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Abstract: This paper presents a novel architecture for detecting mathematical formulas in document
images, which is an important step for reliable information extraction in several domains. Recently,
Cascade Mask R-CNN networks have been introduced to solve object detection in computer vision.
In this paper, we suggest a couple of modifications to the existing Cascade Mask R-CNN architecture:
First, the proposed network uses deformable convolutions instead of conventional convolutions in
the backbone network to spot areas of interest better. Second, it uses a dual backbone of ResNeXt-101,
having composite connections at the parallel stages. Finally, our proposed network is end-to-end
trainable. We evaluate the proposed approach on the ICDAR-2017 POD and Marmot datasets. The
proposed approach demonstrates state-of-the-art performance on ICDAR-2017 POD at a higher IoU
threshold with an f1-score of 0.917, reducing the relative error by 7.8%. Moreover, we accomplished
correct detection accuracy of 81.3% on embedded formulas on the Marmot dataset, which results in a
relative error reduction of 30%.

Keywords: formula detection; Cascade Mask R-CNN; mathematical expression detection; document
image analysis; deep neural networks; computer vision

1. Introduction

Information extraction from document images is a primary need in various domains
such as banking, archiving, or academia and industry in general. Research in document
analysis has been trying to develop precise information extraction systems for several
years [1–4]. Although state-of-the-art optical character recognition (OCR) systems [5,6]
recognize regular text with high accuracy, they are vulnerable to recognize information from
page objects (tables, figures, mathematical formulas) in document images [7,8]. Figure 1
illustrates the problem in which an open-source OCR, Tesseract [4] (we use the LSTM-
based version 4.1.1 available at https://github.com/tesseract-ocr/tesseract accessed on
5 July 2021), is applied to extract the content from a document image. Besides recognizing
the textual content, the OCR fails to extract the information from mathematical formulas.
This shows that formula detection is a crucial preliminary step for information extraction
in such document images.

Mathematical formulas are an integral part of documents because they allow us to
represent complex information concisely by exploiting mathematics capabilities. Formulas
present in the documents are categorized into isolated formulas (mentioned in a separate
line) and embedded formulas (inline mathematical symbols). Figure 2 exhibits the problem
of detecting isolated and embedded formulas in document images.
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(a) Sample input document image. (b) Extracted information after applying OCR.

Figure 1. Visual depiction of the need to apply formula detection before extracting information in document images.
We apply open source Tesseract-OCR [4] on a document image taken from Marmot dataset [9] containing mathematical
formulas as illustrated in (a). Besides the textual content, the OCR system fails miserably in recognizing information from
formulas as depicted in (b).

The task of detecting both isolated and embedded formulas in document images is
a difficult problem because of the underlying low inter-class and high intra-class vari-
ance [10]. The hurdles involved in detecting isolated and embedded formulas are exhibited
in Figure 2. The isolated formulas present in a document image can easily be misclassified
with other page objects due to low inter-class variance with tables, algorithms, and fig-
ures. The embedded formulas contain mathematical functions (log, exp, tan), operators
(×,+, σ, %), and variables (i, j, k). These inline expressions are prone to be misinterpreted
with the regular text in a document image [11].

(a) Defining isolated formula detection in a document image. (b) Defining embedded formula detection in a document image.

Figure 2. Instances of isolated and embedded formulas in sample document images. The green boundaries represent the
ground truth regions. Separate images are used for the convenience of the readers. The isolated formulas highlighted in
(a), spanning multiple lines, are prone to be misclassified with tables, whereas the embedded formulas depicted in (b) are
confused with the regular text.

Previous works employed hand-crafted features to detect formulas in documents [2,12,13].
Although these systems extract mathematical formulas, they fail to obtain effective results on
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generic datasets. Later, statistical learning, mainly machine learning-based methods, advanced
the performance of formula identification systems [14–16]. The recent success of deep learning-
based methods on computer vision within the last decade also had an impact on the task of
formula detection in scanned document images. Several deep learning-based formula detection
approaches [17–20] have been presented in the past two years. They are mainly equipped with
object detection algorithms such as Faster R-CNN [21], YOLO [22], SSD [23], and FPNs [24].

