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Abstract. This paper presents an investigation on the task of anomaly detection
for images of skin lesions. The goal is to provide a decision support system with
an extra filtering layer to inform users if a classifier should not be used for a given
sample. We tested anomaly detectors based on autoencoders and three discrimi-
nation methods: feature vector distance, replicator neural networks, and support
vector data description fine-tuning. Results show that neural-based detectors can
perfectly discriminate between skin lesions and open world images, but class dis-
crimination cannot easily be accomplished and requires further investigation.
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1 Introduction

Clinical decision support systems (CDSS) for skin cancer detection, based on deep
neural networks, have proven to be effective and in some cases surpass human perfor-
mances [9,1,14,2].

To foster research in this direction, from 2016 on, the International Society for Digi-
tal Imaging of the Skin3 organizes the ISIC4 challenge for the development of computer
vision systems supporting clinical decision in the field of skin lesions. The tasks con-
sidered in the past editions include classification [6,7], lesion segmentation, and feature
extraction [5].

The 2019 edition5 contained, as an implicit task, anomaly detection. The training
dataset provided for the ISIC 2019 challenge included images pertaining to 8 classes
of skin lesions. However, the test dataset contained also images pertaining to none of
those categories, named the unknown (UNK) class. In other words, as the training set
was providing material for 8 known classes, the test phase asked for a classification into
9 classes (see figure 1).

One approach to solve this problem would be to inject random pictures of other
known skin pathologies into the training, or random pictures from the real world, and

3 https://isdis.org/
4 https://www.isic-archive.com/
5 https://challenge.isic-archive.com/landing/2019
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Fig. 1. A sample for each of the nine classes in the ISIC 2019 dataset. From left to right:
Melanoma, Melanocytic nevus, Basal cell carcinoma, Actinic keratosis, Benign keratosis, Der-
matofibroma, Vascular lesion, and Squamous cell carcinoma, followed by a sample of the test set
clearly belonging to the UNK class.
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Fig. 2. The classification chain based on the concatenation of an anomaly detector and a standard
classifier.

mark them as UNK. However, the choice of such extra training images would be arbi-
trary and possibly not reflect the selection criteria used for the preparation of the test
set.

An alternative approach would be to chain two models: the first dedicated to per-
forming anomaly detection, followed by a classification model (see figure 2). Hence, a
new sample would be first filtered by the anomaly detector. If detected as not-pertaining
to any of the 8 classes, it would be marked as UNK, or continue through the classifica-
tion model otherwise.

In general, anomaly detection, in our approach also known as 1-class classification,
is the task of discriminating if a given sample pertains to the same distribution of a
reference set. Such a pre-filtering strategy would help circumventing the critical limita-
tion of classifiers, which are unable to output choices beyond the closed-list of classes
provided at training time.

Here, the purpose would be to enhance clinical decision support systems to provide
answers like “I cannot take a decision: this system was not prepared for this kind of
input image”. Another possible application would be of an automatic filtering during
the automated collection of images, for example, from the web.

Despite the potential advantages of anomaly detection in the field of skin lesions,
from the results of the ISIC 2019 challenge, it emerges that none of the participants was
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able to reach satisfactory specificity for the UNK class, with some of the participants
ignoring the problem as a whole.

Hence, in this paper, we report on a post-challenge investigation that we conducted
to measure the effectiveness of deep-learning-based anomaly detection on skin lesion
images.

From a survey on the ISIC 2019 reports, it looks like all of the participants addressed
the problem of anomaly detection through a statistical analysis of the softmax output of
their classifiers. The work we present here seems to be the first one to tackle the prob-
lem of anomaly detection using deep neural networks configured as autoencoders. Our
results do not show major gains in classification performance, i.e., discrimination meth-
ods based on feature vector distance, Replicator Neural Networks, and Support Vector
Data Description do not perform as good as they do on other domains. Nevertheless,
we contribute with several hints when dealing with anomaly detection for (skin lesion)
images and an investigation methodology that could be used as starting point for future
work in this field or related imaging task.

2 Related Work

Anomaly detection (aka 1-class classification, outlier detection, novelty detection) refers
to the task of discriminating between samples pertaining to a reference target distribu-
tion and samples coming from whatever kind of other distribution, and identify them as
anomalies, or outliers. See Chandola et al. [3] for a comprehensive review.

