the predefined distribution to create new samples.

2.2 Generative Models Using Attention

As previously mentioned, there is an increasing tendency pushing attention
mechanisms towards visual tasks. Image Transformer [31] is one of the first
approaches to generalize transformers [40] to a sequence modeling formulation
of image generation with a tractable likelihood such as in [39,29].

Another recent approach is ImageGPT [5] which was designed to leverage
unsupervised representation learning by pre-training a transformer on the image
generation task. As a result, the representations learned by ImageGPT can be
used for downstream tasks such as image classification. The architecture is based
on GPT-2 [33] which trains sequence transformers to auto-regressively predict
pixels without incorporating knowledge of the 2D input structure.

Finally, TransGAN [20] introduced a new GAN paradigm completely free of
convolutions and based on pure self-attention blocks. This transformer-based ar-
chitecture introduces a novel generator that combines transformer encoders with
up-sampling modules consisting of a reshaping and pixelshuffle module [37] in a
multi-level manner. The discriminator is based on the ViT architecture [8] which
was originally developed for image classification without using convolutions.

2.3 Hybrid Models

Given the benefits of convolutions and transformers, finding a way to combine
both technologies is an interesting and important research question One suc-
cessful example of this symbiosis is DALL-E [34]. DALL-E is a text-to-image
generative model that produces realistic-looking images based on short captions
that can specify multiple objects, colors, textures, positions, and other contextual
details such as lighting or camera angle. It has two main blocks: a pre-trained
VQ-VAE [30] built from convolutional layers which allows the model to gener-
ate diverse and high quality images, and a GPT-3 transformer [3] which learns
to map between language and images. VQGAN [11] is a similar architecture
but uses images instead of text as input for conditional image synthesis. GANs-
former [18] is a novel approach based on StyleGAN [21] that employs a bipartite
transformer structure coined duplex-attention. In particular, this model sequen-
tially stacks convolutional layer together with transformer blocks throughout the
whole architecture. This attention mechanism achieves a favorable balance be-
tween modeling global phenomena and long-range interaction across the image
while maintaining linear efficiency.
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3 Model Architecture

Our proposed hybrid model is a type of generative model using the GAN frame-
work which involves a generator and discriminator network. Traditionally, both
networks consist of multiple layers of stacked convolutions. In contrast to previ-
ous hybrid models [34,11,18], in our approach the generator is purely transformer-
based and the discriminator only contains convolutions. See Figure 1 for an
illustration of our model.

3.1 Transformer Generator

Originally, transformers were designed for NLP tasks, where they treat indi-
vidual words as sequential input. Modelling pixels as individual tokens, even
for low-resolution images such as 32×32, is infeasible due to the prohibitive
cost (quadratic w.r.t. the sequence length) [20]. Inspired by [20], we leverage
their proposed generator to build our hybrid model. The generator employs a
memory-friendly transformer-based architecture that contains transformer en-
coders and up-scaling blocks to increase the resolution in a multi-level manner.
The transformer encoder [40] itself is made of two blocks. The first is a multi-
head self-attention module, while the second is a feed-forward MLP with GELU
non-linearity [16]. Both blocks use residual connections and layer normalization
[1]. Additionally, an up-sampling module after each stage based on pixelshuffle
[37] is inserted.

3.2 Convolutional Discriminator

Unlike the generator which has to synthesize each pixel precisely, the discrimi-
nator is typically only trained to distinguish between real and fake images. We
benchmark various well-known convolutional discriminators [32,22,41,27] and
find that the discriminator of SNGAN [27] performs particularly well in combi-
nation with the transformer-based generator. It consists of residual blocks (Res-
Block) followed by down-sampling layers using average pooling. The ResBlock
itself consists of multiple convolutional layers stacked successively with residual
connections, spectral layer normalization [27] and ReLU non-linearity [28].

4 Experiments

We first provide a detailed description of the experimental setup. Next, we bench-
mark various discriminators to investigate their influence on the final perfor-
mance on the CIFAR-10 dataset. Then, we ablate the size of the transformer-
based generator to assess the effect of the generator’s capacity. Next, we train
our proposed method on other datasets and compare with fully convolutional
and fully transformer-based architectures. Finally, we analyze the impact of our
proposed method on the frequency spectrum of generated images.
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4.1 Setup