In recent work, Agarwal et al. [25] presented a method equipped with Cascade Mask
R-CNN [26] to tackle the problem of table detection in document images. However,
the capabilities of Cascade Mask R-CNN have not been investigated yet in the domain of
mathematical formula detection in document images.

This paper presents an end-to-end data-driven approach to detect both isolated and
embedded formulas in document images. The main contributions of this paper are as follows:

• We present an end-to-end trainable framework that operates on a Cascade Mask
R-CNN equipped with a deformable composite backbone to detect both isolated and
embedded formulas in document images.

• Unlike prior work, our formula detection pipeline operates on a lightweight dilation
method as a pre-processing step.

• We accomplish state-of-the-art results in detecting isolated formulas on a higher
IoU threshold in the ICDAR-2017 POD dataset [27]. Furthermore, on the Mar-
mot dataset [9], we surpass previous state-of-the-art results on embedded formu-
las with a huge margin and achieve identical results with prior state-of-the-art on
isolated formulas.

2. Related Work

Research progress in the field of document image analysis directly relates to advances
in the computer vision research community. The task of formula detection in documents
is a well-studied problem [28]. Noticeable progress has been achieved in this domain by
implementing custom-heuristics to deep learning-based approaches. Earlier, rule-based ap-
proaches developed character-based heuristics to identify formulas in documents [29–32].
These techniques look for special characters (e.g., “>”, “×”, “=”) that mainly exist in
mathematical formulas.

Kacem et al. [12] introduced a model based on fuzzy logic to detect mathematical sym-
bols. The approach predicts the formula region by exploiting the features of mathematical
symbols. Inoue et al. [2] first employed a conventional OCR method to extract characters.
The method treated all the remaining characters as mathematical symbols that OCR was
unable to parse.

Specific OCR systems have been presented that recognize mathematical symbols
based on their positions and sizes [2]. Baker et al. [13] segregated the lines containing
formulas to the regular textual lines in order to detect isolated formulas in PDF documents.

Decision trees have been equipped to detect isolated formulas by classifying formula
lines with the plain text lines [33]. Chang et al. [15] proposed a similar method based on
the projection of the features that only works for isolated formulas in documents.

Later, machine learning-based algorithms were proposed to alleviate the performance
of formula detection systems in documents [14,34]. Liu et al. [16] leveraged the combination
of Conditional Random Field (CRF) and Support Vector Machine (SVM) to classify sparse
lines in documents. Subsequently, the method distinguished formulas from other graphical
page objects such as figures and tables by applying custom heuristics.

Succeedingly, researchers have investigated the capabilities of Deep Neural Networks
(DNNs) for the problem of formula identification in document images [27,35]. To the best
of our knowledge, He et al. [36] exploited Convolutional Neural Networks (CNNs) with
spatial context to detect mathematical symbols in document images. Later, Gao et al. [37]
presented a deep learning-based formula detection system in PDF documents.
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NLPR-PAL [27] produced the best results in the competition of POD at ICDAR-2017.
They proposed a blend of connected components, SVM, and Faster R-CNN [21] to detect
figures, formulas, and tables in document images.

Yi et al. [38] published another CNN-based approach that detects graphical page
objects such as tables, figures, and formulas in document images. The authors employed
the dynamic programming technique instead of Non-Maximum Suppression (NMS) to
refine the final candidate proposals. Semantic segmentation-based architecture such as
U-Net [39] has also been utilized to detect mathematical expressions in scientific document
images [17].

Recently, Phong et al. [18] published a method equipped with YOLO [40] to detect
mathematical formulas in document images. In another approach [19], SSD [23] was
exploited to detect mathematical expressions in PDF documents.

