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Abstract

The data-driven economy on the World Wide
Web are based on coordination mechanisms for the
exchange of and AI-based processing of data sets
created by independent actors. Architectures for
data-driven economic systems currently focus on the
exchange of datasets and leave the processing of
datasets to background mechanisms. Without binding
commitments, agents in data sharing situations favor
the ”no data sharing” strategy. We present a broker
framework that facilitates contract-based exchange,
trading, and processing of data sets between agents
under conditions of ”lack of trust”. Electronic contracts
guarantee ownership and control of data datasets,
the execution of defined data analysis tasks based on
AI models, and the sharing of results according to
contractual commitments. A technical architecture
(TUCANA) is presented that provides a federated data
economic ecosystem including a broker framework. We
present an application based on an implementation of
TUCANA.

1. Introduction

Management is decision-making under uncertainty
[1]. Data-driven decision making tries to reduce
uncertainties and, thus, complements managerial
practice and increases firm performances [2, 3].
Hence, firms are longing for internal and external
high-quality data that enables data-driven decision
making. Development of capabilities and infrastructures
for collecting internal data is often expensive so
that companies reach out for external data. For
instance, data-driven optimization of supply chains asks
for data-sharing between participants of the supply
chain [4]. Proprietary organization of data-sharing
along supply chains require strong principals who can
enforce data-sharing or adding financial incentives [5].
Firms differ in their ability of collecting data that
leads to different data sharing strategies. Firms with

advanced data collection capabilities have a comparative
advantage in data favoring data sales business while
other firms need to develop comparative advantages in
high-quality goods production [6].

Data is a key driver for Artificial Intelligence (AI)
in general, and machine learning in particular [7]. If
data is the new oil of the 21st century, the question
arises under which conditions business actors are willing
to share data (analog to data sharing in research [8]).
In commercial contexts, companies are reluctant to
share data with third parties because of fear that
company secrets are revealed [9]. However, without
data from partners, competitors and other third parties,
the performance of AI models is limited to predictions
based on local data. Because data is currently not
protected beyond contract law, data sharing partners
need contracts for controlling input data sharing, data
processing and sharing results. In situations without
prior trust between data sharing partners (’lack-of-trust’
condition), the role of a broker as a trusted-third party
is introduced for establishing and enforcing binding
contracts between data sharing parties. A broker is
either embedded into an infrastructure, e.g., blockchains
with smart contracts, or established as an independent
party, e.g., by data economic platforms, such as
GAIA-X. In this paper, we present a broker framework
that can be implemented by both approaches while
we introduce an implementation for an independent
web-based broker.

2. Related work

Internal data directly related to customers, sales
and marketing has been core to business intelligence
for decades [10]. Recently, also raw data is not only
considered as minor side-effect of company outputs
but is used for becoming more efficient and even
more responsive to market changes and disruptions
[2]. For firms, data is input for AI models that learn
patterns used for making predictions transformed into
recommendations for managerial decisions. This led to
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a novel understanding of management decision making
under the umbrella of data-driven decision making [7].
The quality of recommendations and predictions used
for data-driven decision making strongly depends on the
quality of selected AI models and on the amount and
quality of input data [11]. For companies with little IT
capacity, generation of data is challenging and requires
initial development of IT and data science capital stock
[12].

Beside fear and missing intentions, data sharing
between firms requires secure and trust-worthy technical
platforms. Data-sharing is supported by various
forms of platforms and underlying business models
and organizational models, respectively. Internet
companies running large platforms favor hub-and-spoke
platforms with strong control by platform providers
while governments, such as Germany and France,
look into federated data ecosystems with no dominant
platform provider in the middle [13].

A key element of data economic platforms is
handling of contracts between data-sharing agents
under ’lack-of-trust’ conditions. Contracts are binding
promises between commercial agents and requirements
on data and models to be shared. If trust between agents
is not guaranteed, trusted third parties are introduced
for enforcing promises, in particular obligations,
permissions, and sanctions. Contracts are usually
supervised and sometimes even executed by a trustee.
Traditionally, trustees are independent actors or even
embedded into the data sharing platform as it has been
recently introduced by block-chain architecture and
smart contracts [14].