Models: For our empirical investigations, we carry out a benchmark and analyse
the impact of different discriminator architectures: DCGAN [32], SNGAN [27],
SAGAN [41], AutoGAN [14], StyleGANv2 [22] and TransGAN. Furthermore, we
ablate the size of the transformer-based generator using the scaled-up models
of TransGAN [20] by varying the dimension of the input embedding and/or the
number of transformer encoder blocks in each stage. We built upon the existing
codebase∗∗ from [20] with default training procedure and hyperparamters.
Datasets: We train our models on four commonly used datasets: CIFAR-10
[24], CIFAR-100 [24], STL-10 [6] resized to 48×48, and tiny ImageNet [7] resized
to 32×32.
Metrics: The two most common evaluation metrics are Inception Score (IS) [36]
and Fréchet Inception Distance (FID) [17]. While IS computes the KL divergence
between the conditional class distribution and the marginal class distribution
over the generated data, FID calculates Fréchet distance between multivariate
Gaussian fitted to the intermediate activations of the Inception-v3 network [38]
of generated and real images.

4.2 Results

We first study the role and influence of the discriminator topology on the final
performance using the CIFAR-10 dataset. To that end, the generator architec-
ture remains fixed, while the discriminator architecture is swapped with various
standard CNN discriminators. Table 1 contains the scores for combination, where
we can see that the discriminator of SNGAN leads to the best IS and FID and,
unlike TransGAN, our model does not require data augmentation, auxiliary tasks
nor any kind of locality-aware initialization for the attention blocks. However,
we can observe an influence of the number of parameters on the final results. If
the discriminator is strong, such as in StyleGANv2 [22], our transformer-based
generator is not able to improve as quickly and consequently results in poor
performance. If the discriminator is too small, such as in DCGAN [32], it will
not be able to provide good learning signals to the generator. Finally, we ablate
the impact of Spectral Normalization (SN) on the discriminator and observe just
slightly worse results which indicates that SN is not the main contributor to the
good overall performance of this combination.

After benchmarking the discriminator topology, we ablate the size of the
transformer-based generator using the scaled-up models of [20]. Table 2 contains
the scores for each configuration where we can see how our approach systemati-
cally outperforms the fully transformer-based version. Additionally, we observe
how a bigger capacity leads to better results, but with marginal gains above
TransGAN-L size. This behaviour indicates a saturation in the generative model
and hence adding more capacity might not further improve the results.

Table 3 contains results on other commonly used datasets. Our method,
consisting of a transformer-based generator and SNGAN discriminator achieved

∗∗https://github.com/VITA-Group/TransGAN/tree/7e5fa2d

https://github.com/VITA-Group/TransGAN/tree/7e5fa2d
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Table 1: Benchmark results on CIFAR-10 using different discriminator architec-
tures. 7 indicates unavailable scores due to a collapsed model during training.
Using the SNGAN discriminator, we can achieve better scores without the need
of data augmentation, auxilifoldary tasks and mask guidance.

Discriminator Params. (M) IS ↑ FID ↓

DCGAN [32] 0.6 7 7

StyleGANv2 [22] 21.5 4.19 127.25
SAGAN [41] 1.1 7.29 26.08
AutoGAN [14] 9.4 8.59 13.23
TransGAN [20] 12.4 8.63 11.89
SNGAN w/o SN 9.4 8.79 9.45
SNGAN [27] 9.4 8.81 8.95

Table 2: Benchmark results on CIFAR-10 using different generator sizes together
with the convolutional SNGAN discriminator. Our hybrid model achieves con-
sistently better scores when compared to the full transformer-based GAN, espe-
cially for small transformer-based generators. Note that our approach does not
employ any additional mechanisms during training.

Generator Params. (M) Discriminator IS ↑ FID ↓

TransGAN-S 18.6
TransGAN 8.22 18.58
SNGAN 8.79 9.95

TransGAN-M 33.1
TransGAN 8.36 16.27
SNGAN 8.80 9.53

TransGAN-L 74.3
TransGAN 8.50 14.46
SNGAN 8.81 8.97

TransGAN-XL 133.6
TransGAN 8.63 11.89
SNGAN 8.81 8.95

similar or better results without requiring data augmentation, auxiliary tasks or
mask guidance. Figure 2 shows random generated samples which appear to be
natural, visually pleasing and diverse in shape and in texture.

4.3 Frequency Analysis

While a good score on the chosen image metric is one way to assess the per-
formance of a given model, there are other, equally important properties, that
need to be evaluated. Recently, [9] observed that commonly used convolutional
up-sampling operations might lead to the inability to learn the spectral dis-
tribution of real images, especially their high-frequency components. Further-
more, these artifacts seem to be present in all kinds of convolutional based
models, independently of their topology. Following prior works [10,9], we also
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Table 3: FID results on various datasets. Our hybrid model achieves similar or
better scores when compared to either a full convolutional or full transformer-
based GAN.