Another graphical page object detection system was published by Li et al. [41]. The au-
thors combined deep structure prediction with a traditional approach to detecting page
objects, including formulas in document images. Younas et al. [20] introduced a system
called Fi-Fo that detects figures and formulas in document images. The authors empirically
established that deformable convolutions [42] with Feature Pyramid Networks (FPN) [24]
are a better fit as compared to other object detection algorithms. The proposed approach
heavily relied on the image transformation pre-processing techniques to produce state-of-
the-art results.

3. Method

The presented approach is comprised of Cascade Mask R-CNN [43] equipped with a
recently published composite backbone having deformable convolutions replaced with
traditional convolution filters. Figure 3 illustrates the complete pipeline of our proposed
framework. In this section, we dive deeper into each component of our proposed method.

Figure 3. The presented framework is based on Cascade Mask R-CNN equipped with a deformable
composite backbone applied on dilated document images. Modules B, C, and D represent bounding
box, classification, and segmentation, respectively.

3.1. Cascade Mask R-CNN

We treat the problem of formula detection in document images as an object detection
problem on natural images. Recently, Cai and Vasconcelos [26] introduced Cascade R-
CNN [26] that extends the concept of the idea of Faster R-CNN [21] by adding multi staging
technique. In our approach, we incorporate the instance segmentation branch as proposed
in the original Mask R-CNN [43].

As explained in Figure 3, the input image is passed through the composite ResNeXt-
101 backbone, which is explained in Section 3.2. The backbone extracts the spatial features
and generates feature maps. The Region Proposal Network (RPN) head estimates the pos-
sible candidate regions where formulas can be present. The first bounding box component
receives the features from the RPN and creates predictions. Each of the three bounding
box modules performs classification and regression. The classification score and bounding
box coordinates predicted by each bounding box head, BH1, BH2, and BH3, are denoted
with (C1, B1), (C2, B2), and (C3, B3), respectively. The output of one bounding box head
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becomes the training input for the next head. This cascaded regression and classification
method optimizes the process of differentiating false positive samples with true positives
even at higher IoU thresholds. After computing the refined bounding boxes and classifica-
tion scores from BH3, the segmentation head predicts the mask that contributes to the loss
function to optimize the training further.

3.2. Composite Backbone

We employ a robust and novel dual backbone architecture to extract the possible
spatial features to detect formulas in document images. The performance of any object
detection algorithm depends on the quality of the feature map it receives from the feature
extraction network [44]. In this paper, we implement a dual backbone-based network [45]
in which the first backbone is the assistance backbone, and the other is known as the lead
backbone. Both of the backbones are compositely connected to each other so that the
assistant backbone’s output features are treated as input features for the lead backbone.
Figure 4 illustrates the architecture of our dual composite backbone.

Figure 4. Visual explanation of the employed backbone (CBNet) in our framework. We utilize a
dual ResNeXt-101 backbone, in which there are composite connections between parallel stages of
the adjacent assistant and lead backbone. Moreover, we replace the conventional convolutions in
ResNeXt101 with deformable convolution.

For the conventional convolutional network with single backbone, the output of
(l − 1)-th stage is propagated as input to the l-th stage, which is given by

xl = Fl(xl−1), l ≥ 2 (1)

where Fl represents the non-linear function on l-th level. Contrary to this, our backbone
network receives input from prior levels and parallel level of the assistant backbone.
Therefore, the input of a lead backbone bl at stage l is the product of output of lead backbone
at (l − 1)th stage and parallel l − th stage of assistant backbone ba. Mathematically, it is
explained in [45] as

xl
bl = Fl

bl((xl−1
k ) + g(xl

ba)), l ≥ 2 (2)

where g defines the composite connection between the lead and assistant backbone, and
these composite connections enable the lead backbone to extract essential spatial features.
Table 1 outlines the architectural details of the employed dual ResNeXt-101 backbone
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network. As explained in Figure 3, we propagate the output of the final lead backbone to
the region proposal network of our Cascade Mask R-CNN.

