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Abstract

We apply the modular dialog system frame-
work to combine open-domain question an-
swering with a task-oriented dialog system.
This meta dialog system can answer questions
from Wikipedia and at the same time act as a
personal assistant. The aim of this system is to
combine the strength of an open-domain ques-
tion answering system with the conversational
power of task-oriented dialog systems. After
explaining the technical details of the system,
we combined a new dataset out of standard
datasets to evaluate the system. We further
introduce an evaluation method for this sys-
tem. Using this method, we compare the per-
formance of the non-modular system with the
performance of the modular system and show
that the modular dialog system framework is
very suitable for this combination of conversa-
tional agents and that the performance of each
agent decreases only marginally through the
modular setting.

1 Introduction

Nehring and Ahmed (2021) defined a modular dia-
log system (MDS) as a dialog system that consists
of multiple modules. In this paper, we want to use
this framework to combine a task-oriented dialog
system (TODS) with an open-domain question an-
swering system (ODQA). For our experiments, we
construct the TODS using the Frankenbot frame-
work trained on the CLINC150 dataset (Larson
et al., 2019) to build a dialog system from the per-
sonal assistant domain. For the ODQA system, we
use DrQA (Chen et al., 2017) which uses Wikipedia
among other corpora as knowledge sources.

The resulting meta dialog system combines the
strengths and evens out the weaknesses of both
approaches. ODQA can answer a wide range of
questions. Furthermore, one can easily extend the
system with new information as it only requires

unstructured text as a knowledge base. It is not
trivial to fix the mistakes of ODQA, so we have
little control over the system.

Creating the TODS on the other hand requires a
lot of manual work. It is not feasible to cover the
amount of questions an ODQA system can answer.
Therefore, the amount of topics that the TODS can
talk about is rather limited. The strength of the
TODS approach is its fine-grained control. Errors
can easily be corrected by adding a small amount
of training data and retraining the model. A TODS
cannot only answer questions, but it can also under-
stand other user queries. For example, the TODS
can understand greetings and respond with a greet-
ing, a task that is not possible for ODQA systems.
Another strength of TODS is the possibility to cre-
ate complex dialogs spanning multiple turns using
a dialog manager.

Question answering has been augmented with
TODS before (Banchs et al., 2013; D’Haro et al.,
2015; Coronado et al., 2015; Podgorny et al., 2019).
In this work, we apply the MDS framework to the
combination of an ODQA system and a TODS. The
other works mentioned here usually performed a
user-based evaluation showing that the meta dialog
system works. We present a method to evaluate
such a system automatically. The method inspects
module selection, ODQA and TODS individually
and measures the performance change of those
from the non-modular to the modular scenario. We
show that the performance drop is very low be-
cause the module selection performs very well in
our setup with an f1-measure of 0.964.

The remainder of this paper is structured as fol-
lows: Section 2 gives an overview over the back-
ground related to conversational agents, DrQA,
Frankenbot, the MDS framework, evaluation mea-
sures and datasets. Next, section 3 explains how
we created our dataset out of existing datasets. The
setup of our MDS and implementation details are
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covered in section 4. Section 5 introduces our eval-
uation methodology, followed by the results and
their discussion in 6. The following sections dis-
cuss conclusions (7) and future work (8).

2 Background

2.1 Conversational Agents

Zhu et al. (2021) define ODQA as the task of iden-
tifying answers to natural questions from a large
corpus of documents. A typical system works in
two steps: First, it selects a document from the cor-
pus that contains the answer. Second, they generate
the answer from this document, either in natural
language (generative QA) or as the span of text
containing the answer (extractive QA) (Zhu et al.,
2021). Examples of such systems are DrQA (Chen
et al., 2017), QuASE (Sun et al., 2015), YodaQA
(Baudiš and Šedivý, 2015) and DeepQA (Ferrucci
et al., 2010).