Anomaly detection presents distinct problem complexities compared to the majority
of analytical and learning problems. Pang et al. [20] discuss some unique problem com-
plexities like unknowness, heterogeneous anomaly classes, rarity and class imbalance
and the diverseness in the types of anomaly that results in largely unsolved challenges.

The One-Class SVM [22] is a popular solution for anomaly detection based on the
SVM method. The drawback is that it doesn’t scale with the number of features, and is
thus not applicable to CNN-driven image classification, where the number of features
describing a sample before the softmax stage is above 1000.

When using CNN-based classificators, an approach that reaches state-of-the-art per-
formance comes from Lee et al. [17], who proposed a method for detecting out of dis-
tribution (OOD) samples where class conditional Gaussian distributions with respect
to the features of the deep models are obtained under Gaussian discriminant analy-
sis. Then, the confidence score are obtained by using the Mahalanobis distance metric.
Their method considers both the final softmax scores and the intermediate features of
internal hidden layers.

In the context of dermatoscopy, Li et al. [18] proposed a non-parametric deep iso-
lation forest (DeepIF) as a modification of the method from Lee et al. [17] in order
to take into account the huge intra-class diversity of skin disease images. With this ap-
proach they reach an average 0.71 ROC on intra-class discrimination on the HAM10000
dataset [24].

As a new approach, the tests reported in this paper use Replicator Neural Networks
[12], which are based on the training of an autoencoder on the target set and a mea-
surement of the reconstruction error between an input image and the encoded-decoded
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output image. The hypothesis is that an autoencoder “specialized” in compressing and
decompressing a certain type of images will show a higher reconstruction error if ap-
plied to images never used during the training phase.

Additionally, we test the effectiveness of the deep support vector data description
(SVDD) technique proposed by Ruff et al. [21], who used neural-based anomaly de-
tectors on images of digits as well as on open space images. The SVDD optimization
technique is a post-training, fine-tuning technique increasing the accuracy of the detec-
tion through an analysis of the internal feature vector of the autoencoder.

A closer look at the results of the ISIC2019 challenge6 (see table 1) denotes that the
classification for the UNK class was poor, and in some cases the problem was ignored
as a whole. For the UNK class, only four teams reached a sensitivity above 0.1.

Table 1. Results of the top 10 performers of the ISIC2019 challenge. The Acc. column refers to
the Balanced Multiclass Accuracy (i.e. average sensitivity among all classes) which is the main
ranking metric of the challenge.

Team Acc. Ext. data UNK Acc. UNK Sens. UNK Spec. UNK AUC
DAISYLab 0.636 Yes 0.808 0.002 0.999 0.808
DysionAI 0.606 No 0.798 0.179 0.946 0.562
AImageLab 0.592 No 0.808 0.004 0.999 0.502
DermaCode 0.578 No 0.807 0.012 0.997 0.642
Nurithm Labs 0.569 Yes 0.806 0.002 0.997 0.551
Torus Actions 0.563 No 0.808 0.000 1.000 0.500
BITDeeper 0.558 No 0.729 0.390 0.810 0.705
SYSU-MIA-Group 0.557 No 0.801 0.272 0.920 0.600
MelanoNorm IITRopar 0.546 No 0.802 0.004 0.992 0.496
MH team 0.544 No 0.799 0.118 0.961 0.556

For example, the first in the rank (DAISYLab) [10], who reached a balanced multi-
class accuracy of 0.636, achieved only 0.002 sensitivity for the UNK class. Their strat-
egy was to train directly a classifier on 9 classes, injecting in the training set a collection
of 2334 images from other datasets, including healthy skin.

Among the best performers MH.team (ranked 10th with accuracy 0.544) performed
a post-prediction analysis using the minimum, maximum and standard deviation of the
softmax output of each sample. By cross-validating on 7 classes against the others (eight
times), they manually selected the discrimation thresholds. With this approach they
reached 0.118 sensitivity for UNK.

DysionAI (ranked 2nd with 0.607 accuracy) achieved an UNK sensitivity of 0.179
by training as 9-class classification with 0 images for UNK class. During prediction,
they assign the input sample to UNK if its softmax probability is greater than a threshold
set to 0.35.