Table 1. Architectural details of the employed dual composite ResNeXt-101 backbone network. DCN
represents the incorporation of deformable convolution.

Stage Output DCN ResNeXt-101 (32 × 4d)

conv1 112 × 112 7 7 × 7, 64, stride 2

conv2 56 × 56

- 3 × 3 max pooling, stride 2

7
1 × 1, 128

3 × 3, 128, C = 32 × 3
1 × 1, 128

conv3 28 × 28 3
1 × 1, 256

3 × 3, 256, C = 32 × 4
1 × 1, 512

conv4 14 × 14 3
1 × 1, 512

3 × 3, 512, C = 32 × 23
1 × 1, 1024

conv5 7 × 7 3
1 × 1, 1024

3 × 3, 1024, C = 32 × 3
1 × 1, 2048

1 × 1 7 global average pool
1000-d fc, softmax

3.3. Deformable Convolution

We incorporate deformable convolution filters [42] instead of the conventional convo-
lutions that exist in the ResNeXt-101 architecture [46]. The convolutional neural networks
extract the important spatial features that are essential to perform the required task. Based
on the hierarchy, convolutional layers discover different features [47]. Convolutional lay-
ers present at the bottom search for crude features such as sharp edges or the gradients,
whereas the layers at higher levels look for the abstract components such as complete
object [48]. The conventional convolution operation has the same effective receptive field
for all the neurons. The 2D convolution is comprised of two parts: (1) the first step samples
the input feature map through a grid R, and (2) aggregation of sample values is multiplied
by the weight w. For conventional convolution, the output of feature map y for each
position po is elaborated in [42] as follows:

y(p0) = ∑
pn∈R

w(pn)× x(p0 + pn) (3)

where x represents the input feature map, and pn iterates over the locations in a grid R that
can be defined as R = (−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)
for a 3 × 3 convolutional layer. The effective receptive field of such a filter is restricted to
these nine positions.

In the case of deformable convolution, an additional offset represented as ∆(pn) is
added, which deforms the filter’s receptive field by augmenting the predefined offsets.
Hence, Equation (3), as explained in [42], is transformed into

y(p0) = ∑
pn∈R

w(pn)× x(p0 + pn + ∆pn) (4)

This modification makes the sampling process irregular with an offset value of
pn + ∆(pn). As these offsets are differentiable and fractional, bilinear interpolation is
used to implement them. Considering p = p0 + pn + ∆(pn), the bilinear interpolation is
implemented as follows:

x(p) = ∑
q

G(q, p)× x(q) (5)

where q iterates over all the possible places on the input feature map x, and the symbol G
represents the bilinear interpolation kernel. It is vital to mention that G is a two-dimensional
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kernel that can be further divided into two one-dimensional kernels. It is mathematically
explained as

G(q, p) = g(qx, px)× g
(
qy, py

)
(6)

where g is explained as g(a, b) = max(0, 1− |a− b|). It is important to note that Equation (5)
is more efficient since G(q, p) is zero for most of the qs. We refer our readers to [42,49] for
a detailed explanation of deformable convolutions. Figure 5 depicts the architecture of
deformable convolution. In order to convert our composite backbone network into its de-
formable counterparts, we replace conventional convolutional operation with deformable
convolution in the higher-level layers that are from stage C3 to stage C5. Table 1 highlights
the presence of deformable convolution in the backbone network.

Deformable
Convolutional

Grid

Input Feature Maps Output Feature Maps

Traditional Convolutional Grid

Conv

Offset Field

Offsets

Figure 5. This figure illustrates a visual demonstration of a deformable convolution. The green grid
depicts the conventional 3× 3 convolutional operation, whereas the blue boxes highlight the effective
receptive field of a similar 3× 3 deformable convolution.