2.1. Data sharing

Business actors are generally reluctant to engage
in data sharing because of various fears, such as
unauthorized access to data, regulatory risks and lack
of competency in monetization of data (IW Kurzbericht
24 04 / 2021, IW Trends 01 / 2021). But they are
interesting in getting access to external data, including
from partners, competitors, markets, research, and
general public. This is exemplified by a two-player
data-sharing game. In contrast to sharing media files
[15], sharing of self-created data comes with a fear of
appropriation loss that the receiving agent will leverage
shared data without proper control by the originating
agent.

For instance, if a player receives data from a
providing player, it will create a potential benefit
without costs (benefit: 5) but causes a loss for the
providing agent (loss: -2) (cf. Table 1). When both
players share their data, they receive a benefit but also

B B
No Sharing Sharing

A No Sharing 0, 0 5, -2
A Sharing -2, 5 3, 3

Table 1. Two-player data-sharing game

have a perceived loss (total payoff: benefit-loss, i.e.
5−2 = 3). Without additional mechanisms, both agents
will adopt ”no sharing” as their dominant strategy [15].
This situation favors decision makers to wait for the
others to share their data.

This situation changes if both player A provides
data and player B generates higher-order data as result
of processing data back to player A, e.g., access to
raw production machine data of player A in return
for maintenance predictions by player B. Therefore,
agent A perceives returns as being higher than the
value of the provided raw data, leading to a dominant
”sharing” strategy (cell sharing/sharing: (7,5)). Such
conditions favor that one player (here playerB) receives
a dominant position (principal) with a dependent player
A, as typical for hub-and-spoke business models of
Internet giants, such as Google and Facebook [16]. This
binary ties between two agents results in data sharing
systems that favor central principals with many agents
and a hub-and-spoke business model.

An alternative game design is given with both
players potentially gaining higher returns from sharing
at the same time (cell sharing/sharing: (7,7)). This
occurs if no loss of input data but higher quality output
data for each player is guaranteed. Such a game design
is supported by introducing contracts and trustees that
mediate in situation with ’lack of trust’ conditions.

2.2. Data contracts and trustees

Due to the intangible nature, contractual relations on
data are more complicated than for tangible assets [17].
Data can be seen as a commodity, encapsulated by a
data-based service or as a data as a service itself [17]. So
far, no specific rules exist for data contracts but standard
contracts can be used for lowering transaction costs
when selling data [17]. We follow Fried’s understanding
of contracts as promises of parties involved in economic
transactions [18]. In cases that provided data is
not compliant with contractual promises, mechanisms
are required for rolling back transactions. This is
challenging because data assets have been already
exchanged and leaving the seller side without control.
This problem is often solved by introducing trustees
as a trust-third party so that data and models are
only shared if all contractual obligations are fulfilled.
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Formal trustees only evaluate data against contractual
obligations. If evaluations are positive, formal trustees
grant access on data to receiving agents in the sense
of data as a service. Data processing is not under the
control of formal trustees. Active trustees extend formal
trustees by applying specified algorithms, e.g., training
and application of AI models, and evaluating results
against requirements given by contractual promises.
Thus, active trustees control execution of data analytical
services and sharing of results according to contractual
promises. Formal trustees are light-weight agents that
only evaluate input data and models and provide no
guarantees on results. Active trustees are encapsulated
agents that evaluate. for instance, compliance of data,
AI models and results to contractual obligations.

Contracts as legal documents require declarative
representations that can be scrutinized by legal experts.
An e-contracting process consists of four phases,
i.e., the information, pre-contracting, contracting, and
enactment phases [19].

Several declarative languages for general-purpose
contracts have been proposed [20, 21, 22]. The role
of contracts for building trust in distributed multi-agent
systems for e-commerce have been emphasized [23].
Trusted-thrid parties (trustees) are introduced as
norm-enforcing entities [24]. Logical formalizations
of contracts are proposed but lack computational
infrastructures for contract execution [25, 22]. Contract
models represented by business process models, such as
BPML, lack semantics for process execution but can be
easily deployed on process platforms [26]. Contracts
with a focus on financial transactions are focused
by smart contracts used in blockchain architectures
[27]. Level-3 type distributed ledger systems introduced
trustees called contract managers [28].

Lee was first in proposing a formalization
of contracts by first-order predicate logic [29].
More practical approaches use business models or
state-transition models as underlying formalism [30].
Ladleif and Weske propose an ontology for contracts
with actions, data sources and legal state as key
elements [31]. Updates on actions change legal states
while legal states can enable actions. Contract models
based on formal logic [29] or ontologies only [31] are
theoretically interesting while practical applications
are based on state-transition models, process models
or rule-based systems (e.g., [32]) while recently
implementations of finite-state representations of
contracts on blockchain platforms are proposed (e.g., )
[30]).