The SYSU-MIA-Group (8th with 0.557 accuracy) computed the entropy of a soft-
max prediction on 8 classes. They interpret entropy as the inverse of confidence when

6 https://challenge.isic-archive.com/leaderboards/2019

https://challenge.isic-archive.com/leaderboards/2019
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the classification network makes a prediction. If the confidence is below a certain
threshold, the sample is marked as UNK. The threshold was manually set during inter-
nal tests by using two under-represented classes (AK and VASC) as UNK class. With
this approach they reached 0.272 sensitivity for UNK.

Finally, the highest sensitivity for the UNK class (0.390) was achieved by the BIT-
Deeper team (7th with 0.557 accuracy). They trained a multi-class classifier in parallel
with a multi-label classifier (actually implemented via 8 binary classifiers) on the 8
known classes. The output for the UNK class is computed as a class-wise combination
of the 8 softmax (multi-class) and the 8 sigmoid (multi-label) outputs. However, the
choice of the combination formula and its parameter values is not explicitly motivated.

3 Method

The goal is to build an anomaly detection system that, given the image of a skin lesion
as input, outputs a binary decision stating whether the input pertains to the target dis-
tribution, i.e., the same class of images on which the model was trained (negative case),
or it is an outlier (positive case).

Fig. 3. The autoencoder architecture used to train the anomaly detection model.

As already introduced, we build an anomaly detection system based on a deep con-
volutional neural network autoencoder. The configuration, training, and testing proce-
dures work as follows:

1. Configure. Figure 3 shows the general structure of an autoencoder. Our goal is
to configure an autoencoder based on a convolutional architecture composed by
a sequence Conv : [Dc :] F [: Dd] : Deconv, where F is a central
dense layer with the code or features of input images, while the (optional) Dc and
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Dd are dense layers connecting the last convolution stage to F and the same to the
first deconvolution stage;

2. Train the autoencoder f using a target set Strain ofm images, where f(x;w) takes
as input an image x and the encoder weights w and outputs another image after
encoding and decoding steps. The objective function for training the autoencoder
is:

min
W

1

m

m∑
i=1

‖f(xi;W )− xi‖2 (1)

where xi ∈ Strain is an input image and W are the initial pre-trained parame-
ters (weights) of the deep autoencoder. In other words, the goal is to minimize the
l2-norm computed on the pixel-wise difference between the original and the recon-
structed image. After training, W ∗ are parameters of the trained model;

3. Test method l2-norm. Given φ(x;w) the function that computes the feature vector
of an image x for the weightsw, find the center c of the hypersphere for the training
set in the feature space:

c =

∑
φ(x,W ∗)

m
,x ∈ Strain (2)

and dstd as the standard deviation of the l2-norm between the feature vector of
every sample and the center:

dstd =

√∑
‖φ(x;W ∗)− c‖2

m
,x ∈ Strain (3)

Test using the discrimination formula that marks a sample x as anomaly if

‖φ(x;W ∗)− c‖2 > dstd ∗ T (4)

where T > 0 is a multiplier which sets the “threshold” for the discrimination.
4. Test method Err. Define the reconstruction error E of an image x as:

E(x) = ‖x− f(x;W ∗)‖2 (5)

Mean and standard deviation of the reconstruction error E of train set images are
used to determine the binary classification:

Em =

∑
E(x)

m
,x ∈ Strain (6)

Estd =

√∑
(x− Em)2

m
,x ∈ Strain (7)

Test using the discrimination formula:

‖E(x)− Em‖2 > Estd ∗ T (8)
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5. Test method SVDD. Fine-tune the Conv stage using the Deep Support Vector Data
Description (SVDD) method [21], which consists of training further the Conv :
[Dc :] F part of the model with the following objective:

min
W

1

m

m∑
i=1

‖φ(xi;W )− c‖2 + λ

2

L∑
l=1

‖Wl‖2F (9)

where c is the center of the learned hypersphere that represents the training set in
the feature space, L ∈ N is total number of hidden layers and λ > 0 is the weight
decay regularization parameter.
Then, test using the same formulas of method l2-norm (Equations 2, 3, and 4).