3.4. Image Transformation and Prepossessing

Document images mainly consist of textual regions. There exists a variable amount of
gap between textual components. This gap not only separates the textual components but
also provides a higher level of semantic representation. We can think of formula detection
as a semantic labeling task where a textual unit is labeled as a formula or other text
depending upon its contents. In order to group closely related regions, we apply dilation
transformation on the images. The dilation transformation converts the input images to
semantically enriched representation. It is crucial to understand that this grouping cannot
replace the actual image content. Therefore, we concatenate the prepossessed images with
the original images. This concatenation increases the number of input channels. The deep
neural network processes this combination.

Dilation Transformation

The dilation transformation is used to thicken the black regions in the input image.
Since this transformation works on binary images, the input images are binarized first.
The black pixel represents the characters, and the white pixels describe the background
in the binarized images. Therefore, this transformation thickens the characters. Figure 6
depicts the output of dilation transformation on one of the sample images. We use a
structuring element of 2× 2. We tried different sizes of the structuring elements. However,
2× 2 produces the optimal results.
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(a) Sample input document image. (b) Processed image after dilation.

Figure 6. Visual comparison of a document image before (shown in (a)) and after the pre-processing method (depicted
in (b)). The dilation process facilitates our feature extraction network by increasing the boundaries of foreground pixels,
reducing the number of background pixels.

3.5. Datasets

We employed the well-known publicly available formula detection datasets to conduct
our experiments. This section elaborates upon these datasets, and their summary is
presented in Table 2.

Table 2. Summary of the main statistics of the employed datasets.

Datasets
ICDAR-17 Marmot

Train Test Train Test

Number of Images 1600 817 330 70

Number of Isolated Formulas 3534 1929 1322 253

Number of Embedded Formulas - - 6951 956

3.5.1. ICDAR-17

ICDAR-17 is the result of a recent competition in graphical page object detection
(POD) [27] in document images at ICDAR in 2017. There are 2417 document images
in the dataset having annotations for figures, formulas, and tables in document images.
In addition, the dataset contains a variety of isolated formulas present on the single and
multi-column document images. For the experiments, we have used 1600 images for
training and 817 images for testing purposes. Recently, Younas et al. [20] published the
corrected version of this dataset which leads to more formulas in the dataset. Therefore, we
have employed the revised version of the dataset in our experiments for direct comparison
with state-of-the-art results.

3.5.2. Marmot

Marmot [50] is fairly a smaller dataset consisting of 400 scanned document images.
However, the dataset contains annotations for isolated and embedded mathematical equa-
tions. There are 1575 isolated formulas varying from 4 to 20 formulas per document
image, whereas there are 7907 embedded formulas with an average of almost 20 embedded
formulas per document image.
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4. Experimental Results
4.1. Model Configuration

We implement the proposed method in Pytorch by leveraging the MMdetection object
detection pipeline [51]. Our composite backbone ResNeXt-101 [46] is pre-trained on the
MS-COCO dataset [52]. The pre-trained feature extraction network facilitates our object
detection algorithm to adapt from the domain of natural scenes to documents. We scaled the
input document images to 1200× 800 but maintained the original aspect ratio. The training
starts with a learning rate of 0.0025, which is reduced after every eighth epoch. We train
the network for a total of 20 epochs for both of the datasets. The IoU threshold values
for cascaded bounding boxes are set to [0.5, 0.6, 0.7]. We employed three different anchor
ratios of [0.5, 1.0, 2.0] with only one anchor scale of [8] since FPN [24] itself performs the
multi-scale detection owing to its top-down architecture. We operated with a batch size of
one to train our network. The models for both of the datasets are trained on an NVIDIA
GeForce RTX 101 Ti GPU with 12 GB memory.

4.2. Evaluation Metrics

For ICDAR-2017 POD, we work with the same evaluation criteria as elaborated in
the ICDAR-2017 POD competition [27]. For the Marmot dataset, we follow the identical
criteria of computing detection accuracy as explained in [11] to have direct comparisons.
We report results by employing the following metrics.