In this paper, we will focus on the conceptual
model of contracts that are negotiated during contracting
and used in enactment phases. We follow previous

approaches, that understand electronic contracts as
event-condition-action programs executed on behalf of
market participants [33]. Based on ontological models
for contracts [31, 34], we present a state-transition based
contract framework for data sharing, data trading and
data processing in federated data ecosystems.

3. Broker framework

In the following, we describe a framework that
supports data contracts between actors based on
software agents and smart services. This provides
a minimum of autonomy, control on local data and
data processing and communication capabilities for
interacting with other agents [35]. Coordination
between agents are based on declarative contracts that
state which data processing activities are executed on
defined data. Contracts define routing and ownership
of data, models and software. Agents can apply smart
services that share data, train and apply AI models and
share results.

These requirements indicate strong resemblance
with multi-agent systems but focus more on execution
of AI models and on contracts that are used for
coordination of data analytical processing tasks. This
extends research on MAS that has focused on
coordination and communication protocols with little
emphasis on the tasks to be executed by agents.

In the following, we will introduce a broker
design pattern for data sharing, data trading and data
processing in federated data ecosystems. Beside market
participants, a broker is introduced as a trust-third party
that executes contracts on behalf of market participants.
The contract specifies data to be shared, data analytical
procedures to be applied on data, handling results, data
and models after data analysis.

Based on the smart contract ontology [35], we
developed a broker design pattern consisting of five
elements:

1. Data sharing agent: an agent that is in control of
data

2. Broker agent: an agent that can execute contracts
and run data analytics services

3. Contract: declarative representation of legal
promises, i.e. obligations, permissions and
sanctions that can be interpreted by a broker agent
based on a legal state

4. Data Analytical Service: description of a service
that processes data; part of contracts
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5. Data (input and output/results): data shared by
agents as input for data analytical services and
output of such processing

Two contract types are distinguished: data analytical
contracts and service contracts. A data analytical service
specifies data, data analytics and output handling.
A service contract specifies promises on service
implementations.
Definition 3.1 (Contract). A contract cd ∈ C is a
model that is specified by actors, contractual obligations,
permissions, data analytical functions with service
contracts and input and output data. A contract is
defined as follows:

cd =< nc,P,O,R,S, λ(X),Q >

where nc is the name of the contract, P is the set of
participants of this contract beyond broker b, O, R,
and S are the set of obligations, permission rights, and
sanctions, λ is the data analytical function that is to
be applied on input data X, and Q is a set of quality
requirements. Data X is the integration of data X(p)
provided by participant p ∈ P.
Definition 3.2 (Obligation). An obligation oi is
specified by an actor, state conditions and actions:

oi =< no, a,COo
t ,A,COo

t+1 >

An obligation defines a mandatory action set A
performed by actor a if the contract state is fulfilled
COo

t at time point t resulting in a contract state that
fulfills a set of state conditions COo

t+1 at time t+ 1.
Definition 3.3 (Permission). A permission pi specifies
an actor, state conditions and actions:

pi =< np, a,COp
t ,A,COp

t+1 >

A permission defines an action set A that an actor
a might perform if the contract state is fulfilled COp

t

resulting in a contract state that fulfills a set of state
conditions COp

t+1 at time t+ 1.
Definition 3.4 (Sanction). A sanction si specifies an
agent, action set A, and state conditions:

si =< ns, a,COp
t ,A,COp

t+1 >

A sanction defines a set of sanctions (actions) A on
an actor a that might be performed if the a set of contract
states are not fulfilled COp

t . After the execution
of sanctions, this set of state conditions COp

t+1 is
considered to be satisfied at time t+ 1.

Function λ specifies what kind of data analytical
function will be applied to input data X achieving a
quality requirements Q.