Architecture configuration We used two backbone CNN architectures for our tests,
where the plain convolution stage was used as encoder and its transpose for the decoding
part. The first backbone CNN architecture is VGG16 [23], which has proven to be
sufficiently accurate in the classification skin lesions during previous ISIC challenges
as well as still relatively fast to train. The second architecture is LeNet [15], which was
successfully used by Ruff et al. [21] in the anomaly detection applied to the MINST
[16] and CIFAR-107 datasets.

We tried both networks together with several configurations for the internal dense
layers (hence, the number of features describing an image) and optionally the opti-
mization method SVDD. As an additional hyper-parameter, we optionally frozen the
parameters of both the Conv and Deconv stages instead of training the whole autoen-
coder. We also tried a combination of freezing the encoder and training the decoder
together with the dense layers, but we did not observe any significant improvement,
hence, results on this combination will not be reported

Dataset Training stages were performed on the ISIC2019 dataset (S), which consists
of 25331 images pertaining to 8 classes. Table 2 shows the class frequencies. To con-
duct our studies, we selected the nevus (SNV ) as target class, as it contains the highest
number of samples. The dataset SNV was further split into SNV

train, SNV
val , and SNV

test ,
where the two last subsets included 2500 images each.

Table 2. Class frequency for the ISIC2019 dataset.

Lesion MEL NV BCC AK BKL DF VASC SCC Tot
Pct. 17.8% 50.8% 13.1% 3.4% 10.4% 1.0% 1.0% 2.5% 100%
Count 4522 12875 3323 867 2624 239 253 628 25331

Training It has to be noted that while training for the ISIC2019, using randomly ini-
tialized weights couldn’t converge. We had to use a double transfer approach. First, a
classifier based on the VGG16 architecture was initialized with the weights computed

7 https://www.cs.toronto.edu/˜kriz/cifar.html
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for the ImageNet dataset [8]. Second, the dense layers were substituted with a 2X 2048
nodes dense layers, followed by a final 8-level softmax output and the model trained
on an Strain set. This model scored 0.91 accuracy and 0.53 sensitivity in the ISIC
2019 challenge. The resulting weights were then used to initialize both the Conv and
Deconv stages of the VGG16-based autoencoder.

After initialization, we also distinguished between training the full autoencoder or
only the internal dense layers (All vs. Dense-only).

The structure of SVDD is identical to the encoder part of the autoencoder along with
the final representation layer and the initial weights of SVDD architecure are transferred
from the trained autoencoder part and further optimization is done using the objective
function 9.

Testing We tested our architectures using three test sets. The first T7cls is composed by
the union of SNV

test with the remaining seven classes of the ISIC 2019 set (S - SNV ), for
a total of 4154 samples. As the nevus class is already contained in the SNV

train set, the
goal was to discriminate from nevus as target and melanoma as anomaly. The second
test set TMedNode is the MedNode dataset [11], which contains 100 images for nevi and
70 melanomas. Finally, the third test set Tcoco is composed by the union of SNV

test with a
selection of 4989 random images from the COCO dataset [19]. The goal here is to set a
baseline for the discrimination between skin lesion images and random “outside-world”
ones.

4 Results

Table 3 show the test results for several combination of hyperparameters and test sets.
The positive case (i.e., high sensitivity) is associated with the capability of detecting an
anomaly.

In addition to the reference CNN architecture (base arch.) and the configuration of
the dense layers (dense layers), we test the difference between training the whole au-
toencoder vs. training only the internal dense layers (trained layers) and use different
norm and three discrimination methods: feature vector distance, (Err, l2, and SVDD).
The AUC is computed considering all of the samples of the test set, and gives an in-
dication on the capability of the method into discriminating between the target and the
anomaly classes. However, the AUC does not suggest what would be a proper distance
(or error) threshold value T for deploying the system in real settings.

Hence, with reference to equation 8, we tested the performances of the anomaly
detector using two threshold T values: 1 and 3. With T = 1, our hypothesis is that
the hypersphere including the target samples would be very narrow, thus including only
some of the target samples, but no anomaly samples. Differently, with T = 3, which for
normal distributions would include 99.7% of the samples, our hypothesis is to have a
discriminator which retain most of the target samples at a risk of missing many anoma-
lies.