4.2.1. Precision

Precision [53] defines the ratio of positive samples over all the predicted samples.
Mathematically, it is given by

Precision =
True Positives

True Positives + False Positives
(7)

4.2.2. Recall

Recall [53] calculates the ratio of positive samples in predictions over all the positive
samples present in the ground truth. It is explained as follows:

Recall =
True Positives

True Positives + False Negatives
(8)

4.2.3. F1-Score

The metrics f1-score [53] is the measure that is computed by taking the harmonic mean
of precision and recall. The formula for f1-score is

F1-Score =
2× Precision × Recall

Precision + Recall
(9)

4.2.4. Mean Average Precision (mAP)

The mean average precision, also referred to as mAP score, is calculated by averag-
ing maximum precision over various recall thresholds. Mathematically, it is explained
in [52] as follows:

mAP =
1
N

N

∑
r=1

APr (10)

where APr is the average precision on a recall level r.
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4.2.5. Intersection Over Union (IOU)

The metrics Intersection over union [54] estimates the amount of predicted region
intersecting with the ground truth region. It is explained as follows:

IoU(A,B) =
Area of Overlap region
Area of Union region

=
|A ∩ B|
|A ∪ B| (11)

4.2.6. Detection Accuracy

We report results on the Marmot dataset using the metrics of detection accuracy.
As explained in [11], we classify the prediction into correct and partially correct based on
the IoU value:

1. Correct: the predicted bounding box is considered correct when the IoU score between
the predicted formula region and the ground truth is equal to or greater than 0.5.

2. Partial: when the IoU score between the inferred and the ground truth formula region
is in the interval (0; 0.5), the detection is categorized as partial.

4.3. Result and Discussion

We report the results on the datasets of ICDAR-2017 POD [27] and Marmot [9] to
demonstrate the effectiveness of the proposed method. This section analyzes the qualitative
and quantitative performance of our approach by highlighting the strengths and weak-
nesses. Furthermore, it compares the presented results with prior state-of-the-art methods.

4.3.1. ICDAR-17

We follow the evaluation protocol as elaborated in ICDAR-2017 POD [27]. We first
calculate the number of true positives, false positives, and false negatives from the complete
test set. We then compute the precision, recall, and F1-Score as calculated in the prior
methods [20,41]. Moreover, we also report the mAP score by evaluating the performance
of our method on the test set. Following the criteria of the competition, we present results
on the IoU threshold of 0.6 and 0.8. It is essential to emphasize that we have employed the
recently published corrected version of the dataset [20]. Therefore, only the methods that
have reported results on the corrected version of the dataset are directly comparable with
our approach.

Table 3 presents the results that are achieved by our proposed end-to-end method with
and without incorporating the pre-processing technique. After setting an IoU threshold of 0.6,
we achieve a precision of 0.95, recall of 0.948, f1-score of 0.949, and mAP of 0.97 without the
inclusion of the pre-processing method. The results further improve with an average of almost
0.04 after employing the proposed pre-processing. Upon increasing the IoU threshold value
to 0.8, our network reaches a precision of 0.914, recall of 0.912, f1-score of 0.913, and mAP
score of 0.949 in the absence of pre-processing method, and the presence of pre-processing
advances the results with an average difference of 0.04. For the completeness of the paper, we
compute the f1-score of the proposed method on different IoU thresholds ranging from 0.5 to
1.0. Figure 7 illustrates the performance of our approach in terms of f1-score.

Figures 8 and 9 depict the qualitative performance of our proposed system. Out
of 1929 isolate formulas present in the test set, our cascade formula detection network
correctly predicted the region for 1836 formulas at an IoU threshold of 0.6. Moreover, it is
vital to mention that even at a higher IoU threshold of 0.8, the system identified correct
boundaries for 1767 formulas present in the test set. We also observe some rare cases of
false positive and false negative samples, which are exhibited in Figure 9.
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Table 3. Quantitative analysis of the presented work with existing state-of-the-art methods on the ICDAR-2017 POD dataset.
† represents the results that are not directly comparable with our method because they are not evaluated on the revised
version of the dataset.