Service contract cS specifies how function f will
be implemented including data engineering, model
training, and model application. Service s is a data
analytical function with or without pretrained modelM .
If s provides a pre-trained model M , no training data
is required but predictions can be derived. In practical
situations, pre-trained models do not exist but need to
be trained based on participants data.
Definition 3.5 (Service contract). A service contract cs
specifies conditions for a service s for implementation
of function λ

s =< f,Xs,Π >

Xs data schema of X and data analytics pipeline
requirements Π. Π specify contractual promises, i.e.
permissions, obligations and sanctions, for the whole
data analytical process, including data engineering,
model training and model deployment incl. predictions.
If Π = ∅, any service that can implement function type
f if it obeys data schema Xs. This allows the integration
of a market-based approach by which match-making and
negotiation protocols support selection processes. The
prediction results Y (cd) generated by application of s
on input data from agent A and B are send to agent A
according to contractual promises (cf. Fig. 1).

Figure 1. Broker framework.

4. Electronic contracts specification
language for federated data economies

From the specification of the broker design
pattern, we derived the Contract Specification
Language (ECSL+) that extends the proposal
by [24]. Kollingbaum and Norman’s proposal
specifies concepts including contract, agent, role,
obligation, permission, sanction, actexpression,
do, activation, expiration, and condition. In this
approach, variables are defined externally by additive
processes, e.g., negotiation. In federated ecosystems
self-descriptive contracts are required that can be
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executed by a broker by guaranteed outcome without
side effects caused by external processes that are not
governed by contractual descriptions. Therefore, we
introduce assertion as a means for declaring variables
within a contract specification. Furthermore, we allow
contract embedding which is important for embedding
service contracts into data contracts (cf. Fig. 2).

Figure 2. Contract flow including sub-contract.

A data contract consists of several blocks. At the
beginning, roles are defined and variables are declared
(assertions). The rest of the contract is organized
according to a data analytical process: data engineering,
model training, model deployment and cleaning:

1. Sharing data: obligations of agents to provide
specified data

2. Merge data: permission of broker Z for merging
data provided by agents X

3. Preprocess data: permission of Z for
standardization and normalization of data
into X

4. Train and evaluate model: train model M with
data X

5. Delete data and model: obligation of Z to delete
data X , X ′, Y and model M

Making predictions with modelM is described by an
embedded contract consisting of several components:

1. Data: obligation for agents A to deliver data X ′.
The contract is terminated if agentsA do not share
data .

2. Make predictions: permission of Z to make
predictions with M on X ′

3. Send results: obligation of Z to send result data Y
to specified agents

4. Make payment: obligation of agents A to transfer
specified amount to agents B (if data trading but
not data sharing)

Instantiations of agent sets A and B are contract
specific. In a simple case, A and B are instantiated
by a single agent each. Permissions can be extended
by sanctions. Sanctions can active various forms of
actions, including sending fines. Sanctions are optional
for obligations of data sharing and payments.

According to [24], promises, ie. permissions,
obligations and sanctions, consist of a name,
an activity and two conditions: activation and
expiration. Activation describes the trigger for
activating and an expiration describes a trigger
for de-activating a promise. For instance, permission
data engineering merge activates a merge data function
on data provided by both agents, if data is received
from both (cf. contract Model and Predict Price).
This permission expires if data is successfully stored
in variable ?merged data. As long as ?merged data
exists, this obligation cannot be activated again. The
control flow of a contract is implemented by activation
and expiration conditions. This also allows modeling
of contract flows with parallel activity streams as used
for business process modeling [36], such as EPC and
BPMN.

1 contract(Model_and_Predict_Price,
2 role(?data_supplier_A)
3 role(?data_supplier_B)
4 role(?broker)
5 assertion(?prediction_type = 'regression')
6 assertion(?model_type = 'xgboost')
7 assertion(?model_architecture =
8 [objective ='reg:linear', colsample_bytree = 0.3, lr = 0.1,
9 max_depth = 5, alpha = 10, n_estimators = 10])