There are many ways to create a TODS. In this
paper, we limit ourselves to TODS that build on
the GUS architecture (Bobrow et al., 1977). Many
modern chatbot frameworks like Amazon Alexa1,
Google Dialogflow2 and others build on this sur-
prisingly old architecture (Jurafsky and Martin,
2020). In GUS, each user utterance is processed by
the Natural Language Understanding (NLU) unit.
The NLU first performs intent classification which
is the task of assigning one of many pre-defined
user intents to the utterance. An important concept
of GUS is the semantic frame which defines a set
of slots. These slots represent information that the
dialog system needs to understand and fill in from
the user utterances in order to fulfill a task. For ex-
ample, the semantic frame ”restaurant reservation”
consists of the slots ”number of persons”, ”date
and time”. When a user utters ”I want to book a
table for three persons” the TODS can detect the
intent ”table reservation” and fill the slot ”number
of persons”. The output of the NLU is fed into
the Dialog Manager (DM). The DM keeps track
of the dialog state and can be either rule-based or
machine-learned. The dialog manager can, for ex-
ample, decide to ask about the date and time of
the reservation if the intent ”table reservation” is
detected, the slot ”number of persons” is filled out
but the slot ”date and time” is still missing. An-
swers are usually based on the dialog state. In this

1https://developer.amazon.com/en-US/
alexa

2https://cloud.google.com/dialogflow

paper, we limit ourselves to rule-based DMs and
answers written manually by the chatbot designers.
For a more detailed discussion of TODS, we refer
to Jurafsky and Martin (2020).

A MDS, as defined by Nehring and Ahmed
(2021), combines multiple dialog systems to form a
meta dialog system. Each of these dialog systems is
called a module. For each incoming user utterance,
the module selection component chooses the mod-
ule that produces the answer. The MDS framework
does not define how to implement the module se-
lection component, the actual implementation can
vary from MDS to MDS. Another characteristic
of the MDS is that modules are independent from
each other, do not share a common state and do not
share models or parameters. The MDS architecture
consists of multiple subsequent models, in contrast
to a joint architecture that uses one joint module
for all tasks. This allows the combination of differ-
ent, usually incompatible technologies under one
framework.

2.2 DrQA
Chen et al. (2017) introduced the extractive ques-
tion answering system DrQA. To answer a question,
DrQA starts with an information retrieval step to
detect the relevant article from the Wikipedia cor-
pus. The information retrieval is based on bigram
hashing and TF-IDF metrics. In the second step
DrQA uses a recurrent neural network to identify
the answer span in the retrieved document used as
context. DrQA is trained on multiple datasets, in-
cluding the Stanford Question Answering Dataset
(Rajpurkar et al., 2016).

2.3 Frankenbot
Frankenbot is a framework for TODS that is ca-
pable of holding longer conversations spanning
multiple turns by mapping the conversation onto
pre-defined dialog trees. It consists of a set of
nodes, each containing a possible answer. Further-
more, each node contains a pre-defined condition.
Conditions can be e.g. ”The detected intent is X”,
”The detected intent is Y and the slot Z is not filled
out” and similar.

Frankenbot uses the Dual Intent and Entity
Transformer (Bunk et al., 2020) as NLU for intent
classification and slot filling. First, each utterance
is processed by the NLU. Next, the dialog manager
determines which nodes are active, meaning that
they are candidates for the answer generation. Top-
level nodes are always active. Nested nodes are

https://developer.amazon.com/en-US/alexa
https://developer.amazon.com/en-US/alexa
https://cloud.google.com/dialogflow
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only active if their parent node produced the answer
in the previous turn. After the active nodes have
been determined, the DM evaluates the conditions
of all active nodes in a certain order (depth-first).
The first node whose condition matches produces
the answer.

2.4 Evaluation measures
In extractive QA, F1 is the standard measure (Chen
et al., 2019). It is computed over tokens in the
candidate and the reference. Automatic evaluation
measures in QA are flawed because they rely on
a gold standard of correct answers (Chen et al.,
2019). When the tested QA system gives a correct
answer which is not defined in the gold standard,
the correct answer will be counted as an error. We
note that there is still no consensus about an auto-
mated metric for question answering that correlates
well with human judgment (Chen et al., 2019).

Evaluating a TODS in an automated manner suf-
fers from similar problems but we can evaluate
individual components of the TODS. Intent classi-
fication is the task of labeling a user utterance with
one of a set of predefined intents. F1 scores are
usually used to evaluate the performance of intent
classification of the NLU component (Deriu et al.,
2019; Liu et al., 2019).

2.5 Datasets
The CLINC150 dataset (Larson et al., 2019) is a
dataset to evaluate the intent classification perfor-
mance of a TODS for the personal assistant domain.
Crowd workers wrote 22,500 user utterances for
150 intents. It contains the same amount of utter-
ances for each intent. The dataset contains 1,200
out-of-scope utterances that belong to none of the
intents which we did not use.

The Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) is a standard
dataset for question answering which contains over
100.000+ questions. It contains a list of contexts,
and each of them is a paragraph of text. The ques-
tions are always related to a context. Furthermore,
it contains answers to the questions that are anno-
tated as a span of text from the context. It is split
into a training (80%), a development (10%), and a
test (10%) dataset.