ICDAR-2017 POD

Method
IoU = 0.6 IoU = 0.8

Precision Recall F1-Score AP Precision Recall F1-Score AP

NLPR-PAL [27] † 0.901 0.929 0.915 0.839 0.888 0.916 0.902 0.816

Li et al. [41] † 0.935 0.331 0.489 0.312 0.877 0.310 0.459 0.274

Fi-Fo Detector
Non Deformable [20]

0.910 0.927 0.918 0.953 0.860 0.877 0.868 0.928

Fi-Fo Detector
Deformable [20]

0.957 0.952 0.954 0.949 0.913 0.908 0.910 0.898

Ours (Without
Pre-Processing)

0.950 0.948 0.949 0.97 0.914 0.912 0.913 0.949

Ours
(Complete Method)

0.954 0.952 0.953 0.97.5 0.918 0.916 0.917 0.954

Figure 7. Performance evaluation in terms of f1-score over the varying IoU thresholds ranging from
0.5 to 1.0 on the ICDAR-2017-POD dataset.

Comparison with State-of-the-Art Methods

By looking at Table 3, it is evident that our hybrid method of cascade network leverag-
ing deformable composite backbone with lightweight pre-processing has outperformed
the prior state-of-the-art method [20] on a higher IoU threshold of 0.8 with an average
f1-score of 0.917, thus reducing the relative error by 7.8%. Furthermore, we achieve an
almost identical f1-score at an IoU threshold of 0.6. It is essential to emphasize that the
previous state-of-the-art work [20] depends on the heavy pre-processing pipeline consisting
of distance transform and connected components analysis (CCA) applied on grayscale
images. However, our generic data-driven method operates on the lightweight dilation
technique to produce better results.
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(a) True positives on a two-column document image. (b) True positives on a single column document image.

Figure 8. Performance evaluation of the proposed method on the ICDAR-2017-POD dataset. The green colour depicts the
ground truth, while red denotes the predicted bounding boxes. (a,b) exhibit true positives on a two-column and a single
column document image, respectively.

4.3.2. Marmot

We follow similar evaluation criteria to report results on the Marmot dataset in order
to draw a direct comparison with the prior work. Our network separately detects the
isolated and embedded formulas in a document image due to their variable sizes between
isolated and embedded formulas. Table 4 summarizes the performance of our method on
the Marmot dataset. As explained in Section 4.2.6, we calculate the accuracies of correct
and partial detections. Our proposed mathematical formula identification system achieves
the correct detection accuracy of 93% and 92.5% on isolated formulas with and without
incorporating the pre-processing method, respectively. In embedded formulas, the system
obtains the correct detection accuracy of 81.3% and 80.6% equipped with and without the
proposed dilation method, respectively.

Besides calculating detection accuracy, we compute AP at an IoU threshold of 0.5 and 0.75
for both the isolated and embedded formula detection on the Marmot dataset. The achieved
results are highlighted in Figure 10. Moreover, in Figure 11, we present the performance of
correct detection accuracy over various IoU thresholds ranging from 0.5 to 1.0.
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(a) True positives and false positives. (b) False positives and false negatives.

Figure 9. Performance evaluation of the proposed method on the ICDAR-2017-POD dataset. The green colour depicts the
ground truth, while red denotes the predicted bounding boxes. (a) represents an example of both true positives and a single
false positive case, whereas (b) shows three false positives with one false negative.

Table 4. Performance comparison between our method and previous state-of-the-art approaches on
the Marmot dataset.

Method Formula Correct (%) Partial (%) Total

Chu et al. [55]
Isolated 26.87 44.87 71.76

Embedded 1.74 28.87 30.61

Phong et al. [11]
Isolated 50.37 39.14 91.18

Embedded 22.9 58.45 81.35

Phong et al. [18]
Isolated 93 - -

Embedded 73 - -

Ours
(Without Pre-processing)

Isolated 92.5 4.64 97.14

Embedded 80.6 6.23 86.83

Ours
(Complete)

Isolated 93 4.86 97.86

Embedded 81.3 6.77 88.07

The qualitative performance analysis of the presented method on the Marmot dataset
is exhibited in Figures 12–14. We predict correct regions for 236 out of 253 formulas present
in the test set in detecting isolated formulas. In the case of embedded formulas, the network
is able to precisely detect 777 out of the 956 formulas from the test set.
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(a) Isolated formula detection. (b) Embedded formula detection.