FID ↓ CIFAR-10 CIFAR-100 STL-10 ImageNet

SNGAN [27] 22.16 27.13 43.75 29.30
TransGAN [20] 11.89 - 25.32 -
Ours 8.95 14.29 31.30 14.53

(a) CIFAR-10 (b) CIFAR-100 (c) STL-10 (d) ImageNet

Fig. 2: Random generated samples of our method trained on different datasets.
The images are visually pleasing and diverse in shape and in texture.

employ the azimuthal integration over the Fourier power spectrum to analyze
the spectral properties of generated images, and we extend the evaluation to
non-convolutional based systems. In particular, we conduct experiments on pure
attention, pure convolutional and hybrid architectures trained on CIFAR-10.

Figure 3 displays the power spectrum of real data and images generated by
three different models. Among them, one is based on convolutions (SNGAN),
one is based on transformers (TransGAN), and one is a hybrid model (ours).
Notice how the pure CNN approach has a significantly worse power spectrum
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Fig. 3: Power spectrum results of real and generated images on CIFAR-10. Statis-
tics (mean and variance) after azimuthal integration over the power spectrum of
real and generated images. Our hybrid model displays good spectral properties
indicated by a response similar to the real data.

indicated by an unmatched frequency response when compared to real data.
TransGAN and our method are much more aligned with the real spectrum, but
still there is a substantial gap. By using the transformer-based generator and a
strong CNN discriminator, our model achieves better results in terms of IS and
FID without the additional data augmentation, auxiliary loss and masking prior
while retaining a good frequency spectrum.

5 Discussion

Our method successfully combines transformers with convolutions into a hy-
brid GAN model and achieves similar or better results compared to its fully
convolutional and fully attentional baselines. Furthermore, our method removes
the need of data augmentation, auxiliary learning tasks, and masking priors to
guide the self-attention mechanism. Additionally, images generated by our hy-
brid approach retain the benefits of the attention-based TransGAN in terms of
frequency spectrum.

By benchmarking several discriminator topologies and differently-sized gen-
erators, we found that the capacity of the convolutional discriminator must be
aligned to the capacity of the transformer-based generator and cannot be too
big or too small to achieve good performance. Moreover, our method performs
much more reliable across generators of different sizes and consistently achieves
better scores.
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Even though our method leads to promising results, more work is required to
investigate optimal ways to combine transformers and convolutions into strong
GANs. To the best of our knowledge, there are currently only two other GAN
approaches that use both transformers and convolutions, GANsformer [18] and
VQGAN [11]. However, they have completely different setups. While GANs-
former and VQGAN integrate self-attention layers in-between the architecture
in a sandwich like way, we keep them separated. In particular, our approach con-
sists of a purely transformer-based generator, and a fully CNN-based discrimi-
nator, thereby constraining the interaction between attention and convolutions.
Hence, our approach maintains relaxed inductive biases that characterize trans-
formers in the generator, while leveraging the useful ones in the discriminator.
Last but not least, our frequency spectrum analysis has brought new insights
regarding the impact of transformers on the generated images. It shows, how a
pure transformer based GAN framework, such as in TransGAN [20], seems to
learn the frequency components in a more accurate manner. Our hybrid model
is able to maintain the well-matched spectrum, while achieving better or simi-
lar scores without requiring additional training constraints. We think that these
findings can lead to a new paradigm, where both transformers and convolutions
are used to generate images.

6 Conclusion

Motivated by the desire to obtain the best from transformers and convolutions, in
this work we proposed a hybrid model using a pure transformer-based generator,
and a standard convolutional discriminator. Typically, transformers rely on re-
laxed inductive biases thereby making them universal models. As a consequence,
they require vast amounts of training data. However, our method leverages the
benefits of convolutions through the discriminator feedback, while retaining the
advantages of transformers in the generator. Our hybrid approach achieves com-
petitive scores across multiple common datasets, and does not need data aug-
mentation, auxiliary learning tasks, and masking priors for the attention layers to
successfully train the model. Additionally, it inherits the well-matched spectral
properties from its transformer-based generator baseline. We hope this approach
can pave the way towards new architectural designs, where the benefits of differ-
ent architectural designs can successfully be combined into one. Possible future
research directions could be investigating the importance of including inductive
biases into the architectures of the generator and discriminator, respectively, as
well as scaling our hybrid approach to higher resolutions.
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