2.6 Hybrid Dialog Systems
There are many approaches how to combine several
dialog tasks in one dialog system. One approach
is a hierarchical architecture composed of several

agents. They use a classifier to select the right agent
for each utterance (Coronado et al., 2015; Banchs
et al., 2013; Planells et al., 2013; Pichl et al., 2018)
or a ranking approach that generates answers by
each DS and then selects the best answer (Song
et al., 2018; Tanaka et al., 2019; Paranjape et al.,
2020). Other approaches use a joint architecture
to solve multiple dialog tasks (Lewis et al., 2020;
Shuster et al., 2020).

3 Creating a combined dataset for
question answering and intent
recognition

To our knowledge, no dataset exists to evaluate a
TODS and a QA system at the same time. There-
fore, we combined the SQuAD and CLINC150
datasets to form a single dataset for the evaluation
of the combined system. Beyond the original labels
from CLINC150 (intents) and SQuAD (answers),
each sample has an additional label for the module
selection which we call the true module. One must
note that due to the nature of the MDS, we need
to train each module on its own. DrQA is already
pre-trained on the SQuAD training dataset and we
did not retrain it. We kept 50% of the CLINC150
samples to train the Frankenbot and call this dataset
trainF . We then train the module selection on the
trainMS part of the dataset. For parameter selec-
tion, we reserve validMS samples. Finally, we use
the dataset testfull for the evaluation of the full
system.

dataset number of samples
all 32,390
allCLINC150 21,820
allSQuAD 10,570
trainF 11,250
trainMS 7,900
testMS 2,634
testfull 10,606

Table 1: Dataset statistics

Table 1 shows statistics about this dataset. We
used 11,250 samples to train the Frankenbot TODS
(trainF ). We do not need a training set for DrQA
in our dataset and use the development subset of
SQuAD only for trainF , validMS, and testfull.

We reserved 10,534 samples to train and vali-
date the module selection. With a 75-25 split, it
results in 7,900 samples for training (trainMS)
and 2,634 samples for testing (validMS). For the
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evaluation of the full system, we reserved 10,606
samples (testfull). We aimed for an equal amount
of samples from CLINC150 and SQuAD in the
trainMS, testMS, and testfull sections of the dataset
and therefore randomly subsampled the CLINC150
dataset.

The SQuAD dataset contains multiple questions
for each context, e.g. it contains 810 questions re-
lated to a short paragraph about a Super Bowl game.
If we split the SQuAD dataset randomly, the mod-
ule selection might overfit on such statistical cues,
learning that the word Super Bowl is a hint that this
utterance is aimed at the ODQA system. There-
fore, we did not assign the SQuAD questions to the
datasets at random, but split it along those contexts
so that each context appears in either trainMS or
testfull, but not in both.

While the input questions of SQuAD use cor-
rect casing, the user utterances of CLINC150 use
a mix of correct casing and lower casing. Fur-
thermore, CLINC150 uses punctuation marks only
sometimes while SQuAD always uses punctuation
marks, mostly question marks. This makes our
dataset unrealistic because it leads to distinguish-
ing criteria which will not occur in real world data.
We removed these differences to make the utter-
ances more uniform and therefore more realistic by
lowercasing all user utterances and removing all
punctuation marks.

Many questions from SQuAD can be answered
only when the context of the question is known. For
example the question ”Who approved of this plan?”
is only answerable with the context paragraph at
hand. DrQA retrieves the context from Wikipedia
and therefore cannot answer this question. To get
a more realistic impression of the performance of
the DrQA module, we manually annotated 100
questions from testfull that can be answered in the
ODQA scenario.

We published the dataset under the Creative
Commons Attribution Share Alike license CC-BY-
SA 4.0 under this link3.

4 Modular Dialog System

Figure 1 shows the architecture of the MDS that
we used in our experiments. It contains two mod-
ules: The ODQA system DrQA and the TODS
Frankenbot.

The module selection component decides for
each user utterance which module will answer the

3link will be available in camera ready version

Figure 1: Architecture of the MDS

utterance. We formulate this as a text classification
task with the candidate modules as target classes,
i.e., the module selection predicts each incoming
user utterance as either DrQA or Frankenbot. We
used BERT with a sequence classification head
(Devlin et al., 2019) for this classification task. It is
trained on dataset trainMS and evaluated on testMS.