Figure 10. Performance evaluation of the proposed method on the Marmot dataset in terms of average precision (AP) at
an IoU threshold of 0.5 and 0.75. (a) represents the the evolution of AP on isolated formulas, whereas (b) exhibits the the
evolution of AP on embedded formulas.

(a) Isolated formula detection. (b) Embedded formula detection.

Figure 11. Correct detection accuracy achieved on varying IoU threshold ranging from 0.5 to 1.0 on the Marmot dataset. (a)
depicts the correct detection accuracy on isolated formulas, whereas (b) demonstrates the correct detection accuracy on
embedded formulas.

Comparison with State-of-the-Art Methods

We compare our results with earlier approaches on the Marmot dataset in Table 4.
From the table, It is evident that our cascade network with a deformable composite back-
bone has clearly outsmarted the prior state-of-the-art method [18] in detecting embedded
formulas while accomplishing identical results in the case of isolated formulas. We reduce
the relative error of 30% by achieving a detection accuracy of 81.3% on embedded formulas.
Another point that is worth mentioning is the partial detection accuracy. The proposed
system partly predicts 4.86% from the remaining 7% missing isolated formulas, which
makes the total detection accuracy 97.86%. For embedded formulas, we achieve a partial
detection accuracy of 6.77%, which adds up to an 88.07% total detection accuracy. Therefore,
our network only missed 2.14% and 11.93% of isolated formulas and embedded formulas
from the test set, respectively. The reduced number of missed detections in isolated and
embedded formulas demonstrates the superiority of the proposed method.
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(a) Couple of samples illustrating correct detections.

(b) Couple of samples exhibiting partial detections.

Figure 12. Instances of correct and partial detection of isolated formulas on the Marmot dataset. The green color represents
the correct detections, whereas the partial and missed detections are highlighted with red and blue colors, respectively.
(a) depicts a couple of samples of correct detection in which an IoU score between ground truth and predicted region is
greater than or equal to 0.5, whereas (b) illustrates a few cases of partial and missed detection.
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Figure 13. Instances of correct detections of embedded formulas in a document image taken from the
Marmot dataset. The green color highlights the ground truth, whereas the predictions are marked
with red color.

Figure 14. Example of partial and missed detections of embedded formulas in a document image
taken from the Marmot dataset. While green color highlights the correct predictions, partial and
missed detections are marked with red and blue colors, respectively.

5. Conclusions and Future Work

We introduce an end-to-end trainable network for the detection of formulas in doc-
ument images. Our proposed method follows high-level architectural principles of tra-
ditional object detection approaches. Specifically, it exploits dilated document images
fed into a Cascade Mask R-CNN equipped with a deformable composite dual backbone
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network. The proposed modifications help the network to achieve better generalization
and detection performance. We achieve state-of-the-art performance on a higher IoU thresh-
old with an f1-score of 0.917 on the ICDAR-2017 POD dataset. Furthermore, we reduce
the relative error by 30% in detecting embedded formulas on the Marmot dataset with a
correct detection accuracy of 81.3%. Not only do we improve the quantitative accuracy,
but we also observe an outstanding improvement in terms of false-positive rates. Moreover,
the presented work empirically establishes that without relying on heavy pre-processing
pipelines, it is possible to achieve a state-of-the-art formula detection system in scanned
document images.

For future work, we expect that a deeper backbone would be able to perform better
in terms of both IoU and false positives. Moreover, the experiments can be extended
to detect various graphical page objects such as figures, charts, titles, and headings in
document images.
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