The top section of table 3 reports results for the LeNet architecture. From the AUC
measurement, we can see that the network is perfectly able to detect COCO classes, but
the discrimination with 7cls fails (AUC ' 0.5). This is reflected in the high sensitivity
couple with a very low specificity.
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Table 3. A selection of the tests of different architectures against other 7classes and COCO
datasets.

Test Base Dense Train Test Test T = 1 T = 3
# arch. nodes layers method set AUC acc. spec. sens. acc. spec. sens.
1 LeNet 128 all Err 7cls 0.49 0.39 0.15 0.86 0.35 0.03 0.98
2 LeNet 128 all Err coco 1 0.96 1 0.86 0.99 1 0.98
3 LeNet 128 all SVDD 7cls 0.49 0.38 0.12 0.88 0.35 0.3 0.97
4 LeNet 128 all SVDD coco 1 0.7 1 0 0.99 1 0.97
5 VGG16 1960:1960:1960 dense Err 7cls 0.51 0.45 0.34 0.66 0.34 0 1
6 VGG16 1960:1960:1960 dense Err coco 1 0.9 1 0.66 1 1 1
7 VGG16 1960:1960:1960 dense SVDD 7cls 0.49 0.39 0.15 0.85 0.37 0.07 0.94
8 VGG16 1960:1960:1960 dense SVDD coco 0.99 0.96 1 0.85 0.98 1 0.94
9 VGG16 1960:1960:1960 all Err 7cls 0.49 0.4 0.17 0.82 0.36 0.04 0.96

10 VGG16 1960:1960:1960 all Err coco 1 0.95 1 0.82 0.99 1 0.96
11 VGG16 1960:1960:1960 all SVDD 7cls 0.5 0.66 1 0 0.34 0 1
12 VGG16 1960:1960:1960 all SVDD coco 1 0.7 1 0 1 1 1
13 VGG16 1960X2:980:1960X2 all Err coco 0.95 0.91 0.97 0.77 0.39 0.1 0.99
14 VGG16 3920 all Err coco 0.93 0.88 0.91 0.83 0.63 0.47 0.96
15 VGG16 490 all SVDD coco 0.92 0.87 0.89 0.84 0.59 0.41 0.96
16 VGG16 980 all SVDD coco 0.92 0.87 0.89 0.84 0.58 0.4 0.96
17 VGG16 147 all Err coco 0.92 0.87 0.88 0.83 0.58 0.4 0.96
18 VGG16 1960:980:1960 all Err coco 0.9 0.86 0.87 0.82 0.5 0.29 0.95
19 VGG16 1960:do(0.5):980:1960 all Err coco 0.9 0.86 0.87 0.82 0.5 0.29 0.95
20 VGG16 1960:1960:1960 all l2-norm 7cls 0.5 0.41 0.22 0.77 0.34 0 0.99
21 VGG16 1960:1960:1960 all l2-norm coco 0.73 0.34 0.16 0.77 0.30 0 0.99

Therefore, we configured a more powerful autoencoder, based on the VGG16 archi-
tecture, experimenting with several configurations for the internal dense layers. In table
3, lines from 13 to 19 show the test results for several combinations of dense layers.
Such configurations where not able to reach AUC 1.0 even on the COCO dataset. Lines
20–21 show the results for the l2-norm method, which was, too, unable to reach AUC
1.0 on the Scoco test set.

The perfect detection of COCO images is achieved by the dense nodes configuration
Ldc

= 1960 : Lf = 1960 : Ldd
= 1960 (Table 3, lines 5–12). However, in spite of the

similarity with the original classifier (Conv : 2048 : 2048 : softmax), the
test on the 7cls dataset lead to an AUC ' 0.5. It can be seen that tests on thresholds 1
and 3 lead (in some cases) to opposite results in terms of sensitivity and specificity.

To better understand the behaviour of the discriminator as function of the threshold
T , we computed the quality metrics for different values of T , ranging from 0 to 8 with
increments of 0.1. This last procedure is also essential for fixing the T parameter to a
value that should include most (or better all) of the samples of the target distribution,
and be ready to intercept anomalies in a real application scenario, such as an online web
service, where input samples can come from unpredictable distributions.