4.1 Modules

Our MDS consists of the two modules DrQA and
Frankenbot. The DrQA module uses the imple-
mentation published by its authors4 without further
modification.

The Frankenbot module uses the Frankenbot
framework as the technical backend for a TODS.
We used the CLINC150 dataset to train the NLU.
The CLINC150 dataset contains single turn utter-
ances only so our dialog system does not use a
deep dialog management either. The user makes
his query, for example ”Put the lights on”. Using
this dataset the dialog system cannot ask back, for
example ”In which room?”.

Frankenbot can also predict samples as out of
scope (oos) when the confidence of the intent classi-
fication is below a certain manually defined thresh-
old. The oos class indicates that Frankenbot cannot
answer this utterance.

5 Evaluation

5.1 Evaluation of the single modules

Following the approach of the SQuAD dataset (Ra-
jpurkar et al., 2016), we measure the quality of the
DrQA module using token-based F1 scores. Fol-
lowing the approach of the CoQA challenge (Reddy
et al., 2019), we did not take the exact match mea-
sure into account.

Next we want to evaluate the quality of Franken-
bot in the MDS. One can evaluate many aspects of

4https://github.com/facebookresearch/
DrQA

https://github.com/facebookresearch/DrQA
https://github.com/facebookresearch/DrQA
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Frankenbot. Since Frankenbot’s answers are manu-
ally predefined, we make the assumption that they
are correct and we do not want to evaluate them
here. Another factor in the evaluation of dialog
systems is the dialog management. In this work,
we do not want to evaluate the quality of the dialog
management but the quality of the modular dialog
system. We argue that Frankenbot can produces
the correct answer as long when the intent clas-
sification produced the correct intent. Therefore,
we evaluate the quality of the intent classification
to estimate the quality of the TODS. We evaluate
the intent classification using F1 scores. It is a
multi-class classification setting and we use the
micro-average to calculate a weighted final score
out of the F1 scores for each intent.

5.2 Evaluation of module selection
Module selection is a classification task and there-
fore its evaluation is straightforward. We use F1
scores to calculate the performance of the module
selection. We use the testfull dataset to calculate
the scores of module selection. We repeated this
evaluation ten times and averaged the results.

5.3 Evaluation of the full system
Here, we present a framework that can evaluate
both systems jointly. The evaluation framework
can then compare the performance change from a
non-modular dialog system to a modular system.
We also repeated this evaluation ten times and av-
eraged the results.

For a fine-grained evaluation of the full system,
we calculate scores for the non-modular and for
the modular scenario. The non-modular scenario
evaluates how the system would perform if it was
not modular. Bypassing the module selection, it
evaluates each module on its own data. In our case,
it uses the CLINC150 part of the test dataset to
evaluate the Frankenbot and the SQuAD part of the
test dataset to evaluate the SQuAD.

The modular scenario evaluates the MDS. In
this scenario, we evaluate each module on its own
data again, but this time including the module se-
lection. In this setting, it is possible that the module
selection makes a mistake and incorrectly assigns
a sample to the other module.

In case we are evaluating Frankenbot and a
Frankenbot sample gets confused as DrQA, we
label it with the intent class ”oos” for out-of-scope.
This will lower the F1 score of Frankenbot, but it
will not affect the score of DrQA.

In case we misclassify a sample during DrQA’s
evaluation as Frankenbot, we assume that the di-
alog system answered with an empty string and
continue the evaluation. We could use the actual
answer of the dialog system instead of this arbi-
trary string, but we believe that the empty string
provides a more stable error because it does not
produce random matches on the token basis and
has the same length always. Again, this misclas-
sified sample only produces an error in the DrQA
module and not in the Frankenbot module.

To get a joint score for the whole system, we
take the macro-average between the F1 scores of
intent recognition and QA and name it joint F1.
This makes sense for the modular scenario only.

5.4 Questions that are answerable in ODQA
As stated earlier, we found that many questions
from SQuAD are not answerable in the ODQA
scenario. Therefore, we calculate the evaluation
once for the full dataset and once only for questions
that are answerable in the ODQA scenario. This
evaluation includes all samples from CLINC150
and 100 questions from SQuAD that we manually
annotated for being answerable without knowledge
of the context document.

This is an additional error analysis of our specific
system and not part of the evaluation method that
we suggest for this kind of MDS.

6 Results and Discussion

Table 2 shows the results of the non-modular and
modular evaluation across the evaluation using the
full dataset and the subset of the dataset containing
only questions that DrQA can answer.