10 assertion(?loss_function = 'rmse')
11 assertion(?loss_threshold = 0.8)
12 assertion(?deadline = '31-12-2021')
13 assertion(?account_A = 'DE19 5919 0000 0000 33 0815')
14 assertion(?account_B = 'DE19 5919 0000 0000 33 4711')
15 assertion(?payment_A_to_B = 1000 EUR)
16 assertion(?fine_A = 100000 EUR)
17
18 obligation(use_configuration,
19 do (?broker, use_configuration ( ?prediction_type,
20 ?model_type, ?model_architecture, ?loss_function)),
21 confirmation(?config_ack_A, ? config_ack_A),
22 finish(?ack_config ))
23
24 obligation(share_data,
25 do (?data_supplier_A, open_data_safe (?broker,
26 ?data_supplier_A, ?data_A_modeling)),
27 TRUE,
28 grant(?data_A_model_ID))
29 ...
30 obligation(share_data,
31 do (?data_supplier_A, open_data_safe (?broker,
32 ?data_supplier_A, ?data_A_prediction)),
33 TRUE,
34 grant(?data_A_pred_ID))
35 ...
36 permission(data_engineering_merge,
37 do (?broker, merge_data ( ?data_safe_A, ?data_safe_B )),
38 data_received (?data_safe_A, ?data_safe_B),
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39 checked_in(?merged_data ))
40
41 permission(data_engineering_preprocess,
42 do (?broker, preprocess_data(?merged_data)),
43 data_received(?merged_data),
44 checked_in(?preprocessed_data))
45
46 permission(data_engineering_train,
47 do (?broker, train_model(?preprocessed_data,
48 ?model_type, ?model_architecture, ?loss_function)),
49 data_received(?preprocessed_data),
50 checked_in(?trained_model AND ?performance_values))
51
52 Contract(prediction_price) # cf. sub-contract below
53
54 obligation(delete_data_model,
55 do (?broker, delete(?trained_model, ?data_A_model_ID,
56 ?data_B_model_ID)),
57 ack (?payment_received_B),
58 ack (?deleted_all)
59 )
60
61 sanction(withhold_data_A,
62 do (?broker, send_fine (?data_supplier_A, ?fine_A)),
63 not received_before(?data_A_modeling, ?deadline),
64 received_before(?data_A_modeling, ?deadline)
65 )
66
67 sanction(blacklist_A
68 do (?broker, put_on_blacklist(?data_supplier_A )),
69 not received_before(?data_A_modeling, ?deadline),
70 received_before(?data_A_modeling, ?deadline)
71 )
72 ...
73 sanction(send_fine_A,
74 do (?broker, send_fine ( ?data_supplier_A, ?fine_A)),
75 not received_before(?payment_received_B, ?deadline),
76 received_before(?data_B_modeling, ?deadline)
77 )
78 )

The sub-contract for prediction on data X′ provided
by agent A is goverened by contract prediction price.

1 Contract(prediction_price,
2 ...
3 permission (prediction_A,
4 do ( ?broker, predict(?trained_model, ?data_A_pred_ID)),
5 model_exist ( ?trained_model ),
6 checked_in ( ?predictions_A ) )
7
8 obligation (send_predictions_A,
9 do ( ?broker, send(?data_supplier_A, ?predictions_A)),

10 TRUE,
11 ack ( ?data_supplier_A )
12
13 obligation (delete_data_A,
14 do ( ?broker, delete(?data_A_pred_ID, ?predictions_A)),
15 ack ( ?data_supplier_A ),
16 ack ( ?delete_A)
17 )
18
19 obligation (payment_A,
20 do ( ?data_supplier_A, payment (?account_A, ?account_B,
21 payment_A_to_B)
22 checked_in ( ?trained_model AND ?performance_values),
23 ack(?payment_received_B)
24 )
25 )

5. Federated Data-Economic Platform

The broker framework is based on the assumption
that agents are not necessarily computational agents
alone, as investigated by research on multi-agent
systems. Instead, a collaborative approach is
used by which human decision makers use smart

services for data sharing, data trading and data
processing in cooperation with other decision makers.
Multi-agent systems (MAS) research is often based on
computational agents that reason and act on formal
representations of believes, desires, intentions and
goals (e.g., 3APL [37]). MAS technology is being
used to represent, model and simulate dynamic and
federated environments [38]. They are a natural way
for implementing federated data economic systems.
Research on MAS has proposed languages for modeling
multi-agent systems (e.g., 3APL [37]), simulation
environments (e.g., MATLAB ), or implementations
by object-oriented languages (e.g., JADE) or with
component-based systems (e.g., OSGi [39]).

For reasons of liability but also keeping control
of business, decision makers are required to use their
believes, desires, and intentions when setting and
following business goals, such as on data economic
tasks. Therefore, we propose an architecture that
supports human decision-making by means of data
analytical services, called smart services. Smart
services work on data analytical tasks and provide
decision support. In a simple case, a smart service
uses local data for deriving recommendations. This
resembles standard data analytical programs. A
federation of smart services collaboratively work data
analytical tasks. In general, the following requirements
are posed for smart service federations (cf. [40, 41, 42]):

1. Information: communication between smart
services that signal a willingness for cooperation

2. Negotiation: building a trust relationship by
agreement of contractual promises

3. Contract execution: data and model sharing and
data analytical processing

4. Settlement: exchange of results, execution of
financial transactions and contract termination

In this paper, we assume that agents already
negotiated a contract on data analysis of shared data. In
the following, we use contract execution and settlement
for presenting the distributed architecture that supports
smart services.