Figures 4 and 5 show the results for tests number 5–6 and 9–10, respectively (The
other configurations show a similar behaviour). The top-left plots show the variation
when testing NV against the other 7 classes. As the threshold increases, the sensitivity
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Fig. 4. Performance metrics as function of the threshold for tests 5 and 6 (training all layers), and
the same architecture tested on the TMedNode test set.

(i.e., the capability to detect an anomaly reaches 1.0). However, the specificity drops
to 0.0, meaning that the system is not able to discriminate at all. The accuracy re-
flects this behaviour and converges to the class proportions ratio. The top-right plots
show the same behaviour when trying to discriminate against the melanoma class in the
MedNode dataset. Finally, the bottom plots show positive results when testing against
the COCO dataset. By setting T = 6 for full training, and T = 3 for only-dense lay-
ers training, we reach accuracy 1.0. When comparing the two configurations, it means
that by training only the dense layers, the target samples are closer to the center of the
hypershpere, potentially meaning that the discrimination among classes can be more
difficult.

To better inspect the behaviour when applying the SVDD technique, we plotted the
metrics variation for tests 11–12 (which correspond to the non-SVDD test 5–6 of Figure
4). Figure 6 shows that when testing against 7-classes and against melanoma, around
T = 1.5 there is a sudden inversion between specificity and sensitivity. It suggests that,
as is the purpose of SVDD, the sample features space is contracted towards the center
of the target hypersphere, reducing the range of the distribution. However, this leads to
poor results also when testing against the COCO images, meaning that also the feature
vectors of fairly different images are collapsing together with the target lesion images.
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Fig. 5. Performance metrics as function of the threshold for tests 9 and 10 (training only dense
layers), and the same architecture tested on the TMedNode test set.

The coherence of this last results with other configurations, led us to mark the SVDD
method as ineffective for the skin lesion domain.

The discrimination between targets and anomalies is based on the measurement
of the error E between the original and the reconstructed image. Here, the idea is that
during the training the autoencoder specializes in encoding images of the target set (low
MSE), but is not able to encode images from other distributions (high MSE).

So far, these results suggests that the reconstruction error E, measured between the
original and the reconstructed image, is similar for nevus as well as for the other 7
classes, but differs for the COCO classes. To visually verify this hypothesis, we plotted
the distribution of the errors for the samples for SNV

test , T7cls, and Tcoco (see figure 7).
The histogram shows (with some approximation) that there is indeed an overlap be-
tween the error scores between the nevus class and the other 7 classes, while samples
of the COCO dataset are well distanced. Finally, to understand if there would be the
possibility to discriminate between the nevus class and any other the 7 other classes, we
plotted the error distribution for the 7 classes separately. Figure 8 shows that the error
distribution of all classes overlaps with the error distribution for NV class, hindering
the capability to perform a discrimination based on error analysis.
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Fig. 6. Performance metrics as function of the threshold for tests 11 and 12 (training all layers,
plus SVDD), and the same architecture tested on the TMedNode test set.

5 Conclusions

The results of our tests show that anomaly detectors based on replicator neural net-
works, initially trained as autoencoders, can distinguish skin lesions from random im-
ages of the outside world very well when the discrimination is based on the encod-
ing/decoding reconstruction error. This discrimination technique should be preferred
over l2-norm or SVDD methods.

However, the discrimination among classes of skin lesions still leads to random se-
lection. We suspect that this is the case because the VGG16 architecture is learning
features that are common to all lesions. Hence, while the same architecture, trained
on all classes, can be effective as classifier, it doesn’t allow for setting a discrimina-
tion threshold when trained on a single class. More tests should be conducted to check
whether the same applies when changing the target class, from nevus to any of the other
seven.

Future work can be done in several directions: i) explore more hyperparameters,
ii) try with more powerful networks, iii) solve the limitations recently addressed on
SVDD [4]. We also aim to investigate in the direction of information fusion and explain-
able AI by incorporating multi-modal embeddings with Graph Neural Networks [13]
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Fig. 8. Distribution of reconstruction errors for nevus and all of the other classes separately.