F1
Franken-

bot
F1

DrQA
joint
F1

Full evaluation data
non-modular 0.897 0.340 -
modular 0.895 0.326 0.611
Questions that DrQA can answer
non-modular 0.897 0.451 -
modular 0.892 0.442 0.670

Table 2: Results

6.1 Results of module evaluation
The evaluation of Frankenbot’s NLU reports an F1
score of 0.897. The numbers are the same for the
evaluation on the full data and on questions that
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DrQA can answer, because it is an evaluation on
the same data.

The evaluation of DrQA reports an F1 score of
0.36 in the non-modular setting which is compa-
rable to the results reported in the original paper
(Chen et al., 2017). The F1 score rises to 0.451
in the subset of SQuAD questions that DrQA can
answer.

6.2 Results of Module Selection
The F1 score of the module selection is 0.964. This
shows that the module selection does not intro-
duce a large error source. This is different from
the findings of Nehring and Ahmed (2021) where
the modular setting introduced a large error. We
believe that the high quality of module selection
is partly a result of the different natures of the
datasets. CLINC150 mostly contains commands
like ”Switch on the light” or ”Play the next song in
the radio” while SQuAD contains only questions.
Our BERT-based classifier can easily distinguish
between the two. We conclude from this result that
the MDS framework is suitable for the combination
of ODQA and TODS.

6.3 Results of the full system evaluation
The very high performance of module selection
reflects itself in the results of the evaluation of
the modular setting. Since the module selection
is almost always correct, it does not introduce a
significant additional error.

It is obvious that the quality is lower in the modu-
lar scenario compared to the non-modular scenario:
The module selection is an additional source of
error only and the performance of a module can-
not improve through the module selection. This
low performance drop is an indicator that the MDS
framework is very suitable for this combination of
dialog systems.

6.4 Error analysis of module selection
Table 3 shows the confusion matrix of the module
selection over dataset testfull. In the former results
sections, we repeated each experiment 10 times and
averaged the results. In this section we show the
results of one of these 10 module selections.

The amount of DrQA samples being misclassi-
fied as Frankenbot is 26x higher than the amount of
Frankenbot samples being misclassified as DrQA.
We assume that this is due to the nature of the
datasets. Each of the intents from the CLINC150
dataset describe a narrow topic and therefore more

Frankenbot DrQA
Frankenbot 5,268 16
DrQA 421 4,903

Table 3: Confusion Matrix of module selection with
the predicted module in the rows and true label in the
columns and the true module in the columns.

suitable for the text classification of the module
selection. The questions of DrQA do not share a
common topic and are therefore harder to detect.

7 Conclusion

We used the MDS framework to combine TODS
and ODQA using the example of DrQA and
Frankenbot. Using this framework, one can extend
the capabilities of ODQA with the conversational
capabilities of a TODS. Further, we introduced
an evaluation method that a) evaluates the perfor-
mance of module selection and b) compares the
performance of the underlying ODQA and TODS
systems in the modular and in the non-modular
setting.

The evaluation showed that DrQA and Franken-
bot work very well together as a MDS. The MDS
introduces only a minimal additional error.

We believe that the MDS framework is espe-
cially suitable for practical applications because
one can extend an existing TODS with a ODQA
system or vice versa easier using MDS compared
to a framework that performs TODS and ODQA to-
gether in a joint model. Although we did not prove
it, we expect that when we exchange one of the
modules, e.g. the Frankenbot system with Rasa5,
Google Dialogflow or IBM Watson Assistant6, the
performance of the MDS will change only in that
module.

We present this evaluation framework for our
specific use case, but we expect it to generalize to
other settings as well such as using more than two
modules. It can also work with other performance
measures than F1 scores, although one needs to
think about how to calculate a joint score out of
different scores and how to deal with errors of the
module selection in the modular scenario.

5https://rasa.com
6https://www.ibm.com/cloud/

watson-assistant

https://rasa.com
https://www.ibm.com/cloud/watson-assistant
https://www.ibm.com/cloud/watson-assistant
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8 Future Work

The module selection showed very good results. In
future work, we want to try the module selection
with other or smaller datasets to find out if this high
performance is stable across datasets.

We showed that the combination of a single-turn
ODQA with a single-turn TODS works very well.
An interesting extension of this paper would be
to use a multi-turn ODQA as in the CoQA chal-
lenge and a multi-turn TODS and find a way to
automatically evaluate both together.
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Hoang Long Nguyen, and Jan Šedivý. 2018.
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