TUCANA is a distributed, web-based architecture
that consists of a federation of agents controlling smart
services.1 Agents fully control smart services including
development, activation, and termination. In TUCANA;
agents can take different roles. In this federated
data economic environment, we distinguish between
data agent and broker. This lean organization poses

1TUCANA documentation:
https://informationservicesystems.github.io/tucana/
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requirements on communication channels between
agents, i.e. peer-to-peer communication without the
need for a central coordinator which would contradict a
full federation. Agents are computational environments
with local storage. Data is shared via peer-to-peer
communication channels. Access to inner states of
an agent is controlled by authentication services (e.g.,
oauth 2.0). An agent can activate several smart services
in parallel. Smart services are loosely coupled software
systems based on modules, called minions. Six different
minion types are distinguished:

• Perceiver: receiving data from other agents or
sensors

• Data engineer: data engineering on data

• Contract manager: processing contracts, incl.
receiving, processing and sharing data; impose
sanctions

• Thinker: AI capabilities, incl. model training and
execution

• Communicator: sending data to other agents or
communicating to users

• Guardian: interface to external data provider and
receiver

A smart service controls a protected, local
storage, i.e. without access by other smart
services. Communication between smart services
is channeled through perceiver (receiving messages)
and communicator minions (sending messages). A key
requirement is that smart services are fully realized in
web environments. Communication with technologies
external to the World Wide Web is managed by guardian
minions, e.g., cloud infrastructures. Smart Services are
defined by smart service configurations that describe
process flows of minions. Thinker minions encapsulate
AI models in general and AI learning in particular.

Minions are encapsulated modules that are activated
by messages (cf. Figure 3). A smart service
configuration defines a finite state model for minions.
Data is stored in local stores by a guardian. Input-output
behavior is implemented by perceivers, communicators
and guardians.

In federated settings, agents interact with one
another based on their smart services (Fig. 4). In
this example Cerea runs two smart services (P-T-C)
while Bob maintains three services with one (P-C) only
visualizing messages received by Cerea and Woda.

Actors in federated data economic ecosystems are
realized as data agents maintaining smart service that

Figure 3. Visualization of a general smart service

configuration

Figure 4. Example with three agents running

interconnected smart services.

exchange data with local smart services but also with
smart services maintained by other agents (cf. example
in Figure 4). Requests are received by a perceiver and
data sharing in handled by a communicator minion.
The broker is modeled by a perceiver - thinker -
communicator process. This process is activated and
controlled by a contract manager. Contractual promises
associated with data agents are send as requests (e.g.,
open data safe in contract of Section 4). Promises
for the broker are send to associated minions (e.g.,
merge data is send as an activation to the data engineer)
with a handle to the appropriate local data (?data safe A
and ?data safe B).

Modeling the broker framework in TUCANA is
straight-forward. A contract is modeled as a finite state
machine cf that is superimposed on the smart service
configuration sc. Contractual promises are triggered
based on the legal state that is the set of all local
variables of an agent defined by the contract model
cf . Activities are registered with minion instances by a
activity registry. For instance, train model is registered
with the thinker minion of the smart broker service.
Registered minions are activated as soon as activation
conditions of contractual promises are met. Designers of
smart contracts can leave out specifications for control
and data flow in smart service configurations and leave
this to contract models alone. This helps to avoid
unintended side-effects.
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6. TUCANA platform implementation

TUCANA is implemented by using
web-technologies, in particular in HTML and JavaScript
deployed for web browser. Thus, a data ecosystem build
with TUCANA can be deployed on any device that
supports browser technologies, including embedded
devices, smartphones, laptops workstations but also
cloud environments. Because HTML and Javascript
are integral parts of web environments, both can be
treated as data and executable code. The data property
allows light-weight exchange of smart services between
agents, as it is feasible for data and AI models. Thus,
data, models and code are all fist-class citizens of smart
services and can be transferred without restrictions and
installations.2

Peer-to-peer communication is realized by
WebRTC [43]. WebRTC is an industry effort
for adding peer-to-peer communication paradigm
between browsers. By establishing a peer connection,
messages can be directly exchanged between browsers
without intermediating servers. The WebRTC API
provides peer-to-peer connection management,
encoding/decoding negotiation, selection and control,
media control, firewall and complex NAT traversal [44].

The runtime environment of TUCANA consists of
a data-access service layer that handles access to local
data, data provided by other agents and backend data
services incl. cloud infrastructures. Local data is stored
in IndexedDB of the browser. Minions are implemented
as Javascript classes. Smart services are controlled by
a minion state controller executed via an underlying
state-transition engine. An agent starts a smart service
by selecting a smart service configuration that contains
requirements for minions. Minions are selected from
the local minion repository when satisfying minion
manifests of the smart service configuration (version,
interfaces) and connection requirements, ie. connection
manifests. Both manifest sets describe a Smart Service.
A smart service configuration is fully descriptive
(non-binary) and can be transferred to other agents.

All data exchanged between agents is rendered
by self-describing web data formats, ie. data is
accompanied by semantic descriptions in particular
JSON-LD. RESTFul APIs are used for data exchange
(JSON-LD serialization and API).

7. Application

In this section, we describe a data economic
application implemented in TUCANA with two market

2This currently holds for minions implemented in Javascript
compatible with ECMAScript 6 (ES6)

particpants, farmer A and farmer B, and a trusted-third
party. A and B produce avocados with interest
in predicting avocado prices for making appropriate
investment decisions. A and B have complementary
datasets on avocado prices. Both have come to an
agreement that using data from both sides would give
more accurate price predictions for the next three
months. But neither A nor B are willing to share data
directly (’lack-of-trust’ condition) but they are interested
in prediction results (user interface of implementation
cf. Figure 5). After joint discussions, they realized that
a contract can be applied (cf. contract from Section 4).

Figure 5. User interface with agent A (left) and

agent B (right)

The broker receives and executes the contract. After
receiving data from both agents A and B, it performs
data engineering tasks, model training. By executing the
embedded contract, the broker receives new data from
agent A and uses this it for making predictions. Agent
B is compensated for providing data and finally, all data
and the model is deleted.

Figure 6. Prediction of avocado prices

Thus, this contract is side-effect free which is a
key element for trust-building between agent A and B.
The combined dataset of A and B consists of only 307
datapoints, i.e., average price for a week.3 A LSTM
model was used within a thinker minion that resulted
in a MAPE of 12.9% for the predictions of the next

3Data set: https://www.kaggle.com/timmate/avocado-prices-2020
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three months (dashed line in Figure 6). Finally, farmer
B received a payment according to the contract.

8. Summary and Outlook

Business actors are always longing for additional
data collected and maintained by other actors. Sharing
and trading data is a necessity for higher-quality
predictions and data-driven decision making. We
have shown by a game-theoretic model that a standard
two-player situation generally favors no-sharing
strategies. Contracts are a means for overcoming
mistrust between business actors. We have presented
a conceptual framework for a broker and an electronic
contract specification language specifically adapted
to data economic situations. Electronic contracts are
conceived as finite state automata. Furthermore, we
have discussed how this conceptual broker framework
including electronic contracts is implemented on
a federated data-economic platform (TUCANA).
TUCANA is based on a service-based architecture with
re-usable software modules, called minions. Smart
services are configurations of minions. In this paper,
we have focused on smart services that enable broker
for executing electronic contracts on behalf of business
agents. A web-based architecture for TUCANA has
been discussed and used for implementing an example
for training and using a machine learning model for
making predictions on joint data based on shared data.

This paper is a first step towards a full understanding
of electronic contracts and the role of a broker in
federated data ecosystems. The proposed conceptual
model for electronic contracts needs to be enhanced
by secure identification schemes for actors and
brokers (first implementation with oauth2.0 is currently
evaluated). Generally, the approach needs to
be refactored by security requirements while the
communication based on WebRTC is secure by design.
Even though that the broker only shares data between
business actors according to contract, it is feasible that
data can be reconstructed from result data. Differential
privacy [45] and homomorphic encryption [46] are both
means for protecting input data from malicious actors.

We are working on a mapping the electronic contract
model onto different smart contract schemes, i.e. IOTA
and Blockchain 2.0 architectures. A prototype has been
tested that ports our contract model to WASP4 that
implements the IOTA Smart Contract Protocol.

4https://github.com/iotaledger/wasp
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